Chapter 1 Membrane Protein Production for Structural Analysis Isabelle Mus-Veteau, Pascal Demange and Francesca Zito 1.1 Introduction Integral membrane proteins (IMPs) account for roughly 30 % of all open reading frames in fully sequenced genomes (Liu and Rost 2001). These proteins are of main importance to living cells. They are involved in fundamental biological processes like ion, water, or solute transport, sensing changes in the cellular environment, signal transduction, and control of cell–cell contacts required to maintain cellular homeostasis and to ensure coordinated cellular activity in all organisms. IMP dys- functions are responsible for numerous pathologies like cancer, cystic fibrosis, epi- lepsy, hyperinsulinism, heart failure, hypertension, and Alzheimer diseases. How- ever, studies on these and other disorders are hampered by a lack of information about the involved IMPs. Thus, knowing the structure of IMPs and understanding their molecular mechanism not only is of fundamental biological interest but also holds great potential for enhancing human health. This is of paramount importance in the pharmaceutical industry, which produces many drugs that bind to IMPs, and recognizes the potential of many recently identified G-protein-coupled receptors (GPCRs), ion channels, and transporters, as targets for future drugs. GPCR, which account for 50 % of all drug targets, is one of the largest and most diverse IMP families encoded by more than 800 genes in the human genome (Fredriksson et al. 2003; Lundstrom 2006). However, whereas high-resolution structures are avail- able for a myriad of soluble proteins (more than 42,000 in the Protein Data Bank, I. Mus-Veteau () Institute for Molecular and Cellular Pharmacology, UMR-CNRS 7275, University of Nice-Sophia Antipolis, Valbonne, France e-mail:
[email protected] P.