Why Do We Have Purkinje Fibers Deep in Our Heart?

Total Page:16

File Type:pdf, Size:1020Kb

Why Do We Have Purkinje Fibers Deep in Our Heart? Physiol. Res. 63 (Suppl. 1): S9-S18, 2014 REVIEW Why Do We Have Purkinje Fibers Deep in Our Heart? D. SEDMERA1,2, R. G. GOURDIE3,4,5 1Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic, 2Department of Cardiovascular Morphogenesis, Institute of Physiology Academy of Sciences of the Czech Republic, Prague, Czech Republic, 3Virginia Tech Carilion Research Institute, Center for Heart and Regenerative Medicine Research, Roanoke, Virginia, USA, 4Virginia Tech School of Biomedical Engineering and Sciences, Roanoke, Virginia, USA, 5Department of Emergency Medicine, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA Received October 21, 2013 Accepted October 29, 2013 Summary internodal tracts, the atrioventricular node, the Purkinje fibers were the first discovered component of the atrioventricular (His) bundle, its right and left branches, cardiac conduction system. Originally described in sheep in 1839 and the network of Purkinje fibers. While the functional as pale subendocardial cells, they were found to be present, equivalent of these components are present in some form although with different morphology, in all mammalian and avian in all vertebrate hearts (Sedmera et al. 2003), all hearts. Here we review differences in their appearance and morphologically distinct parts are present only in the extent in different species, summarize the current state of heart of mammals. While development of the CCS has knowledge of their function, and provide an update on markers been subject to numerous reviews (Gourdie et al. for these cells. Special emphasis is given to popular model 2003a,b, Christoffels et al. 2010, Burggren et al. 2013), species and human anatomy. little was written on the comparative morphology of its components in different species, with a few notable Key words exceptions (Davies 1930, Davies et al. 1952, 1994). The Cardiac conduction system • Specialized tracts • Gap junctions • goal of this overview is to put the Purkinje fibers into Connexin context of other CCS components, briefly describe the history of their discovery, provide functional insight into Corresponding author equivalent structures in the lower vertebrates, and then to D. Sedmera, Department of Cardiovascular Morphogenesis, focus in detail on their structure and function in the most Institute of Physiology, Academy of Sciences of the Czech popular model species of mammals and birds. Republic, Videnska 1083, 14220 Prague, Czech Republic. E-mail: [email protected] Function of individual CCS components Introduction The SA node is the principal pacemaker of the heart. Under normal conditions it is the cardiac tissue that The cardiac conduction system (CCS) is defined autonomously sets the rhythm of the heart beat. It is also as a network of specialized myocardial cells that subject to neurohumoral regulation, in particular by generates the cardiac rhythm and assures a coordinated autonomous nervous system. This allows the heart to propagation of the electrical impulse for efficient change its frequency in reaction to the functional status of contraction of the heart. In the adult mammalian heart, the organism. Morphologically, it is organized into a the CCS comprises the sinoatrial (SA) node, the three dimensionally complex compact structure PHYSIOLOGICAL RESEARCH • ISSN 0862-8408 (print) • ISSN 1802-9973 (online) © 2014 Institute of Physiology v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic Fax +420 241 062 164, e-mail: [email protected], www.biomed.cas.cz/physiolres S10 Sedmera and Gourdie Vol. 63 (Mommersteeg et al. 2007, Fedorov et al. 2010), with (Mommersteeg et al. 2007, Aanhaanen et al. 2009, 2010). specific connection points to the working atrial Electrophysiologically, this region shows a typical action myocardium. In lower vertebrates, its function is potential shape (Arguello et al. 1986) and has a level of contained in a compartment termed the sinus venosus automaticity, which can manifest even in the embryo (Koprla 1987, Jensen et al. 2012). New data on the when the sinoatrial node is perturbed (Raddatz 1997). cellular origin of the SA node from outside the traditional Interfaces between atria and node and node and His are heart fields and role of Wnt signaling in recruitment of marked by distinct transitions in connexin expression mesodermal cells into pacemaker lineage were recently (Coppen et al. 1999, Gourdie and Sedmera 2008). Such reported by the Mikawa lab (Bressan et al. 2013). abrupt changes in cellular coupling can play a role in AV delay generation in adult heart (Choi and Salama 1998). Atrial special conduction pathways The His bundle The morphological distinction of specialized intra-atrial and internodal conduction pathways is a Also known as the atrioventricular, or non- controversial topic. Some claim that there are tracts of branching bundle, it forms under normal conditions the Purkinje-like cells connecting the sinoatrial and only conductive pathway between the atria and the atrioventricular node (James and Sherf 1971), while other ventricles. It is a rapidly conducting tissue, with agree that the conduction through the atria is anisotropic, propagation velocity an order of magnitude faster than see the main reason in holes caused by the entrance the working myocardium. As it traverses the vessels (Betts et al. 2002, Ho et al. 2002). Our view is atrioventricular fibrous plane, the bundle is insulated that these preferential conduction pathways, the best from the rest of the myocardium except of its proximal example of which is the interatrial bundle of Bachmann connection with the AV node and distal bifurcation into (Sedmera et al. 2006) can be explained by tissue the left and right bundle branch. geometry (pectinate muscles), in agreement with previous experimental data (Komuro et al. 1986), but are open to a The bundle branches marker that would distinguish cells within those tracts from the remaining atrial myocytes. These form continuation of the His bundle, sharing many of its characteristics – rapid conduction The AV node speed, expression of gap junction protein connexin40 (without co-expression of connexin43) and fibrous The main function of the atrioventricular node is insulation from the working myocardium. This makes generation of a delay between activation (and ensuing these bundles well suited to act as electrical cables, contraction) of the atria and the ventricles. Due to its assuring rapid spread of the impulse through the prolonged refractory period, it also serves as a filter ventricles. There is a notable asymmetry between the left against propagation of atrial tachyarrhythmias to the and right bundle branch, the left being broad, in the ventricles. In mammals, it shows a distinct morphological mouse composed of multiple parallel isolated strands, organization with specific cell phenotypes (Efimov et al. while the right bundle being a narrow structure (Miquerol 1997, Aanhaanen et al. 2010). On the other hand, its et al. 2004). It is likely due to optimization of source:sink morphological localization in birds is still obscure ratio due to a marked asymmetry of the myocardial mass (Vicente-Steijn et al. 2011). In lower vertebrates, and between the left and right ventricle. during embryonic development, the function of delay generator is located in the atrioventricular canal region, a The Purkinje fibers slowly proliferating, conducting and contracting portion of the cardiac tube that apparently retains its “primitive” The Purkinje fibers are the terminal part of the phenotype – not following the pathway of chamber cardiac conduction system. They form a three- myocardium differentiation (Kirby 2007). The dimensional subendocardial network originating from the transcriptional regulation of these events has been bundle branches and their main function is to distribute recently uncovered, and Tbx2, BMP and Tbx3 are the depolarization signal rapidly to the working implicated in maintaining this transcription programme myocardium. 2014 Purkinje Fibers in Vertebrates S11 Discovery of CCS Differentiation of Purkinje fibers during development The historical sequence, in which various CCS components were discovered, is in reverse order to the It has been shown in experimental studies in the functional sequence of activation. In 1839 the Czech chick heart, that ventricular Purkinje fibers share scientist Jan Evangeliste Purkinje described a pale common origin with the surrounding ventricular network of cells in the sheep heart, and noted their myocytes and terminally differentiate during fetal period microscopic characteristics, including the presence of one (Gourdie et al. 1995). In the avian model, it was or two nuclei and cross striations, which made him, after convincingly demonstrated that the differentiation some discussion, consider them a special form muscular towards the conduction phenotype is time-sensitive, and tissue (Eliska 2006). It took more than fifty years before a locally produced endothelin-1 was demonstrated to be a Swiss physiologist His found the elusive connection key signaling molecule (Gourdie et al. 1998, Hyer et al. between the atrial and ventricular myocardium, first by a 1999, Takebayashi-Suzuki et al. 2000). The clonal series of cuts in the beating heart, then by detailed relationship between the working ventricular myocytes histological examination of the region, where such cuts and Purkinje myocytes observed in birds was confirmed led to atrioventricular block (Suma 2001). Over a decade recently
Recommended publications
  • Spreading the Love: the Circulatory System
    Chapter 10 Spreading the Love: The Circulatory System In This Chapter ᮣ Understanding the heart’s rhythm and structure ᮣ Identifying the heart’s chambers and valves ᮣ Tracing arteries, veins, and capillaries ᮣ Touching on fetal circulation his chapter gets to the heart of the well-oiled human machine to see how its central Tpump is the hardest-working muscle in the entire body. From a month after you’re con- ceived to the moment of your death, this phenomenal powerhouse pushes a liquid connec- tive tissue — blood — and its precious cargo of oxygen and nutrients to every nook and cranny of the body, and then it keeps things moving to bring carbon dioxide and waste products back out again. In the first seven decades of human life, the heart beats roughly 2.5 billion times. Do the math: How many pulses has your ticker clocked if the average heart keeps up a pace of 72 beats per minute, 100,000 per day, or roughly 36 million per year? Moving to the Beat of a Pump Also called the cardiovascular system, the circulatory system includes the heart, all blood vessels, and the blood that moves endlessly through it all (see Figure 10-1). It’s what’s referred to as a closed double system; the term “closed” is used for three reasons: because the blood is contained in the heart and its vessels; because the vessels specifically target the blood to the tissues; and because the heart critically regulates blood flow to the tissues. The system is called “double” because there are two distinct circuits and cavities within the heart separated by a wall of muscle called the septum.
    [Show full text]
  • 4B. the Heart (Cor) 1
    Henry Gray (1821–1865). Anatomy of the Human Body. 1918. 4b. The Heart (Cor) 1 The heart is a hollow muscular organ of a somewhat conical form; it lies between the lungs in the middle mediastinum and is enclosed in the pericardium (Fig. 490). It is placed obliquely in the chest behind the body of the sternum and adjoining parts of the rib cartilages, and projects farther into the left than into the right half of the thoracic cavity, so that about one-third of it is situated on the right and two-thirds on the left of the median plane. Size.—The heart, in the adult, measures about 12 cm. in length, 8 to 9 cm. in breadth at the 2 broadest part, and 6 cm. in thickness. Its weight, in the male, varies from 280 to 340 grams; in the female, from 230 to 280 grams. The heart continues to increase in weight and size up to an advanced period of life; this increase is more marked in men than in women. Component Parts.—As has already been stated (page 497), the heart is subdivided by 3 septa into right and left halves, and a constriction subdivides each half of the organ into two cavities, the upper cavity being called the atrium, the lower the ventricle. The heart therefore consists of four chambers, viz., right and left atria, and right and left ventricles. The division of the heart into four cavities is indicated on its surface by grooves. The atria 4 are separated from the ventricles by the coronary sulcus (auriculoventricular groove); this contains the trunks of the nutrient vessels of the heart, and is deficient in front, where it is crossed by the root of the pulmonary artery.
    [Show full text]
  • Basic ECG Interpretation
    12/2/2016 Basic Cardiac Anatomy Blood Flow Through the Heart 1. Blood enters right atrium via inferior & superior vena cava 2. Right atrium contracts, sending blood through the tricuspid valve and into the right ventricle 3. Right ventricle contracts, sending blood through the pulmonic valve and to the lungs via the pulmonary artery 4. Re-oxygenated blood is returned to the left atrium via the right and left pulmonary veins 5. Left atrium contracts, sending blood through the mitral valve and into the left ventricle 6. Left ventricle contracts, sending blood through the aortic Septum valve and to the body via the aorta 1 http://commons.wikimedia.org/wiki/File:Diagram_of_the_human_heart 2 _(cropped).svg Fun Fact….. Layers of the Heart Pulmonary Artery – The ONLY artery in the body that carries de-oxygenated blood Pulmonary Vein – The ONLY vein in the body that carries oxygenated blood 3 4 Layers of the Heart Endocardium Lines inner cavities of the heart & covers heart valves (Supplies left ventricle) Continuous with the inner lining of blood vessels Purkinje fibers located here; (electrical conduction system) Myocardium Muscular layer – the pump or workhorse of the heart “Time is Muscle” Epicardium Protective outer layer of heart (Supplies SA node Pericardium in most people) Fluid filled sac surrounding heart 5 6 http://stanfordhospital.org/images/greystone/heartCenter/images/ei_0028.gif 1 12/2/2016 What Makes the Heart Pump? Electrical impulses originating in the right atrium stimulate cardiac muscle contraction Your heart's
    [Show full text]
  • Ventricular Anatomy for the Electrophysiologist (Part
    Ventricular Anatomy for the REVIEW Electrophysiologist (Part II) SPECIAL 서울대학교 의과대학 병리학교실 서정욱 이화여자대학교 의학전문대학원 김문영 ABSTRACT The conduction fibers and Purkinje network of the ventricular myocardium have their peculiar location and immuno-histochemical characteristics. The bundle of His is located at the inferior border of the membranous septum, where the single trunk ramifies into the left and right bundle branches. The left bundle branches are clearly visible at the surface. The right bundles are hidden in the septal myocardium and it is not easy to recognize them. The cellular characters of the conduction bundles are modified myocardial cells with less cytoplasmic filaments. Myoglobin is expressed at the contractile part, whereas CD56 is expressed at the intercalated disc. A fine meshwork of synaptophysin positive processes is noted particularly at the nodal tissue. C-kit positive cells are scattered, but their role is not well understood. Purkinje cells are a peripheral continuation of bundles seen at the immediate subendocardium of the left ventricle. Key words: ■ conduction system ■ Purkinje network ■ pathology ■ arrhythmia ■ electrophysiology Introduction human heart. In this brief review, the histological characteristics of conduction cells, stained by The functional assessment of abnormal cardiac conventional and immuno-histochemical staining, are 3 rhythm and a targeted treatment based on demonstrated in the second part of the review. electrophysiologic studies are successful advances in cardiology.1 Morphological assessment or confirmation The characteristic location of the ventricular of hearts with such abnormalities is rare, not only due conduction system to the limited availability of human hearts but also inherent technological limitations of existing The atrioventricular node is situated in its technology.2 Classical morphological approaches and subendocardial location at the triangle of Koch.
    [Show full text]
  • Functions of the Heart • Generaqon of Blood Pressure • Rouqng of Blood
    Functions of the Heart • Generaon of blood pressure • Rou'ng of blood • Ensuring unidirecon flow of blood • Regula'on of blood supply 1 2 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduc'on or display. CO2 O2 Pulmonary circuit O2-poor, CO2-rich O2-rich, blood CO2-poor blood Systemic circuit CO2 O2 3 4 5 6 7 8 9 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduc'on or display. Le AV (bicuspid) valve Right AV (tricuspid) valve Fibrous skeleton Openings to coronary arteries AorCc valve Pulmonary valve (a) 10 11 12 13 14 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduc'on or display. 10 1 Blood enters right atrium from superior and inferior venae cavae. 2 Blood in right atrium flows through right Aorta Le pulmonary AV valve into right ventricle. 11 artery 3 Contracon of right ventricle forces 5 5 pulmonary valve open. 4 Blood flows through pulmonary valve 9 Pulmonary trunk Superior into pulmonary trunk. vena cava 4 Le pulmonary 6 5 Blood is distributed by right and le veins pulmonary arteries to the lungs, where it Right 6 unloads CO and loads O . pulmonary 2 2 Le atrium veins 1 AorCc valve 6 Blood returns from lungs via pulmonary veins to leE atrium. 3 7 Le AV 7 Blood in le atrium flows through le AV Right (bicuspid) valve 8 valve into leE ventricle. atrium Le ventricle 2 8 Contracon of leE ventricle (simultaneous with Right AV step 3 ) forces aorCc valve open. (tricuspid) valve 9 Blood flows through aorCc valve into Right ascending aorta.
    [Show full text]
  • 22. Heart.Pdf
    CARDIOVASCULAR SYSTEM OUTLINE 22.1 Overview of the Cardiovascular System 657 22.1a Pulmonary and Systemic Circulations 657 22.1b Position of the Heart 658 22 22.1c Characteristics of the Pericardium 659 22.2 Anatomy of the Heart 660 22.2a Heart Wall Structure 660 22.2b External Heart Anatomy 660 Heart 22.2c Internal Heart Anatomy: Chambers and Valves 660 22.3 Coronary Circulation 666 22.4 How the Heart Beats: Electrical Properties of Cardiac Tissue 668 22.4a Characteristics of Cardiac Muscle Tissue 668 22.4b Contraction of Heart Muscle 669 22.4c The Heart’s Conducting System 670 22.5 Innervation of the Heart 672 22.6 Tying It All Together: The Cardiac Cycle 673 22.6a Steps in the Cardiac Cycle 673 22.6b Summary of Blood Flow During the Cardiac Cycle 673 22.7 Aging and the Heart 677 22.8 Development of the Heart 677 MODULE 9: CARDIOVASCULAR SYSTEM mck78097_ch22_656-682.indd 656 2/14/11 4:29 PM Chapter Twenty-Two Heart 657 n chapter 21, we discovered the importance of blood and the which carry blood back to the heart. The differences between I myriad of substances it carries. To maintain homeostasis, blood these types of vessels are discussed in chapter 23. Most arteries must circulate continuously throughout the body. The continual carry blood high in oxygen (except for the pulmonary arteries, pumping action of the heart is essential for maintaining blood as explained later), while most veins carry blood low in oxygen circulation. If the heart fails to pump adequate volumes of blood, (except for the pulmonary veins).
    [Show full text]
  • Anatomy of the Conduction System
    II. CONDUCTION SYSTEM ANATOMY The functions of the electrical system of the heart (Fig. II-1) are not only initiation and rate of the heartbeat, but its coordinated transmission to the entire heart resulting in maximum mechanical efficiency. Anatomy of the conduction system left at rium SV C His Bundle Sinus Node mitral valve right atrium Left Bundle Branch AV Node left vent ricle tricuspid valve Right Bundle Branch IVC Purkinje Fibers right ventricle Fig. II-1. Conduction system anatomy; specialized conduction tissues labeled in bold type. A. Sinus node and atrium The heartbeat is normally begun in cells of the sinoatrial (SA), or sinus, node which is located in the high lateral right atrium where it adjoins the superior vena cava (embryonic sinus venosus region) (Fig. II-2). Blood supply is from the right coronary artery in 55% of cases, the circumflex branch of the left coronary artery in 45%. Impulses spread from the sinus node over the atria, from right to left/top to bottom, completing atrial depolarization in about 80-100 ms.. Although there are bundles of atrial tissue to which some have ascribed enhanced conduction properties, there are probably really no specialized interatrial tracts (i.e., like the Purkinje fibers). Function of the sinus node is influenced profoundly by autonomic nervous system tone – increases in parasympathetic tone decrease automaticity of the sinus node, slowing the heart rate, while increases in sympathetic tone increase automaticity, resulting in increased heart rate. Fig. II-2. Anatomy of the human sinoatrial (SA) node. In most hearts the node is located in the terminal groove lateral to the superior cavoatrial junction, but in 10% of hearts it is a horseshoe- shaped structure straddling the crest of the atrial appendage.
    [Show full text]
  • The Heart Is a Hollow Muscular Organ That Is Somewhat Pyramid Shaped and Lies Within the Pericardium in the Mediastinum
    human anatomy 2016 lecture thirteen Dr meethak ali ahmed neurosurgeon Heart The heart is a hollow muscular organ that is somewhat pyramid shaped and lies within the pericardium in the mediastinum . It is connected at its base to the great blood vessels but otherwise lies free within the pericardium. Surfaces of the Heart The heart has three surfaces: sternocostal (anterior), diaphragmatic (inferior), and a base (posterior). It also has an apex, which is directed downward, forward, and to the left. The sternocostal surface is formed mainly by the right atrium and the right ventricle, which are separated from each other by the vertical atrioventricular groove . The right border is formed by the right atrium; the left border, by the left ventricle and part of the left auricle. The right ventricle is separated from the left ventricle by the anterior interventricular groove. The diaphragmatic surface of the heart is formed mainly by the right and left ventricles separated by the posterior interventricular groove. The inferior surface of theright atrium, into which the inferior vena cava opens, also forms part of this surface. The base of the heart, or the posterior surface, is formed mainly by the left atrium, into which open the four pulmonary veins . The base of the heart lies opposite the apex. The apex of the heart, formed by the left ventricle, is directed downward, forward, and to the left . It lies at the level of the fifth left intercostal space, 3.5 in. (9 cm) from the midline. In the region of the apex, the apex beat can usually be seen and palpated in the living patient.
    [Show full text]
  • Anatomy and Physiology of the Cardiovascular System
    Chapter © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC 5 NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Anatomy© Jonesand & Physiology Bartlett Learning, LLC of © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION the Cardiovascular System © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION OUTLINE Aortic arch: The second section of the aorta; it branches into Introduction the brachiocephalic trunk, left common carotid artery, and The Heart left subclavian artery. Structures of the Heart Aortic valve: Located at the base of the aorta, the aortic Conduction System© Jones & Bartlett Learning, LLCvalve has three cusps and opens© Jonesto allow blood & Bartlett to leave the Learning, LLC Functions of the HeartNOT FOR SALE OR DISTRIBUTIONleft ventricle during contraction.NOT FOR SALE OR DISTRIBUTION The Blood Vessels and Circulation Arteries: Elastic vessels able to carry blood away from the Blood Vessels heart under high pressure. Blood Pressure Arterioles: Subdivisions of arteries; they are thinner and have Blood Circulation muscles that are innervated by the sympathetic nervous Summary© Jones & Bartlett Learning, LLC system. © Jones & Bartlett Learning, LLC Atria: The upper chambers of the heart; they receive blood CriticalNOT Thinking FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Websites returning to the heart. Review Questions Atrioventricular node (AV node): A mass of specialized tissue located in the inferior interatrial septum beneath OBJECTIVES the endocardium; it provides the only normal conduction pathway between the atrial and ventricular syncytia.
    [Show full text]
  • Cardiovascular Physiology
    Introductory Human Physiology © Copyright Emma Jakoi CV 1. HEART ELECTRICAL ACTIVTY Emma Jakoi, Ph.D. LEARNING OBJECTIVES 1. Describe the conduction system of the heart 2. Explain spontaneous electrical activity (pacemaker) in cardiac muscle. 3. Explain action potentials of ventricular cardiac muscle. 4. Explain the cardiac conduction system, pacemakers, and regulation of heart rate by the autonomic nervous system. 5. Explain the ECG and its correspondence to the cardiac action potential (AP). EXCITATION IN CARDIAC MUSCLE The cardiovascular system transports blood containing oxygen, carbon dioxide, nutrients and wastes, between the environment and the cells of the body. It consists of a heart (pump) and blood vessels which deliver nutrients to the tissues (arteries) and ferry waste products away from the tissues (veins). The heart is a muscular organ (Fig 1) which can contract in a rhythmic manner without direct stimulus from the nervous system. Each heart beat begins with the flow of ions across the plasma membrane of the cardiac muscle cell. This current is generated in specialized cells called pacemaker cells. The impulse from the pacemaker cells flows in a unidirectional manner through out the heart via specialized conducting tissue (Fig 1) and into the heart muscle. The electrical impulse results in mechanical contraction of the cardiac muscle through a series of intracellular events involving calcium. Figure 1. Electrical conduction within the heart starts at the sinoatrial (SA) node and passes sequentially to the atriaventricular (AV) node, Bundle of His, left and right bundle branches, and the Purkinje fibers. So the electrical activity moves from the base (A-V junction) to the apex (tip of ventricle) distant from the atria and then sweeps up the sides of the ventricles towards the base.
    [Show full text]
  • ET Receptors in Purkinje Fiber Differentiation
    Development 129, 3185-3194 (2002) 3185 Printed in Great Britain © The Company of Biologists Limited 2002 DEV3650 Competency of embryonic cardiomyocytes to undergo Purkinje fiber differentiation is regulated by endothelin receptor expression Nobuyuki Kanzawa, Clifton P. Poma, Kimiko Takebayashi-Suzuki, Kevin G. Diaz, John Layliev and Takashi Mikawa* Department of Cell Biology, Cornell University Medical College, 1300 York Avenue, New York, NY 10021, USA *Author for correspondence (e-mail: [email protected]) Accepted 27 March 2002 SUMMARY Purkinje fibers of the cardiac conduction system embryonic chick heart. Whole-mount in situ hybridization differentiate from heart muscle cells during embryogenesis. analyses revealed that ETA was ubiquitously expressed in In the avian heart, Purkinje fiber differentiation takes both ventricular and atrial myocardium during heart place along the endocardium and coronary arteries. To development, while ETB was predominantly expressed in date, only the vascular cytokine endothelin (ET) has been the atrium and the left ventricle. ETB2 expression was demonstrated to induce embryonic cardiomyocytes to detected in valve leaflets but not in the myocardium. RNase differentiate into Purkinje fibers. This ET-induced protection assays showed that ventricular expression of Purkinje fiber differentiation is mediated by binding of ET ETA and ETB increased until Purkinje fiber differentiation to its transmembrane receptors that are expressed by began. Importantly, the levels of both receptor isotypes myocytes. Expression of ET converting enzyme 1, which decreased after this time. Retrovirus-mediated produces a biologically active ET ligand, begins in cardiac overexpression of ETA in ventricular myocytes in which endothelia, both arterial and endocardial, at initiation of endogenous ET receptors had been downregulated, conduction cell differentiation and continues throughout enhanced their responsiveness to ET, allowing them to heart development.
    [Show full text]
  • The Cardiovascular System
    Heart’s Place in the Circulation Essentials of Anatomy & Physiology, 4th Edition Martini / Bartholomew Heart Pumps Blood into Two Circuits in Sequence The Cardiovascular 1. Pulmonary circuit • To and from the lungs 12 System: The Heart 2. Systemic circuit • To and from the rest of the body PowerPoint® Lecture Outlines prepared by Alan Magid, Duke University Slides 1 to 65 Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings Heart’s Place in the Circulation Heart’s Place in the Circulation Three Kinds of Blood Vessels Two Sets of Pumping Chambers in Heart 1. Arteries 1. Right atrium • Carry blood away from heart and carry it to • Receives systemic blood the capillaries 2. Right ventricle 2. Capillaries • Pumps blood to lungs (pulmonary) • Connect arteries and veins 3. Left atrium • Exchange area between blood and cells • Receives blood from lungs 3. Veins 4. Left ventricle • Receive blood from capillaries and carry it • Pumps blood to organ systems (systemic) back to the heart Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings Heart’s Place in the Circulation The Anatomy of the Heart Overview of the Pericardial Cavity Cardiovascular • Surrounds the heart System • Lined by pericardium • Two layers 1. Visceral pericardium (epicardium) • Covers heart surface 2. Parietal pericardium • Lines pericardial sac that surrounds heart Figure 12-1 Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings 1 The Anatomy of the Heart The Anatomy of the Heart The Location of the Heart in the Thoracic Cavity Surface Features of the Heart 1.
    [Show full text]