bioRxiv preprint doi: https://doi.org/10.1101/783662; this version posted September 26, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Principles of 3D Nucleus Organization and Epigenetic Regulation in Diploid Genome Revealed by Multi-omic Data from Hybrid Mouse Running Title: 3D Nucleus Organization of Diploid Genome Zhijun Han1,2, Cui Kairong3, Katarzyna Placek3, Ni Hong1, Chengqi Lin2, Wei Chen1, Keji Zhao3*, Wenfei Jin1* 1Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; 2Institute of Life Sciences, Southeast University, Nanjing 210096, China; 3Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA. *Corresponding authors:
[email protected] and
[email protected] Keywords: Hybrid mouse; 3D nucleus; chromatin architecture; Hi-C; epigenetic regulations 1 bioRxiv preprint doi: https://doi.org/10.1101/783662; this version posted September 26, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Abstract Most mammalian genomes are diploid and previous studies have extensively investigated the average epigenetic profiles of homologous chromosomes. Here we use hybrid mice to distinguish the epigenetic status and three-dimensional organization of homologous chromosomes. We generated Hi-C, ChIP-seq and RNA-seq datasets from CD4 T cells of B6, Cast and hybrid mice, respectively, and systematically analyzed the 3D nucleus organization and epigenetic regulation.