Reducing Urban Road Transportation Externalities: Road Pricing in Theory and in Practice Downloaded from Alex Anas* and Robin Lindseyy

Total Page:16

File Type:pdf, Size:1020Kb

Reducing Urban Road Transportation Externalities: Road Pricing in Theory and in Practice Downloaded from Alex Anas* and Robin Lindseyy 66 Symposium: Transportation and the Environment Reducing Urban Road Transportation Externalities: Road Pricing in Theory and in Practice Downloaded from Alex Anas* and Robin Lindseyy Introduction http://reep.oxfordjournals.org/ Urban road transportation causes several major negative externalities. First, the costs of green- house gas emissions from motorized private and public vehicles are borne globally. Second, other air pollutants and noise from urban road transportation affect road users and others locally. Third, while the costs of congestion (time delays and extra fuel consumption), accidents, and infrastructure damage are largely borne by motorists collectively, there is still an externality because individual motorists increase these costs for other motorists. Because of these exter- nalities, motorists do not bear the full social marginal costs of driving and they drive too much. Urban road transportation causes several other externalities as well, including water pollu- at Technical Services - Serials on October 6, 2016 tion, vibrations, and visual intrusion. Roads also create a barrier to bicyclists and pedestrians. Moreover, when parking is underpriced, the time spent searching for parking, excessive use of land for parking, the contribution to the urban heat island effect, and problems of drainage can besignificantinurbanareas(Shoup2005).Inaddition,fuelconsumptioncanimposecostsatthe national level due to monopsony power in the world oil market and energy insecurity, although by most estimates the average costs are small (Bickel et al. 2006; Delucchi and McCubbin 2009). Many policy instruments can be used to control road transportation externalities, but all have their limitations. In the United States, vehicle emissions standards and ceilings on regional air quality have helped reduce emissions per vehicle kilometer. Regulating vehicle safety, building *Department of Economics, State University of New York at Buffalo, 415 Fronczak Hall, North Campus, Amherst, NY 14260, USA. Telephone: 716-645-8663; Fax: 801-749-7805; e-mail: [email protected]. ySauder School of Business, University of British Columbia, 2053 Main Mall, Vancouver, British Columbia, Canada V6T 1Z2. Telephone: 604-822-3323; Fax: 604-822-4977; e-mail: [email protected]. We are indebted to Charles Kolstad, Suzy Leonard, Stef Proost, and two anonymous referees for helpful comments and suggestions. Anas gratefully acknowledges the support of research award RD-83184101-0 from the United States Environmental Protection Agency and the Multi-campus Research Program and Ini- tiative grant from the Office of the President, University of California, award number 142934. Lindsey grate- fully acknowledges financial support from the Social Sciences and Humanities Research Council of Canada. The views expressed in the article are solely those of the authors and not those of the financial supporters. Review of Environmental Economics and Policy, volume 5, issue 1, winter 2011, pp. 66–88 doi:10.1093/reep/req019 Advance Access publication on June 16, 2011 Ó The Author 2011. Published by Oxford University Press on behalf of the Association of Environmental and Resource Economists. All rights reserved. For permissions, please email: [email protected] Reducing Urban Road Transportation Externalities 67 saferroads,stricterenforcementoftrafficrules,andexperienceratingofinsurancepremiumshave all helped reduce accident rates per kilometerdriven. But building safercars can induce faster and less careful driving, and regulations mandating greater vehicle fuel efficiencycan cause a rebound effect when a reduction in the monetary cost of driving per kilometer induces more driving. The cost of driving depends on distance driven, road and vehicle characteristics, regulations, and level of congestion. Vehicle sales taxes and registration and licensing fees entail fixed charges that do not vary with distance driven. Fuel taxes offer a first-best instrument for internalizing the costs of CO2 and other greenhouse gas emissions, as well as air pollution costs that are propor- tional to fuel consumption. However, fuel-related externalities generally account for a small frac- tion of the total external societal costs of driving. Tsekeris and Voß (2008), Parry (2009), estimate Downloaded from that for light-duty vehicles in the United States, fuel-related externalities are eighteen cents per gallon, compared to time-delay and other distance-related costs of $2.10 per gallon (converted using average vehicle fuel economy). In addition, the costs of congestion and accidents vary widely, whereas fuel use is relatively insensitive to time of day, type of road, and traffic volume. http://reep.oxfordjournals.org/ Fuel taxes per kilometer of driving decrease with vehicle fuel economy, but the time-delay costs of congestion are little related to fuel economy. Moreover, high fuel taxes induce switching to fuel- efficient, electric, and alternative fuel vehicles and therefore become less effective at reducing travel over time. In many developing countries with rapidly rising incomes, values of time are rising and the time-delay externality of congestion is increasing more quickly than other costs. The problem of traffic congestion has been addressed by building new roads; improving public transportation, traffic control, and other travel demand management policies; adop- at Technical Services - Serials on October 6, 2016 tion of advanced traveler information systems;1 and land-use planning. But these measures can make driving cheaper and more pleasant, which encourages additional driving. While these policies may reduce the level of congestion, and thus the gap between marginal social and average private costs, excess congestion still remains. According to the theory of welfare economics and externalities pioneered by Pigou (1920), a tax or toll is needed to correct the externalities of urban road transportation. Road pricing has two advantages over command-and-control policies such as bans on driving and restric- tions on the days when a vehicle can be driven (based on license plate numbers). First, it induces adjustments in trip frequencies, destination, mode, and time of day and route, as well as in long-run location decisions. Second, road pricing can be varied with the magnitude of the congestion externality according to place, time of day, and type of vehicle. Most previous studies of urban road pricing have focused on its role in relieving conges- tion. Only recently has attention turned toward using road pricing as an instrument to im- prove air quality. This article, which is part of a symposium on Transportation and the Environment, examines the environmental as well as the congestion relief benefits of road pricing in theory and in practice.2 Our discussion does not include the specialized topics of 1Advanced traveler information systems refers to a broad array of sources that provide information about travel conditions, such as Internet websites, 511 phone systems in the United States, cell phones, and other handheld devices. 2The other two articles in this symposium are Proost and Van Dender (2011), who examine projections of the future demand for road transport and assess long-term policy issues and options, and Anderson et al. (2011), who examine the impacts and efficiency of automobile fuel economy regulations in the United States and other countries. 68 A. Anas and R. Lindsey revenue generation, pricing of parking congestion, private toll roads, pay-as-you-drive car insurance, and truck tolls. Rather, we address four broad issues related to urban road pricing. First, real-world pricing schemes are imperfect and there is no guarantee that their benefits will exceed their setup and operating costs (Eliasson 2009). Thus, it is important to identify the effects of existing schemes and assess whether their benefits exceed their costs. Second, road pricing can yield environmental benefits that the public supports. According to Oberholzer- Gee and Weck-Hannemann (2002), for example, people are generally more interested in cleaner air than in congestion relief. This raises the second issue, which is how the potential environmental benefits from road pricing compare to the congestion relief benefits. Third, as Thomson (1977) noted, public transport provides a sort of ‘‘safety valve’’ for traffic congestion. Downloaded from To date, all urban road congestion pricing schemes have been implemented in cities with good public transport (e.g., Singapore, London, Stockholm). Thus, it is important to examine how the availability of good urban public transport affects the impact and acceptance of road pric- ing policies. Finally, there have been conflicting views on the viability of road pricing (e.g., see http://reep.oxfordjournals.org/ Borins 1988 versus Richards 2008). This leads to the fourth issue we address, which is to iden- tify the conditions under which urban road pricing is likely to be both economically attractive and politically feasible and to determine whether such policies are likely to become widespread in the foreseeable future. Our review is organized as follows. The next section discusses road pricing theory and policy options. This is followed by a review of experience with urban road pricing schemes in Singapore, London, Stockholm, and Milan. The next section discusses the distributional at Technical Services - Serials on October 6, 2016 impacts and public acceptance of road pricing. The final section summarizes the main find- ings of the review and offers some thoughts
Recommended publications
  • Chapter 5 Conclusions and General Recommendations
    Conclusions and general recommendations Chapter 5 Chapter 5 Conclusions and general recommendations Economic Instruments have a long history – both in developed and developing countries. Transport has always been used to generate state revenues. Many instruments that have been discussed in this book, in fact, can be found in various forms of horse ownership charges, and road and bridge tolls in many countries’ economic histories. Many of these roots, however, have been neglected and forgotten in the recent debate about sustainable transport policy. By 1776, Adam Smith, in “The Wealth of Nations,” had already outlined the basic principles of a sound transport policy. These included most of the aforementioned principles and recommendations for taxation and financing schemes.1 Economic Instruments thus are not new transport policy “tools.” But these tools have too long been idle. It is time to relearn their use, and to use them wisely in order to meet the economic, social and ecological challenges that occur today. 1 An excellent modern outline of the principles formulated by Adam Smith can be found in Metschies 2001. 117 Chapter 5 Conclusions and general recommendations Eight basic insights In the face of diminishing public budgets but increasing internal and toward a wise use of external costs of infrastructure and environmental damage a rethinking Economic of transport policy is needed. In this rethinking, Economic Instruments Instruments. should play an important role. The existing experience with the use of Economic Instruments, as presented in this book, lead to a number of conclusions. These can be summarised as follows: 1. There is a diverse toolbox of Economic Instruments that can be used to address economic, ecological and social goals with tailor-made measures based on economic incentives.
    [Show full text]
  • The Marginal Cost of Traffic Congestion and Road Pricing: Evidence from a Natural Experiment in Beijing
    The Marginal Cost of Traffic Congestion and Road Pricing: Evidence from a Natural Experiment in Beijing Shanjun Li Avralt-Od Purevjav Jun Yang1 Preliminary and Comments Welcome December 2016 ABSTRACT Leveraging a natural experiment and big data, this study examines road pricing, the first-best policy to address traffic congestion in Beijing. Based on fine-scale traffic data from over 1500 monitoring stations throughout the city, this paper provides the first empirical estimate of the marginal external cost of traffic congestion (MECC) and optimal congestion charges based on the causal effect of traffic density on speed, a key input for measuring the MECC. The identification of the causal effect relies on the plausibly exogenous variation in traffic density induced by the driving restriction policy. Our analysis shows that the MECC during rush hours is about 92 cents (or $0.15) per km on average, nearly three times as much as what OLS regressions would imply and larger than estimates from transportation engineering models. The optimal congestion charges range from 5 to 38 cents per km depending on time and location. Road pricing would increase traffic speed by 10 percent within the city center and lead to a welfare gain of 1.4 billion and revenue of 40 billion Yuan per year. Keywords: Traffic Congestion, Road Pricing, Natural Experiment JEL Classification: H23, R41, R48 1 Shanjun Li is an Associate Professor in the Dyson School of Applied Economics and Management, Cornell University, [email protected]; Avralt-Od Purevjav is a doctoral student in the Dyson School of Applied Economics and Management, Cornell University, [email protected]; Jun Yang is a research fellow in Beijing Transportation Research Center, [email protected].
    [Show full text]
  • Glossary of Regional Transportation Systems Management and Operations Terms
    TRANSPORTATION RESEARCH Number E-C166 August 2012 Glossary of Regional Transportation Systems Management and Operations Terms Second Edition TRANSPORTATION RESEARCH BOARD 2012 EXECUTIVE COMMITTEE OFFICERS Chair: Sandra Rosenbloom, Professor of Planning, University of Arizona, Tucson Division Chair for NRC Oversight: C. Michael Walton, Ernest H. Cockrell Centennial Chair in Engineering, University of Texas, Austin Executive Director: Robert E. Skinner, Jr., Transportation Research Board Vice Chair: Deborah H. Butler, Executive Vice President, Planning, and CIO, Norfolk Southern Corporation, Norfolk, Virginia TRANSPORTATION RESEARCH BOARD 2012–2013 TECHNICAL ACTIVITIES COUNCIL Chair: Katherine F. Turnbull, Executive Associate Director, Texas Transportation Institute, Texas A&M University, College Station Technical Activities Director: Mark R. Norman, Transportation Research Board Paul Carlson, Research Engineer, Texas Transportation Institute, Texas A&M University, College Station, Operations and Maintenance Group Chair Thomas J. Kazmierowski, Manager, Materials Engineering and Research Office, Ontario Ministry of Transportation, Toronto, Canada, Design and Construction Group Chair Ronald R. Knipling, Principal, safetyforthelonghaul.com, Arlington, Virginia, System Users Group Chair Mark S. Kross, Consultant, Jefferson City, Missouri, Planning and Environment Group Chair Peter B. Mandle, Director, LeighFisher, Inc., Burlingame, California, Aviation Group Chair Harold R. (Skip) Paul, Director, Louisiana Transportation Research Center, Louisiana
    [Show full text]
  • Technologies That Enable Congestion Pricing a Primer Quality Assurance Statement
    Technologies That Enable Congestion Pricing A PRIMER Quality Assurance Statement The Federal Highway Administration (FHWA) provides high quality information to serve Government, industry, and the public in a manner that promotes public understanding. Standards and policies are used to ensure and maximize the quality, objectivity, utility, and integrity of its information. FHWA periodically reviews quality issues and adjusts its programs and processes to ensure continuous quality improvement. Contents The Primer Series and the Purpose of This Volume 2 Congestion-Pricing Options 4 Functional Processes for Tolling and Congestion Charging 6 Primary Tolling and Pricing-System Components 7 Paper-Based Systems 7 Manual-Toll Facilities 8 Image-Based Tolling/Automatic License Plate Recognition (ALPR) Technology 9 DSRC Free-Flow Toll Using Transponders and Gantries 9 VPS Technologies 11 Cellular Telephone and Pico-Cell Systems 12 Combination Systems 13 Sub-System Technologies 14 Informing and Providing Standardized Signs and Lane Markings 14 Vehicle-Occupancy Detection Technologies 15 Vehicle-Identification and Classification Systems 15 Telecommunications: Roadside and Centralized Control Equipment 16 Automation of Operations 17 Payment Systems for Pre- and Post-Payment of Tolls and Charges 17 Secondary Enforcement 18 System Reliability and Accuracy of DSRC Systems 18 OBU Distribution Facilities 19 ITS Integration 19 Acronym List/Glossary 20 References 23 The Primer Series and the Purpose of This Volume States and local jurisdictions are increasingly dis- About This Primer Series cussing congestion pricing as a strategy for improv- The Congestion Pricing Primer Series is part of FHWA’s outreach efforts ing transportation system performance. In fact, to introduce the various aspects of congestion pricing to decision-makers many transportation experts believe that conges- and transportation professionals in the United States.
    [Show full text]
  • Pricing out Congestion
    RESEARCH NOTE PRICING OUT CONGESTION Experiences from abroad Patrick Carvalho*† 28 January 2020 I will begin with the proposition that in no other major area are pricing practices so irrational, so out of date, and so conducive to waste as in urban transportation. — William S. Vickrey (1963)1 Summary As part of The New Zealand Initiative’s transport research series, this study focuses on the international experiences around congestion pricing, i.e. the use of road charges encouraging motorists to avoid traveling at peak times in busy routes. More than just a driving nuisance, congestion constitutes a serious global economic problem. By some estimates, congestion costs the world as much as a trillion dollars every year. In response, cities across the globe are turning to decades of scientific research and empirical support in the use of congestion charges to manage road overuse. From the first congestion charging implementation in Singapore in 1975 to London, Stockholm and Dubai in the 2000s to the expected 2021 New York City launch, myriad road pricing schemes are successfully harnessing the power of markets to fix road overcrowding – and providing valuable lessons along the way. In short, congestion charging works. The experiences of these international cities can be an excellent blueprint for New Zealand to learn from and tailor a road pricing scheme that is just right for us. By analysing the international experience on congestion pricing, this research note provides further insights towards a more rational, updated and un-wasteful urban transport system. When the price is right, a proven solution to chronic road congestion is ours for the taking.
    [Show full text]
  • Implementing Road and Congestion Pricing- Lessons from Singapore
    European Conference of Ministers of Transport Ministry of Land, Infrastructure and Transport Japanese Government 2-3 March 2005 Akasaka Prince Hotel, Tokyo IImmpplleemmeennttiinngg RRooaadd aanndd CCoonnggeessttiioonn PPrriicciinngg-- LLeessssoonnss ffrroomm SSiinnggaappoorree Jeremy YAP Ministry of Transport Singapore Name : Jeremy Yap Evan Gwee Title : Deputy Director, Assistant Manager, Land Transport Division, Planning Department, Ministry of Transport, Land Transport Authority, Singapore Singapore Address : 460 Alexandra Road, #39-00 460 Alexandra Road, #24-00 Singapore 119963 Singapore 119963 Tel : +65-63752534 +65-63757612 Fax : +65-62768081 +65-63757213 e-mail : [email protected] [email protected] ABSTRACT Singapore has enjoyed rapid economic growth and intensive urbanisation over the last few decades and this has translated into an increase in travel demand. To support the increased travel demand, the Singapore government has over the years planned and put many measures in place to ensure that our transport system is adequate, sustainable and relevant. Our overall land transport strategy hinges on four key areas namely integrating land use / transport planning, providing a quality public transport system, developing a comprehensive road network and maximising its capacity and managing demand of road usage through ownership and usage measures. Our transport philosophy is to maintain a proper balance between the use of private and public transport and increases the efficiency of traffic flow on our roads. While most cities adopt the first three components, Singapore is one of the very few cities to have pursued travel demand management for the past 30 years and with a degree of success, as is evidenced by the respectable speeds along the city roads and expressways.
    [Show full text]
  • Congestion Pricing and the Economics of Managing Traffic Robert Krol
    Tolling the Freeway: Congestion Pricing and the Economics of Managing Traffic Robert Krol MERCATUS RESEARCH Robert Krol. “Tolling the Freeway: Congestion Pricing and the Economics of Managing Traffic.” Mercatus Research, Mercatus Center at George Mason University, Arlington, VA, May 2016. ABSTRACT Highway congestion increases the cost of travel in most urban areas in the United States. This paper examines the economics of highway congestion pric- ing. Toll-free highways can be congested at certain times of the day. When addi- tional drivers entering the freeway slow traffic, they impose an externality, or cost, on other highway users. A congestion toll that varies with the level of traf- fic can correct that congestion externality. The evidence indicates that conges- tion tolls reduce congestion and increase driving speeds. Some policymakers are concerned that congestion taxes are regressive. Many factors, such as the proximity of residential communities to jobs, can influence this outcome. Also, the way toll revenues are used determines the degree to which the tax is regres- sive or progressive. Research suggests that congestion tolls are no more regres- sive than the fuel tax that is currently used to finance highways. To encourage and facilitate the adoption of congestion pricing in the United States, Congress should pass legislation making congestion tolls legal on all interstate highways. Experience with congestion tolling improves the public’s perception of tolling and increases drivers’ willingness to accept highway tolls. One tactic that has been successful is following a congestion-pricing experiment with a referen- dum on whether the system should be made permanent. JEL codes: H21, H22, L91, 018, R41, R48 Keywords: congestion externalities, peak-load pricing, tax incidence, tax regressivity Copyright © 2016 by Robert Krol and the Mercatus Center at George Mason University Release: May 2016 The opinions expressed in Mercatus Research are the authors’ and do not represent official positions of the Mercatus Center or George Mason University.
    [Show full text]
  • Dynamic, Stochastic Models for Congestion Pricing and Congestion Securities
    Dynamic, Stochastic Models for Congestion Pricing and Congestion Securities FINAL REPORT December 31, 2010 By Terry L. Friesz and Tao Yao Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. PSU-2009-01 4. Title and Subtitle 5. Report Date December 31, 2010 Dynamic, Stochastic Models for Congestion Pricing and Congestion Securities 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report LTI 2011-17 Terry L. Friesz, Tao Yao 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) The Thomas D. Larson Pennsylvania Transportation Institute 11. Contract or Grant No. The Pennsylvania State University DTRT07-G-0003 201 Transportation Research Building University Park, PA, 16802-4710 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered US Department of Transportation Final Report 1/1/2010-12/31/2010 Research & Innovative Technology Administration 14. Sponsoring Agency Code UTC Program, RDT-30 1200 New Jersey Ave., SE Washington, DC 20590 15. Supplementary Notes 16. Abstract This research considers congestion pricing under demand uncertainty. In particular, a robust optimization (RO) approach is applied to optimal congestion pricing problems under user equilibrium. A mathematical model is developed and an analysis performed to consider robust, dynamic user equilibrium, optimal tolls based on the second-best problem known as the dynamic optimal toll problem with equilibrium constraints, or DOTPEC. Finally, numerical experiments and qualitative analyses are conducted to investigate the performance and robustness of the solutions obtained. 17. Key Words 18. Distribution Statement Robust Optimization, Dynamic Congestion Pricing, Dynamic User Equilibrium 19.
    [Show full text]
  • Congestion Pricing Sep Ash 6 Pst.NW 328- T Em in G 500 T B on E R 2006 0 Www , DC 200 .R
    September 2006 RFF DP 06-37 Congestion Pricing Long-Term Economic and Land-Use Effects Elena Safirova, Sébastien Houde, D. Abram Lipman, Winston Harrington, and Andrew Baglino 1616 P St. NW Washington, DC 20036 202-328-5000 www.rff.org DISCUSSION PAPER Congestion Pricing: Long-Term Economic and Land-Use Effects Elena Safirova, Sébastien Houde, D. Abram Lipman, Winston Harrington, and Andrew Baglino Abstract We employ a spatially disaggregated general equilibrium model of a regional economy that incorporates decisions of residents, firms, and developers integrated with a spatially disaggregated strategic transportation planning (START) model that features mode, time period, and route choice to evaluate economic effects of congestion pricing. First, we evaluate the long-run effects of a road-pricing policy based on the integrated model of land use, strategic transport, and regional economy (LUSTRE) and compare them with the short-term effects obtained from the START model alone. We then look at distributional effects of the policy in question and point out differences and similarities in the short run versus the long run. Finally, we analyze the mechanisms at the source of the economic and land-use effects induced by the road-pricing policy. Key Words: traffic congestion, welfare analysis, CGE modeling, cordon tolls, distributional effects JEL Classification Numbers: C68, D63, R13, R14, R41 © 2006 Resources for the Future. All rights reserved. No portion of this paper may be reproduced without permission of the authors. Discussion papers are research materials circulated by their authors for purposes of information and discussion. They have not necessarily undergone formal peer review. Contents Introduction............................................................................................................................
    [Show full text]
  • Singapore's Experience with Road User Charges
    Singapore’s Experience with Road User Charges Session 4 Presentation, ITF-OECD Expert Workshop on “International Best Practices to Promote Eco-Friendly Cars” 25 – 26 January 2021 Walter Theseira Singapore University of Social Sciences [email protected] Singapore’s Electronic Road Pricing System Vehicle Growth and Vehicle Use Restraint Policy in Singapore, 1965 - 2019 2000 200 1800 180 1600 160 1995: Road Pricing 2023: Global 1400 Scheme Navigation Satellite 140 System Road Pricing 1200 1990: Vehicle Quota 1998: Electronic 120 Scheme Road Pricing 1000 1975: Area Licensing 100 Scheme 800 80 Vehicle in Thousands Vehicle 600 60 Vehicles per 1000 Population 1000 per Vehicles 400 40 200 20 0 0 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 Total Vehicles Private Passenger Cars Vehicles per Thousand Pop. Private Passenger Cars per Thousand Pop. Notes: Vehicle count adjusted downward in 1973 due to computerisation of vehicle registry; private passenger car breakdown not readily available for 1995-2004 Overview of Vehicle Restraint Policy Development • 1965 – 1975: Public transport underfunded, disorganized; Road infrastructure inadequate. Policy for restructuring bus services, road expansion, economic development. • 1975 – 1995: Area Licensing Scheme + Road Pricing Scheme introduced to address growing car ownership, rapid economic growth, causing high congestion in CBD. Car ownership curbed through high taxes and fees. Mass Rapid Transit metro developed in 1980s. • 1990: Vehicle Quota Scheme introduced. Vehicle ownership requires license, obtained by auction from available quota. Road user charges argued necessary to balance expansion of vehicle ownership – carrot-and-stick policy approach. • 1998: Electronic Road Pricing introduced. Shift towards greater reliance on vehicle use restraint (road user charges), allowing expansion of vehicle ownership and reduction in fixed vehicle taxes.
    [Show full text]
  • The Effects of Road Pricing on Driver Behavior and Air Pollution
    The effects of road pricing on driver behavior andair pollution Matthew Gibson, Maria Carnovale To cite this version: Matthew Gibson, Maria Carnovale. The effects of road pricing on driver behavior and air pollution. Journal of Urban Economics, Elsevier, 2015, 89, pp.62-73. 10.1016/j.jue.2015.06.005. hal-01589743 HAL Id: hal-01589743 https://hal.archives-ouvertes.fr/hal-01589743 Submitted on 19 Sep 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The eects of road pricing on driver behavior and air pollution Matthew Gibsona,∗, Maria Carnovaleb aDepartment of Economics, Williams College, Schapiro Hall, 24 Hopkins Hall Dr., Williamstown MA 01267 bCERTeT, Università Bocconi and Duke University, Duke Box 90239, Durham, NC 27708 Abstract Exploiting the natural experiment created by an unanticipated court injunction, we evaluate driver responses to road pricing. We nd evidence of intertemporal substitution toward unpriced times and spatial substitution toward unpriced roads. The eect on trac volume varies with public transit availability. Net of these responses, Milan's pricing policy reduces air pollution substantially, generating large welfare gains. In addition, we use long-run policy changes to estimate price elasticities.
    [Show full text]
  • Citibank Enters Landmark Partnership with EZ-Link This Partnership Offers a Seamless Automatic Top-Up Solution Benefitting All Companies Operating Locally
    FOR IMMEDIATE RELEASE Citigroup Inc. (NYSE: C) 22 September 2015 Citibank Enters Landmark Partnership With EZ-Link This Partnership Offers A Seamless Automatic Top-up Solution Benefitting All Companies Operating Locally Singapore – Citibank Singapore today announced that it has entered into a landmark partnership with EZ-Link Pte Ltd (EZ-Link) to offer a seamless automatic top-up solution for the payment of Electronic Parking System (EPS) parking fees and Electronic Road Pricing (ERP) gantry fees for its Commercial Card customers. Citibank is the first bank in Singapore to collaborate with EZ-Link on this business-to-business (B2B) offering, called EZ-Reload Corporate Service, that aims to redefine the way in which companies manage their corporate fleet. Companies will be able to link their ez-link cards issued by EZ-Link to the EZ-Reload Corporate Service using their Citibank Commercial Card account, which will be automatically topped up whenever they fall short of the stored value for payment. Such payment solution offers greater convenience, cost-savings and ease to the companies in managing their corporate fleet. Up to 1,000 ez-link cards can be linked to a Citibank Commercial Card account, presenting companies with an effective yet secure way to manage their fleet of vehicles. Companies will also have the flexibility of choosing between an amount of S$20, S$30 or S$40 for each top- up. The administrative fees for the top-ups will be waived starting from 1 November 2015. Mr. Han Kwee Juan, Chief Executive Officer, Citibank Singapore, said: “We are very pleased to be the first and only bank in Singapore to partner EZ-Link to offer this simple yet highly effective B2B solution to our Commercial Card customers.
    [Show full text]