ADP-Ribosyl)Hydrolases: Structure, Function, and Biology

Total Page:16

File Type:pdf, Size:1020Kb

ADP-Ribosyl)Hydrolases: Structure, Function, and Biology Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press SPECIAL SECTION: REVIEW (ADP-ribosyl)hydrolases: structure, function, and biology Johannes Gregor Matthias Rack,1,3 Luca Palazzo,2,3 and Ivan Ahel1 1Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom; 2Institute for the Experimental Endocrinology and Oncology, National Research Council of Italy, 80145 Naples, Italy ADP-ribosylation is an intricate and versatile posttransla- Diversification of NAD+ signaling is particularly apparent tional modification involved in the regulation of a vast in vertebrata, being linked to evolutionary optimization of variety of cellular processes in all kingdoms of life. Its NAD+ biosynthesis and increased (ADP-ribosyl) signaling complexity derives from the varied range of different (Bockwoldt et al. 2019). ADP-ribosylation is used by or- chemical linkages, including to several amino acid side ganisms from all kingdoms of life and some viruses chains as well as nucleic acids termini and bases, it can (Perina et al. 2014; Aravind et al. 2015) and controls a adopt. In this review, we provide an overview of the differ- wide range of cellular processes such as DNA repair, tran- ent families of (ADP-ribosyl)hydrolases. We discuss their scription, cell division, protein degradation, and stress re- molecular functions, physiological roles, and influence sponse to name a few (Bock and Chang 2016; Gupte et al. on human health and disease. Together, the accumulated 2017; Palazzo et al. 2017; Rechkunova et al. 2019). In ad- data support the increasingly compelling view that (ADP- dition to proteins, several in vitro observations strongly ribosyl)hydrolases are a vital element within ADP-ribosyl suggest that nucleic acids, both DNA and RNA, can be signaling pathways and they hold the potential for novel targets of ADP-ribosylation (Nakano et al. 2015; Jankevi- therapeutic approaches as well as a deeper understanding cius et al. 2016; Talhaoui et al. 2016; Munnur and Ahel of ADP-ribosylation as a whole. 2017; Munnur et al. 2019). The ADP-ribosylation reaction is catalyzed by a diverse range of (ADP-ribosyl)transferases (ARTs). Phylogeneti- Posttranslational modifications (PTMs) of proteins pro- cally, their catalytic domains are part of the ADP-ribosyl vide efficient ways to fine-tune or repurpose protein func- superfamily (Pfam clan CL0084) (Amé et al. 2004) and tions by altering their activities, localization, stability, or three main clades are generally distinguished based on Φ interaction networks. PTMs thus allow organisms to their characteristic catalytic motif: (1) the H-H- clade, adapt rapidly to changes in their environment, including containing TRPT1/KtpA (also termed Tpt1); (2) the R-S- nutrient availability or exposure to chemotoxins, or tran- E clade, containing the cholera toxin-like ARTs (ARTCs); sition between environments, as in the case of a microbial and (3) the H-Y-[EDQ] clade, including the diphtheria tox- pathogen entering a host body. Consequently, the func- in-like ARTs (ARTDs) (Aravind et al. 2015). [Sequence tion of PTMs can be conceived as expanding the limited motifs are given following the regular expression syntax genome-encoded proteome—typically only a few thou- of the ELM resource (http://www.elm.eu.org; Aasland sand proteins—to millions of distinct protein forms. et al. 2002; Gouw et al. 2018).] Functionally, the majority of ARTs catalyze the transfer of a single ADPr moiety onto an acceptor site, termed mono(ADP-ribosyl)ation ADP-ribosylation—intricate and versatile (MARylation). For example, ARTCs are mostly arginine- specific mono(ADP-ribosyl)transferases with the excep- ADP-ribosylation is an ancient PTM and intrinsically tion of a small group of guanine-specific ADP-ribosylating links signaling with basic metabolism. The modification toxins found in some cabbage butterfly and shellfish is established by the transfer of a single or multiple species (Table 1; Takamura-Enya et al. 2001; Nakano β ADP-ribose (ADPr) unit(s) from the redox cofactor -nico- et al. 2015; Crawford et al. 2018). ARTDs (including the β + tinamide adenine dinucleotide ( -NAD ) onto a variety of best characterized class poly(ADP-ribosyl)polymerases acceptor residues on the target protein (Table 1; Fig. 1). [PARPs]) appear to have a comparatively broad target range with acidic (glutamate/aspartate), thiol (cysteine), [Keywords: macrodomain; ARH3; DraG; catalytic mechanism; structural and hydroxyl (serine/tyrosine)-containing residues among biology; genome stability; ADP-ribose; ADP-ribosylation; DNA damage; others being described as acceptors (Table 1). Lastly, PARG; PARP] 3These authors contributed equally to this work. Corresponding author: [email protected] Article published online ahead of print. Article and publication date are on- © 2020 Rack et al. This article, published in Genes & Development,is line at http://www.genesdev.org/cgi/doi/10.1101/gad.334631.119. Freely available under a Creative Commons License (Attribution 4.0 Internation- available online through the Genes & Development Open Access option. al), as described at http://creativecommons.org/licenses/by/4.0/. GENES & DEVELOPMENT 34:263–284 Published by Cold Spring Harbor Laboratory Press; ISSN 0890-9369/20; www.genesdev.org 263 Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Rack et al. Table 1. Précis of the functional versatility of ADP-ribosylation Modification Examples of Linkage type targets known substrates Transferases Hydrolases Glutamic/ β-TrCP2, GSK3b3, PARP16,8, PARP26, MacroD19,10,11, MacroD29,10,11, aspartic LXRα/β4, NXF15, PARP36, PARP5a6, TARG112 acid1 PARP1a,6, PARP5b6, PARP74, PARP2a,6,3a,6, PARP103,6, PARP5aa,6, PARP115,6, PARP5ba,6, PARP147, PARP10a,6, PARP166 PARP11a,6, PARP13a,7, PARP16a,6, PCNA8 Aspartic acid1 GcvH-L13, SirTM, PARP66, MacroD19,10,11, MacroD29,10,11, PARP6a,6, PARP126 TARG112 PARP12a,6 C terminusb,14 Ubiquitin14 PARP914 Unknown Acylated OAADPr15 Sirtuinsc,15 MacroD19,10, MacroD29,10, O-Glycosidic lysinec,15 TARG116, ARH317 linkages Serine and PARP118, histone PARP1/2:HPF1 ARH323,24 tyrosine1 H119, H2B19, complex18,22 H319, HPF120,21 ADPr 2′-OHe and 2′′- PARP16,25, PARG27,28, ARH329 OHf,25,26 PARP26,25, PARP5a6,26, PARP5b6,26 3′/5′-phospho- tRNA34,35 KptA/TRPT130,31,34, PARG30,32,33, TARG130,33, RNA30,31,3′/ PARP132, MacroD130,33, MacroD230,33, 5′-phospho- PARP333, ARH330,33, NUDT1632 DNA31,32,33, PARP1030, 2′-phospho- PARP1130, RNA34,35 PARP1530 Arginine1 integrin α736, hARTC11, hARTC51, ARH140 hemopexin37, cholera toxin39 GRP78/BiP38, 39 GSα Lysineg PARP16a,6 PARP166 Unknown Diphtamide EF241 exotoxin A41 Irreversibleh N-Glycosidic linkages Guanine42,43,44 dsDNA42,43,44 Pierisin42, CARP-143, Irreversibleh ScARP44 Continued 264 GENES & DEVELOPMENT Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press (ADP-ribosyl)hydrolases Table 1. Continued Modification Examples of Linkage type targets known substrates Transferases Hydrolases Cysteine1 PARP8a,6,16a,6 PARP86, PARP166 Unknown S-Glycosidic linkage Unknown Thymidine45 ssDNA:TNTC DarT45 DarG45 motif45 aAutomodified in vitro. bGly76 of ubiquitin. cThe deacylation reaction catalyzed by sirtuins can be viewed as acylic acid transfer from lysine residues onto ADPr. dBranch point linkage highlighted in red. eForming linear 1′′ → 2′ extensions fForming branch points with 1′′ → 2′′ linkage. gC1′′ linked lysine can undergo Amadori rearrangement leading to a ketoamine product (see Fig. 6A, below). hIrreversible has been suggested and so far no reversing activity has been described. Table references: 1Crawford et al. 2018; 2Guo et al. 2019; 3Feijs et al. 2013; 4Bindesbøll et al. 2016; 5Carter-O’Connell et al. 2016; 6Vyas et al. 2014; 7Carter-O’Connell et al. 2018; 8Zhang et al. 2013; 9Chen et al. 2011; 10Jankevicius et al. 2013; 11Rosenthal et al. 2013; 12Sharifi et al. 2013; 13Rack et al. 2015; 14Yang et al. 2017; 15Sauve and Youn 2012; 16Peterson et al. 2011; 17Ono et al. 2006; 18Bonfiglio et al. 2017; 19Leidecker et al. 2016; 20Leslie Pedrioli et al. 2018; 21Bartlett et al. 2018; 22Palazzo et al. 2018; 23Fontana et al. 2017; 24Abplanalp et al. 2017; 25D’Amours et al. 1999; 26Rippmann et al. 2002; 27Brochu et al. 1994; 28Barkauskaite et al. 2013; 29Oka et al. 2006; 30Munnur et al. 2019; 31Munir et al. 2018b; 32Talhaoui et al. 2016; 33Munnur and Ahel 2017; 34Munir et al. 2018a; 35Bane- rjee et al. 2019; 36Zolkiewska and Moss 1993; 37Leutert et al. 2018; 38Fabrizio et al. 2015; 39Vanden Broeck et al. 2007; 40Moss et al. 1985; 41Honjo et al. 1968; 42Takamura-Enya et al. 2001; 43Nakano et al. 2006; 44Nakano et al. 2013; 45Jankevicius et al. 2016. TRPT1/KptA and several mammalian PARPs have been ADP-ribosylation one of the most intricate and versatile found to modify the termini of phosphorylated nucleic ac- PTMs. ids (Talhaoui et al. 2016; Munnur and Ahel 2017; Munir et al. 2018b; Munnur et al. 2019). In addition to these intrinsic specificities, recent studies Beyond PTMs: ADP-ribosylation of nucleic acids have highlighted that the target preference of some trans- Despite their evolutionary separation, TRPT1/KptA-type ferases can be altered depending on the cellular context. transferases are sometimes classified as the 18th PARP. For example, PARP1 and 2 (PARP1/2) catalyze primarily KptA was first characterized in yeast as a tRNA 2′-phos- the modification of acidic residues via ester-type
Recommended publications
  • ADHERENCE and ALKALINIZATION by Elizabeth Hwang
    TWO EARLY PROCESSES DURING INFECTION BY THE FUNGAL PATHOGEN CANDIDA GLABRATA: ADHERENCE AND ALKALINIZATION By Elizabeth Hwang-Wong A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland November, 2016 Abstract Candida glabrata is a yeast pathogen of increasing diagnostic incidence. Its intrinsic resistance to antifungal agents used in standard clinical settings compels a need to further characterize and understand the pathogenesis of this species. The ability of C. glabrata to adhere to both abiotic surfaces and host cells is an essential early step in establishment of infection. It is also postulated that the capability of this pathogen to externally alkalinize an acidic environment, such as that found within an immune effector’s phagolysosome, could provide an evasive mechanism to resist initial onslaught of an innate immune response. Members of a major class of adhesins encoded by the C. glabrata genome were previously described as Epithelial Adhesins (Epas). Earlier studies have demonstrated the existence of more than 20 members of this class, many of which are encoded in subtelomeric regions of the pathogen’s genome. A major sequencing project has now defined a total complement of 25 members, a newly described one of which is shown to function as a major adhesin across multiple host cell types. In fact, functional adherence of all putative adhesins encoded in the subtelomeres of C. glabrata has been tested, and with minor exception, all are EPAs. The ligand specificities of these functional adhesins were further tested utilizing glycan arrays, and revealed clues identifying a specific EPA responsible for mediating adherence to macrophages.
    [Show full text]
  • Membrane Protein Production for Structural Analysis
    Chapter 1 Membrane Protein Production for Structural Analysis Isabelle Mus-Veteau, Pascal Demange and Francesca Zito 1.1 Introduction Integral membrane proteins (IMPs) account for roughly 30 % of all open reading frames in fully sequenced genomes (Liu and Rost 2001). These proteins are of main importance to living cells. They are involved in fundamental biological processes like ion, water, or solute transport, sensing changes in the cellular environment, signal transduction, and control of cell–cell contacts required to maintain cellular homeostasis and to ensure coordinated cellular activity in all organisms. IMP dys- functions are responsible for numerous pathologies like cancer, cystic fibrosis, epi- lepsy, hyperinsulinism, heart failure, hypertension, and Alzheimer diseases. How- ever, studies on these and other disorders are hampered by a lack of information about the involved IMPs. Thus, knowing the structure of IMPs and understanding their molecular mechanism not only is of fundamental biological interest but also holds great potential for enhancing human health. This is of paramount importance in the pharmaceutical industry, which produces many drugs that bind to IMPs, and recognizes the potential of many recently identified G-protein-coupled receptors (GPCRs), ion channels, and transporters, as targets for future drugs. GPCR, which account for 50 % of all drug targets, is one of the largest and most diverse IMP families encoded by more than 800 genes in the human genome (Fredriksson et al. 2003; Lundstrom 2006). However, whereas high-resolution structures are avail- able for a myriad of soluble proteins (more than 42,000 in the Protein Data Bank, I. Mus-Veteau () Institute for Molecular and Cellular Pharmacology, UMR-CNRS 7275, University of Nice-Sophia Antipolis, Valbonne, France e-mail: [email protected] P.
    [Show full text]
  • Additional File 10. Transporter Distribution in Hemiascomycete Species
    Additional File 10. Transporter distribution in hemiascomycete species Transporters were identified through a two step process on the proteomes of S. cerevisiae, C. glabrata, K. lactis, D. hansenii, K. pastoris, Y. lipolytica and A. adeninivorans: 1) identification of protein products having at least three transmembrane domains using THMM (v2.0; http://www.cbs.dtu.dk/services/TMHMM-2.0), 2) identification of transporters by a Blastp search against the TCDB database16. Table S10A Transporter distribution in hemiascomycete species. Table S10B TCDB classification of transporters of A. adeninivorans. Table S10C Class of transporters amplified in A. adeninivorans compared to two other pre-CTG species. Figure S10D Phylogeny of sugar porters in A. adeninivorans and D. hansenii. 1 Table S10A Transporter distribution in hemiascomycete species Type Subfamily Species code TCDB ARAD YALI PIPA DEHA KLLA CAGL SACE Total TCDB Family 1.A.1.10 1 1 The Voltage-gated Ion Channel (VIC) Family 1.A.1.11 1 1 1 1 1 1 1 7 The Voltage-gated Ion Channel (VIC) Family 1.A.1.5 1 1 The Voltage-gated Ion Channel (VIC) Family 1.A.1.7 1 2 1 1 1 6 The Voltage-gated Ion Channel (VIC) Family 1.A.11.1 1 1 1 1 1 5 The Ammonia Transporter Channel (Amt) Family 1.A.11.2 2 2 4 The Ammonia Transporter Channel (Amt) Family 1.A.11.3 2 3 5 The Ammonia Transporter Channel (Amt) Family 1.A.15.1 1 1 1 1 1 5 The Non-selective Cation Channel-2 (NSCC2) Family 1.A.15.2 1 1 The Non-selective Cation Channel-2 (NSCC2) Family 1.A.16.1 1 1 1 1 1 5 The Yeast Stretch-Activated, Cation-Selective,
    [Show full text]
  • Supplementary Tables and Figures
    SUPPLEMENTARY TABLES AND FIGURES The Complete Genome Sequence of Moorella thermoacetica (f. Clostridium thermoaceticum) Elizabeth Pierce1, Gary Xie2,3, Ravi D. Barabote2,3, Elizabeth Saunders2,3, Cliff S. Han2,3, John C. Detter2,3, Paul Richardson2,4, Thomas S. Brettin2,3, Amaresh Das5, Lars G. Ljungdahl5, and Stephen W. Ragsdale1 1Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan; 2 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico; 3Department of Energy Joint Genome Institute, Walnut Creek, CA; 4Lawrence Berkeley National Laboratory, Berkeley, CA; 5Department of Biochemistry and Molecular Biology, University of Georgia 1 Supplementary Table 1. Pseudogenes found in the M .thermoacetica genome. Locus Tag Product Name AA Seq Length Remnants Redundance Moth_0037 FAD/FMN-containing 462 early stop codon, 2 paralogs dehydrogenases frameshift Moth_0138 purine-cytosine permease and 417 early stop codon no paralog related proteins Moth_0164 dTDP-4-dehydrorhamnose 283 fragment, frameshift 2 paralogs reductase Moth_0166 glucose-1-phosphate 227 deletion in central region no paralog thymidylyltransferase Moth_0180 helicase 77 C-terminal fragment no paralog Moth_0276 putative resolvase 484 N-terminal fragment 1 paralog Moth_0410 response regulator receiver 45 N-terminal fragment 2 paralogs Moth_0411 GGDEF 181 C-terminal fragment 7 paralogs Moth_0413 phage integrase 97 fragment 1 paralog Moth_0472 ATPase, E1-E2 type 351 C terminal left 1 paralog Moth_0627 reverse transcriptase 97 C-terminal fragment
    [Show full text]
  • © 2010 Jong Nam Kim
    © 2010 Jong Nam Kim GENETIC AND BIOCHEMICAL ANALYSIS OF NITROGEN METABOLISM IN RUMINAL ANAEROBIC BACTERIA: A COMPARISON BETWEEN RUMINOCOCCUS ALBUS 8 AND PREVOTELLA RUMINICOLA 23 BY JONG NAM KIM DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Animal Sciences in the Graduate College of the University of Illinois at Urbana-Champaign, 2010 Urbana, Illinois Doctoral Committee: Professor Roderick I. Mackie, Chair Associate Professor Isaac K. O. Cann Associate Professor Bruce W. Fouke Assistant Professor Juan J. Loor ABSTRACT These studies were conducted to improve the understanding of the genetic regulation and biochemical pathways utilized by the rumen bacteria, Ruminococcus albus 8 and Prevotella ruminicola 23 during growth on, and metabolism of, different nitrogen sources. Both R. albus 8 and P. ruminicola 23 were grown using different nitrogen sources; ammonia, urea, or peptides for R. albus 8 and ammonia or peptides for P. ruminicola 23 as the sole nitrogen source. Gene expression levels and enzyme activities were analyzed by RT-qPCR, and enzyme assays, as well as microarray and proteomic analyses for P. ruminicola. The results varied according to nitrogen source and also by growth phase. For R. albus 8 growth on ammonia or urea led to the synthesis of glutamate from ammonia by the NADPH-dependent glutamate dehydrogenase (NADPH-GDH). This glutamate was then transformed to glutamine by glutamine synthetase (GS). The later transformation was especially evident during early log phase, while the further transformation from glutamate to α-ketoglutarate by the up-regulated NADH-dependent glutamate dehydrogenase (NADH-GDH) was more evident during late exponential phase.
    [Show full text]
  • Revealing the Metabolic Capacity of Streblomastix Strix and Its Bacterial Symbionts Using Single- Cell Metagenomics
    Revealing the metabolic capacity of Streblomastix strix and its bacterial symbionts using single- cell metagenomics Sebastian C. Treitlia, Martin Koliskob, Filip Husníkc, Patrick J. Keelingc, and Vladimír Hampla,1 aDepartment of Parasitology, Faculty of Science, Charles University, BIOCEV, 252 42 Vestec, Czech Republic; bInstitute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 Cˇeské Budeˇ jovice, Czech Republic; and cDepartment of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada Edited by Nancy A. Moran, University of Texas at Austin, Austin, TX, and approved August 14, 2019 (received for review June 26, 2019) Lower termites harbor in their hindgut complex microbial commu- Besides partial ribosomal (r)RNA genes used for diversity studies, nities that are involved in the digestion of cellulose. Among these are there are almost no molecular or biochemical data available for protists, which are usually associated with specific bacterial symbi- any of these protists. Early studies showed that Trichomitopsis onts found on their surface or inside their cells. While these form the termopsidis and several Trichonympha species, from the hindgut of foundations of a classic system in symbiosis research, we still know Zootermopsis (13–16), have the capacity to degrade cellulose (17, little about the functional basis for most of these relationships. Here, 18), but for other flagellates, including all oxymonads, the in- we describe the complex functional relationship between one pro- volvement in cellulose digestion remains unclear. Recent results tist, the oxymonad Streblomastix strix, and its ectosymbiotic bacte- have shown that the bacterial symbionts of oxymonads have the rial community using single-cell genomics.
    [Show full text]
  • Ammonia Excretion in Caenorhabditis Elegans
    © 2015. Published by The Company of Biologists Ltd | The Journal of Experimental Biology (2015) 218, 675-683 doi:10.1242/jeb.111856 RESEARCH ARTICLE Ammonia excretion in Caenorhabditis elegans: mechanism and evidence of ammonia transport of the Rhesus protein CeRhr-1 Aida Adlimoghaddam1,Mélanie Boeckstaens2, Anna-Maria Marini2, Jason R. Treberg1,3, Ann-Karen C. Brassinga1 and Dirk Weihrauch1,* + ABSTRACT (2014), ammonia in either form, NH3 or NH4, has multiple The soil-dwelling nematode Caenorhabditis elegans is a bacteriovorous detrimental effects, which include disturbance of the energy ’ animal, excreting the vast majority of its nitrogenous waste as metabolism (O Donnell, 1997; Cooper and Plum, 1987; Wilkie, ammonia (25.3±1.2 µmol gFW−1 day−1) and very little urea (0.21± 1997), disruption of ionoregulatory capacity (Harris et al., 2001; 0.004 µmol gFW−1 day−1). Although these roundworms have been used Young-Lai et al., 1991) and immune competence in crustaceans (Le for decades as genetic model systems, very little is known about their Moullac and Haffner, 2000) and has a number of severe negative strategy to eliminate the toxic waste product ammonia from their bodies effects on the central nervous system in mammals (Chan et al., into theenvironment. The current studyprovidesevidence that ammonia 2000; Knecht et al., 1997; Marcaida et al., 1992; Norenberg et al., is at least partially excreted via the hypodermis. Starvation reduced the 1997; Palomero-Gallagher and Zilles, 2013). Because of its toxicity, ammonia excretion rates by more than half, whereas mRNA expression ammonia is usually rapidly excreted either directly (as in most levels of the Rhesus protein CeRhr-2, V-type H+-ATPase (subunit A) aquatic animals) or is detoxified into less harmful nitrogenous and Na+/K+-ATPase (α-subunit) decreased correspondingly.
    [Show full text]
  • Ammonia and Urea Transport Across the Rumen Epithelium: a Review
    *c Cambridge University Press 2007 Animal Health Research Reviews 7(1/2); 43–59 ISSN 1466-2523 DOI: 10.1017/S1466252307001156 Ammonia and urea transport across the rumen epithelium: a review Khalid Abdoun1*y, Friederike Stumpff2y and Holger Martens2 1Faculty of Veterinary Medicine, University of Khartoum, P.O. Box 32, 13314 Khartoum North, Sudan and 2Department of Veterinary Physiology, Freie Universita¨t Berlin, Oertzenweg 19b, 14163 Berlin, Germany Received 7 June 2006; Accepted 21 August 2006 Abstract The transport of nitrogen across the rumen epithelium is characterized by absorption of ammonia from the rumen and by an influx of urea into the rumen. The transport rates of both compounds are large and exhibit wide variation. The transport of ammonia occurs in two forms: in the lipophilic form as NH3, the magnitude of which is linearly related to the pH in the ruminal fluid at pH values above 7, while at a physiological pH of 6.5 or lower, ammonia is + predominantly absorbed as NH4 via putative potassium channels in the apical membrane. The + uptake of NH4 depends on the potential difference of the apical membrane, Pda, and shows + competition with K uptake. The pathway for basolateral exit of NH4 is unknown. Hence, the + relative transport rates of NH3 or NH4 are determined by the ruminal pH according to the Henderson–Hasselbalch equation. Transport of ammonia interacts with the transport of Na and Mg mainly via changes of the intracellular pH. Urea recycling into the rumen has been known for many years and the transport across the rumen epithelium is mediated via urea transporters in the luminal and basolateral membrane of the epithelium.
    [Show full text]
  • Taut) Deficiency Impairs Ammonia Detoxification in Mouse Liver
    Taurine transporter (TauT) deficiency impairs ammonia detoxification in mouse liver Natalia Qvartskhavaa, Cheng Jun Jina, Tobias Buschmanna, Ute Albrechta, Johannes Georg Bodea, Niloufar Monhaserya, Jessica Oenartoa, Hans Jürgen Bidmonb, Boris Görga, and Dieter Häussingera,1 aClinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University, 40225 Düsseldorf, Germany; and bCécile and Oskar Vogt Institute for Brain Research, Heinrich Heine University, 40225 Düsseldorf, Germany Edited by Arthur J. L. Cooper, New York Medical College, Valhalla, NY, and accepted by Editorial Board Member David J. Mangelsdorf February 11, 2019 (received for review July 30, 2018) Hepatic ammonia handling was analyzed in taurine transporter The amino acid taurine is highly abundant in brain, liver, and (TauT) KO mice. Surprisingly, hyperammonemia was present at an other organs (9). Intracellular taurine concentrations are main- age of 3 and 12 months despite normal tissue integrity. This was tained at high levels through uptake by the taurine transporter accompanied by cerebral RNA oxidation. As shown in liver perfusion TauT (10). Functions of taurine in the body are remarkably di- experiments, glutamine production from ammonia was diminished verse: taurine acts as an osmolyte, an antioxidant, and a molecular in TauT KO mice, whereas urea production was not affected. In chaperone, and promotes antiinflammatory effects and modulates – livers from 3-month-old TauT KO mice protein expression and neurotransmission (11 13). Studies from TauT KO mice showed that low taurine levels cause a variety of malfunctions in different activity of glutamine synthetase (GS) were unaffected, whereas – the ammonia-transporting RhBG protein was down-regulated by organs in an age-dependent way (14 20).
    [Show full text]
  • Transport Proteins Enabling Plant Photorespiratory Metabolism
    plants Review Transport Proteins Enabling Plant Photorespiratory Metabolism Franziska Kuhnert, Urte Schlüter, Nicole Linka and Marion Eisenhut * Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany; [email protected] (F.K.); [email protected] (U.S.); [email protected] (N.L.) * Correspondence: [email protected]; Tel.: +49-211-8110467 Abstract: Photorespiration (PR) is a metabolic repair pathway that acts in oxygenic photosynthetic organisms to degrade a toxic product of oxygen fixation generated by the enzyme ribulose 1,5- bisphosphate carboxylase/oxygenase. Within the metabolic pathway, energy is consumed and carbon dioxide released. Consequently, PR is seen as a wasteful process making it a promising target for engineering to enhance plant productivity. Transport and channel proteins connect the organelles accomplishing the PR pathway—chloroplast, peroxisome, and mitochondrion—and thus enable efficient flux of PR metabolites. Although the pathway and the enzymes catalyzing the biochemical reactions have been the focus of research for the last several decades, the knowledge about transport proteins involved in PR is still limited. This review presents a timely state of knowledge with regard to metabolite channeling in PR and the participating proteins. The significance of transporters for implementation of synthetic bypasses to PR is highlighted. As an excursion, the physiological contribution of transport proteins that are involved in C4 metabolism is discussed. Keywords: photorespiration; photosynthesis; transport protein; plant; Rubisco; metabolite; synthetic bypass; C4 photosynthesis Citation: Kuhnert, F.; Schlüter, U.; Linka, N.; Eisenhut, M. Transport Proteins Enabling Plant Photorespiratory Metabolism. Plants 1. Introduction—The Photorespiratory Metabolism 2021, 10, 880.
    [Show full text]
  • The First Version of the Thesis Was Deposited in May 24, 2016. This Is
    COMPUTATIONAL APPROACHES TO IMPROVING THE RECONSTRUCTION OF METABOLIC PATHWAYS Faizah Aplop A Thesis in the department of Computer Science and Software Engineering Presented in Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy Concordia University Montreal,´ Quebec,´ Canada September 2016 ⃝c Faizah Aplop, 2016 Concordia University School of Graduate Studies This is to certify that the thesis prepared By: Mrs. Faizah Aplop Entitled: Computational Approaches to Improving the Reconstruction of Metabolic Pathways and submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Computer Science) complies with the regulations of this University and meets the accepted standards with respect to originality and quality. Signed by the final examining committee: Chair Dr M. Reza Soleymani External Examiner Dr Anthony J. Kusalik Examiner Dr Nawwaf Kharma Examiner Dr Volker Haarslev Examiner Dr Lata Narayanan Supervisor Dr Gregory Butler Approved Chair of Department or Graduate Program Director 20 Dr Amir Asif, Dean Faculty of Engineering and Computer Science Abstract Computational Approaches to Improving the Reconstruction of Metabolic Pathways Faizah Aplop, Ph.D. Concordia University, 2016 Metabolic pathway reconstruction is the essence of systems biology where in silico modeling and prediction of the cell's function is based on the interaction of the cell's components represented as a network of reactions. The reconstructed model and the associated database of information about the organism's
    [Show full text]
  • Ammonia Excretion in Rainbow Trout (Oncorhynchus Mykiss): Evidence for Rh Glycoprotein and Hϩ-Atpase Involvement
    Physiol Genomics 31: 463–474, 2007. First published August 21, 2007; doi:10.1152/physiolgenomics.00061.2007. Ammonia excretion in rainbow trout (Oncorhynchus mykiss): evidence for Rh glycoprotein and Hϩ-ATPase involvement C. Michele Nawata,1 Carrie C. Y. Hung,1,2 Tommy K. N. Tsui,1 Jonathan M. Wilson,3 Patricia A. Wright,2 and Chris M. Wood1 1Department of Biology, McMaster University, Hamilton; 2Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada; and 3Ecofisiologia CIMAR, Porto, Portugal Submitted 12 March 2007; accepted in final form 21 August 2007 Nawata CM, Hung CC, Tsui TK, Wilson JM, Wright PA, Despite the dominance of this NH3 diffusion-trapping the- Wood CM. Ammonia excretion in rainbow trout (Oncorhynchus ory, many past studies have supported the possibility of apical mykiss): evidence for Rh glycoprotein and Hϩ-ATPase involvement. ϩ ϩ Na /NH4 exchange (e.g., Refs. 26, 70). It has been argued, Physiol Genomics 31: 463–474, 2007. First published August 21, however, that freshwater cannot provide the Naϩ gradients 2007; doi:10.1152/physiolgenomics.00061.2007.—Branchial ammo- necessary to drive this exchange (62). Likewise, basolateral nia transport in freshwater teleosts is not well understood. Most ϩ ϩ ϩ entry of NH4 into the gill via an Na /NH4 exchanger (NHE) studies conclude that NH3 diffuses out of the gill and becomes ϩ ϩ is unlikely since the electromotive force for Na is directed protonated to NH4 in an acidified gill boundary layer. Rhesus (Rh) ϩ into the gill cytosol and NH4 cannot out-compete the much proteins are new members of the ammonia transporter superfamily ϩ and rainbow trout possess genes encoding for Rh30-like1 and Rhcg2.
    [Show full text]