1 Title the Role of Mitotic Cell-Substrate Adhesion Re
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Provided for Non-Commercial Research and Educational Use Only. Not for Reproduction, Distribution Or Commercial Use
Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the Comprehensive Biophysics, the copy attached is provided by Elsevier for the author’s benefit and for the benefit of the author’s institution, for non-commercial research and educational use. This includes without limitation use in instruction at your institution, distribution to specific colleagues, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier’s permissions site at: http://www.elsevier.com/locate/permissionusematerial From D.N. Robinson, Y.-S. Kee, T. Luo and A. Surcel, Understanding How Dividing Cells Change Shape. In: Edward H. Egelman, editor: Comprehensive Biophysics, Vol 7, Cell Biophysics, Denis Wirtz. Oxford: Academic Press, 2012. pp. 48-72. ISBN: 978-0-12-374920-8 © Copyright 2012 Elsevier B.V. Academic Press. Author's personal copy 7.5 Understanding How Dividing Cells Change Shape DN Robinson, Y-S Kee, T Luo, and A Surcel, Johns Hopkins University, Baltimore, MD, USA r 2012 Elsevier B.V. All rights reserved. 7.5.1 Introduction 49 7.5.2 Physical Parameters 49 7.5.2.1 Membrane Surface Area and Membrane Remodeling 50 7.5.2.2 Cortical Tension and Cell Surface Curvature 50 7.5.3 The Mechanical Parts List 51 7.5.4 Mechanical Features of the Cortical Cytoskeletal Network 54 7.5.5 Dissecting Mechanics Across Variable Timescales and Length Scales 55 7.5.6 Mechanical Properties of Cytokinesis: Active vs. -
Mitotic Rounding Alters Cell Geometry to Ensure Efficient Bipolar Spindle Formation
Please cite this article in press as: Lancaster et al., Mitotic Rounding Alters Cell Geometry to Ensure Efficient Bipolar Spindle Formation, Developmental Cell (2013), http://dx.doi.org/10.1016/j.devcel.2013.03.014 Developmental Cell Article Mitotic Rounding Alters Cell Geometry to Ensure Efficient Bipolar Spindle Formation Oscar M. Lancaster,1,6 Mae¨ l Le Berre,5,6 Andrea Dimitracopoulos,1,4 Daria Bonazzi,5 Ewa Zlotek-Zlotkiewicz,5 Remigio Picone,1,4 Thomas Duke,2,3 Matthieu Piel,5,* and Buzz Baum1,* 1MRC Laboratory for Molecular Cell Biology 2London Centre for Nanotechnology 3Department of Physics and Astronomy 4CoMPLEX University College London, Gower Street, London WC1E 6BT, UK 5Systems Biology of Cell Division and Cell Polarity, UMR 144 Institut Curie/CNRS, 26 rue d’Ulm, 75248 Paris Cedex 05, France 6These two authors contributed equally to this work *Correspondence: [email protected] (M.P.), [email protected] (B.B.) http://dx.doi.org/10.1016/j.devcel.2013.03.014 SUMMARY chromatid cohesion and the movement of sister chromatids to opposite cell poles. Accurate animal cell division requires precise coordi- Mitotic progression is also accompanied by profound changes nation of changes in the structure of the microtubule- in actin filament organization (Kunda and Baum, 2009) that are based spindle and the actin-based cell cortex. Here, triggered by the activation of Ect2, RhoA, and Myosin II (Cramer we use a series of perturbation experiments to and Mitchison, 1997; Maddox and Burridge, 2003; Matthews dissect the relative roles of actin, cortical mechanics, et al., 2012). In combination with osmotic swelling (Stewart and cell shape in spindle formation. -
Open Full Page
Research Article Distinct Genomic Profiles in Hereditary Breast Tumors Identified by Array-Based Comparative Genomic Hybridization Go¨ran Jo¨nsson,1 Tara L. Naylor,5 Johan Vallon-Christersson,1 Johan Staaf,1 Jia Huang,5 M. Renee Ward,5 Joel D. Greshock,5 Lena Luts,4 Ha˚kan Olsson,1 Nazneen Rahman,6 Michael Stratton,6 Markus Ringne´r,3 A˚ke Borg,1,2 and Barbara L. Weber5 1Department of Oncology, University Hospital; 2Lund Strategic Research Center for Stem Cell Biology and Cell Therapy and 3Department of Theoretical Physics, Lund University; and 4Department of Pathology, University Hospital, Lund, Sweden; 5Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania; and 6Section of Cancer Genetics, Institute of Cancer Research, Sutton, Surrey, United Kingdom Abstract of additional predisposing genes, although technical limitations Mutations in BRCA1 and BRCA2 account for a significant and the complexity of BRCA gene regulation and mutation proportion of hereditary breast cancers. Earlier studies have spectrum can probably explain why some disease-causing muta- shown that inherited and sporadic tumors progress along tions are missed (2). BRCA1 and BRCA2 function as classic tumor different somatic genetic pathways and that global gene suppressor genes with frequent loss of the wild-type allele in expression profiles distinguish between these groups. To tumors of mutation carriers. The BRCA1 protein has been determine whether genomic profiles similarly discriminate implicated in a broad range of cellular functions, including repair among BRCA1, BRCA2, and sporadic tumors, we established of double-strand breaks by homologous recombination, cell cycle DNA copy number profiles using comparative genomic checkpoint control, chromatin remodeling, and transcriptional hybridization to BAC-clone microarrays providing <1 Mb regulation. -
Supplementary Data
SUPPLEMENTARY DATA A cyclin D1-dependent transcriptional program predicts clinical outcome in mantle cell lymphoma Santiago Demajo et al. 1 SUPPLEMENTARY DATA INDEX Supplementary Methods p. 3 Supplementary References p. 8 Supplementary Tables (S1 to S5) p. 9 Supplementary Figures (S1 to S15) p. 17 2 SUPPLEMENTARY METHODS Western blot, immunoprecipitation, and qRT-PCR Western blot (WB) analysis was performed as previously described (1), using cyclin D1 (Santa Cruz Biotechnology, sc-753, RRID:AB_2070433) and tubulin (Sigma-Aldrich, T5168, RRID:AB_477579) antibodies. Co-immunoprecipitation assays were performed as described before (2), using cyclin D1 antibody (Santa Cruz Biotechnology, sc-8396, RRID:AB_627344) or control IgG (Santa Cruz Biotechnology, sc-2025, RRID:AB_737182) followed by protein G- magnetic beads (Invitrogen) incubation and elution with Glycine 100mM pH=2.5. Co-IP experiments were performed within five weeks after cell thawing. Cyclin D1 (Santa Cruz Biotechnology, sc-753), E2F4 (Bethyl, A302-134A, RRID:AB_1720353), FOXM1 (Santa Cruz Biotechnology, sc-502, RRID:AB_631523), and CBP (Santa Cruz Biotechnology, sc-7300, RRID:AB_626817) antibodies were used for WB detection. In figure 1A and supplementary figure S2A, the same blot was probed with cyclin D1 and tubulin antibodies by cutting the membrane. In figure 2H, cyclin D1 and CBP blots correspond to the same membrane while E2F4 and FOXM1 blots correspond to an independent membrane. Image acquisition was performed with ImageQuant LAS 4000 mini (GE Healthcare). Image processing and quantification were performed with Multi Gauge software (Fujifilm). For qRT-PCR analysis, cDNA was generated from 1 µg RNA with qScript cDNA Synthesis kit (Quantabio). qRT–PCR reaction was performed using SYBR green (Roche). -
Anisotropic Cellular Mechanoresponse for Radial Size Maintenance Of
bioRxiv preprint doi: https://doi.org/10.1101/172916; this version posted November 15, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Anisotropic Cellular Mechanoresponse for 2 Radial Size Maintenance of Developing Epithelial Tubes 3 4 Tsuyoshi Hirashima*1 and Taiji Adachi2 5 1. Department of Pathology and Biology of Diseases, Graduate School of Medicine, 6 Kyoto University 7 2. Institute for Frontier Life and Medical Sciences, Kyoto University 8 9 10 Correspondence to: 11 Tsuyoshi Hirashima, Ph.D. 12 Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto 13 University, Yoshida-konoe-cho, Sakyo-ku, Kyoto 606-8315, Japan. 14 Tel/Fax: +81-75-753-9450 15 E-mail: [email protected] 16 1 bioRxiv preprint doi: https://doi.org/10.1101/172916; this version posted November 15, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 17 Abstract 18 Cellular behaviors responding to mechanical forces control the size of multicellular tissues as 19 demonstrated in isotropic size maintenance of developing tissues. However, how 20 mechanoresponse systems work to maintain anisotropic tissue size including tube radial size 21 remains unknown. Here we reveal the system underlying radial size maintenance of the 22 murine epididymal tubule by combining quantitative imaging, mathematical modeling, and 23 mechanical perturbations. -
Monoclonal Antibodies
NOTE Clinical Pathology Establishment of rat anti-canine DEP domain containing 1B (DEPDC1B) monoclonal antibodies Masaya IGASE1), Yuki MORINAGA1), Masahiro KATO2), Toshihiro TSUKUI2), Yusuke SAKAI3), Masaru OKUDA4) and Takuya MIZUNO1)* 1)Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1, Yoshida, Yamaguchi-shi, Yamaguchi 753-8511, Japan 2)Nippon Zenyaku Kogyo Co., Ltd., 1-1 Tairanoue, Sasagawa, Asaka-machi, Koriyama, Fukushima 963-0196, Japan 3)Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1, Yoshida, Yamaguchi-shi, Yamaguchi 753-8511, Japan 4)Laboratory of Veterinary Internal Medicine, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1, Yoshida, Yamaguchi-shi, Yamaguchi 753-8511, Japan ABSTRACT. DEP domain-containing 1B (DEPDC1B) is involved in the regulation of cell de- J. Vet. Med. Sci. adhesion and actin cytoskeleton activity during the G2/M transition of the cell cycle, and its 82(4): 483–487, 2020 overexpression has been proven to be associated with cancer progression in several human cancers. Canine DEPDC1B was identified as a gene that was overexpressed in canine lymphoma doi: 10.1292/jvms.19-0667 tissues in our previous study. However, in dogs, the protein expression of DEPDC1B remains to be determined due to the lack of a specific monoclonal antibody. Here, we developed rat monoclonal antibodies against canine DEPDC1B and characterized their applicability for immunodetection Received: 12 December 2019 assays. Our findings demonstrated that these antibodies are functional and can be important tools Accepted: 20 February 2020 to investigate the precise role of DEPDC1B in canine tumors. Advanced Epub: 6 March 2020 KEY WORDS: antibody, cancer, DEP domain-containing 1B, dog The DEP domain-containing 1B (DEPDC1B) gene was recently identified and localized at human chromosome 5 (5q12.1). -
Mitotic Cell Rounding Accelerates Epithelial Invagination
LETTER doi:10.1038/nature11792 Mitotic cell rounding accelerates epithelial invagination Takefumi Kondo1 & Shigeo Hayashi1,2 Mitotic cells assume a spherical shape by increasing their surface with apical depression ‘internalized cell rounding’, to distinguish itfrom tension and osmotic pressure by extensively reorganizing their canonical surface mitosis (surface cell rounding). interphase actin cytoskeleton into a cortical meshwork and their To determine whether cell rounding is required for invagination, we microtubules into the mitotic spindle1,2. Mitotic entry is known to analysed zygotic mutants of the cell-cycle gene Cyclin A (CycA), which interfere with tissue morphogenetic events that require cell-shape fail to enter mitosis 16 (ref. 17), and double parkeda3 (dupa3), which changes controlled by the interphase cytoskeleton, such as apical show a prolonged S phase 16 and delayed entry into mitosis 16 constriction3–5. However, here we show that mitosis plays an active (ref. 18). Tracheal invagination was initiated normally in the CycA role in the epithelial invagination of the Drosophila melanogaster and dupa3 mutants, but proceeded more slowly than in controls tracheal placode. Invagination begins with a slow phase under the (Fig. 2a, d, Supplementary Fig. 2 and Supplementary Video 3), indi- control of epidermal growth factor receptor (EGFR) signalling; in cating that entry into mitosis 16 is required for proper timing of the fast this process, the central apically constricted cells, which are sur- phase. rounded by intercalating cells6,7, form a shallow pit. This slow Although delayed, the accelerated invagination in the CycA or dupa3 phase is followed by a fast phase, in which the pit is rapidly mutants eventually occurred, allowing the formation of tube struc- depressed, accompanied by mitotic entry, which leads to the inter- tures (Fig. -
Mitotic Cells Contract Actomyosin Cortex and Generate Pressure to Round Against Or Escape Epithelial Confinement
ARTICLE Received 28 Feb 2015 | Accepted 12 Oct 2015 | Published 25 Nov 2015 DOI: 10.1038/ncomms9872 OPEN Mitotic cells contract actomyosin cortex and generate pressure to round against or escape epithelial confinement Barbara Sorce1, Carlos Escobedo1,2, Yusuke Toyoda3, Martin P. Stewart1,4,5, Cedric J. Cattin1, Richard Newton1, Indranil Banerjee6, Alexander Stettler1, Botond Roska6, Suzanne Eaton3, Anthony A. Hyman3, Andreas Hierlemann1 & Daniel J. Mu¨ller1 Little is known about how mitotic cells round against epithelial confinement. Here, we engineer micropillar arrays that subject cells to lateral mechanical confinement similar to that experienced in epithelia. If generating sufficient force to deform the pillars, rounding epithelial (MDCK) cells can create space to divide. However, if mitotic cells cannot create sufficient space, their rounding force, which is generated by actomyosin contraction and hydrostatic pressure, pushes the cell out of confinement. After conducting mitosis in an unperturbed manner, both daughter cells return to the confinement of the pillars. Cells that cannot round against nor escape confinement cannot orient their mitotic spindles and more likely undergo apoptosis. The results highlight how spatially constrained epithelial cells prepare for mitosis: either they are strong enough to round up or they must escape. The ability to escape from confinement and reintegrate after mitosis appears to be a basic property of epithelial cells. 1 Department of Biosystems Science and Engineering, Eidgeno¨ssische Technische Hochschule (ETH) Zurich, Mattenstrasse 26, Basel 4058, Switzerland. 2 Department of Chemical Engineering, Queen’s University, 19 Division Street, Kingston, Ontario, Canada K7L 3N6. 3 Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany. -
The Genetic Program of Pancreatic Beta-Cell Replication in Vivo
Page 1 of 65 Diabetes The genetic program of pancreatic beta-cell replication in vivo Agnes Klochendler1, Inbal Caspi2, Noa Corem1, Maya Moran3, Oriel Friedlich1, Sharona Elgavish4, Yuval Nevo4, Aharon Helman1, Benjamin Glaser5, Amir Eden3, Shalev Itzkovitz2, Yuval Dor1,* 1Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel 2Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel. 3Department of Cell and Developmental Biology, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel 4Info-CORE, Bioinformatics Unit of the I-CORE Computation Center, The Hebrew University and Hadassah, The Institute for Medical Research Israel- Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel 5Endocrinology and Metabolism Service, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel *Correspondence: [email protected] Running title: The genetic program of pancreatic β-cell replication 1 Diabetes Publish Ahead of Print, published online March 18, 2016 Diabetes Page 2 of 65 Abstract The molecular program underlying infrequent replication of pancreatic beta- cells remains largely inaccessible. Using transgenic mice expressing GFP in cycling cells we sorted live, replicating beta-cells and determined their transcriptome. Replicating beta-cells upregulate hundreds of proliferation- related genes, along with many novel putative cell cycle components. Strikingly, genes involved in beta-cell functions, namely glucose sensing and insulin secretion were repressed. Further studies using single molecule RNA in situ hybridization revealed that in fact, replicating beta-cells double the amount of RNA for most genes, but this upregulation excludes genes involved in beta-cell function. -
Eine Dokumentvorlage Für Abschlussarbeiten Und Andere Wissenschaftliche Arbeiten, Insbesondere Bachelorarbeiten, Masterarbeiten
1 Institute of Animal Science University of Hohenheim Prof. Dr. Ludwig Hölzle Transcriptomic analyses during infectious anemia in pigs DISSERTATION submitted in fulfillment of the requirements for the degree “Doktor der Agrarwissenschaften” (Dr. sc. agr. / PhD in Agricultural Science) to the Faculty of Agricultural Sciences presented by Sarah-Lena Mack born in Stuttgart, Germany 2018 2 Die vorliegende Arbeit wurde am 03.04.2019 von der Fakultät Agrarwissenschaften der Universität Hohenheim als "Dissertation zur Erlangung des Grades eines Doktors der Agrarwissenschaften" angenommen (Datum: vgl. Schreiben des Vorsitzenden des Pro- motionsausschusses an den/die Doktoranden/in). Tag der mündlichen Prüfung: 20.05.2019 Leiter/in der Prüfung: Prof. Dr. Jörn Bennewitz Berichterstatter/in 1. Prüfer/in: Prof. Dr. Ludwig Hölzle Mitberichterstatter/in, 2. Prüfer/in: Prof. Dr. Holger Stefanski ggf. weitere Berichter/in bzw. Prüfer/in: Prof. Dr. Mathias Ritzmann < Hohenheim, 18.12.2018, Sarah-Lena Mack > 3 Für meine Eltern 4 Table of contents Table of contents ......................................................................................................... 4 Table of figures ............................................................................................................ 7 List of tables ................................................................................................................ 8 List of abbreviations ................................................................................................... 9 Overview -
Mitotic Cell Rounding and Epithelial Thinning Regulate Lumen Growth and Shape
ARTICLE Received 15 Nov 2014 | Accepted 29 Apr 2015 | Published 16 Jun 2015 DOI: 10.1038/ncomms8355 Mitotic cell rounding and epithelial thinning regulate lumen growth and shape Esteban Hoijman1, Davide Rubbini1, Julien Colombelli2 & Berta Alsina1 Many organ functions rely on epithelial cavities with particular shapes. Morphogenetic anomalies in these cavities lead to kidney, brain or inner ear diseases. Despite their relevance, the mechanisms regulating lumen dimensions are poorly understood. Here, we perform live imaging of zebrafish inner ear development and quantitatively analyse the dynamics of lumen growth in 3D. Using genetic, chemical and mechanical interferences, we identify two new morphogenetic mechanisms underlying anisotropic lumen growth. The first mechanism involves thinning of the epithelium as the cells change their shape and lose fluids in concert with expansion of the cavity, suggesting an intra-organ fluid redistribution process. In the second mechanism, revealed by laser microsurgery experiments, mitotic rounding cells apicobasally contract the epithelium and mechanically contribute to expansion of the lumen. Since these mechanisms are axis specific, they not only regulate lumen growth but also the shape of the cavity. 1 Department of Experimental & Health Sciences, Universitat Pompeu Fabra/PRBB, 08003 Barcelona, Spain. 2 Advanced Digital Microscopy, Institute for Research in Biomedicine, 08028 Barcelona, Spain. Correspondence and requests for materials should be addressed to E.H. (email: [email protected]) or to B.A. (email: [email protected]). NATURE COMMUNICATIONS | 6:7355 | DOI: 10.1038/ncomms8355 | www.nature.com/naturecommunications 1 & 2015 Macmillan Publishers Limited. All rights reserved. ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8355 efects in lumenogenesis cause severe diseases such as cells to expand the lumen. -
Overexpressed DEPDC1B Contributes to the Progression of Hepatocellular Carcinoma by CDK1
www.aging-us.com AGING 2021, Vol. 13, No. 16 Research Paper Overexpressed DEPDC1B contributes to the progression of hepatocellular carcinoma by CDK1 Xiao-Wei Dang1,*, Qi Pan2,*, Zhen-Hai Lin2,*, Hao-Hao Wang1, Lu-Hao Li1, Lin Li1, Dong-Qi Shen1, Pei-Ju Wang1 1Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China 2Department of Hepatic Surgery, The Cancer Hospital of Fudan University, Shanghai, China *Equal contribution Correspondence to: Xiao-Wei Dang; email: [email protected] Keywords: DEPDC1B, CDK1, proliferation, migration, hepatocellular carcinoma (HCC) Received: January 23, 2020 Accepted: February 16, 2021 Published: May 25, 2021 Copyright: © 2021 Dang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Background: Hepatocellular carcinoma (HCC) is the main type of primary liver cancer and shows a heavy burden worldwide. Its recurrence and mortality rate are still uncontrolled by the usage of present treatments. More attention has been focused on exploring specific genes that play important roles in HCC procession, and the function of DEP domain containing 1B (DEPDC1B) in HCC has not been researched. Methods: Immunohistochemical staining was used to detect the expression level of DEPDC1B in tumor tissues and adjacent normal tissues. After DEPDC1B and CDK1 knockdown in cell lines HEP3B2.1-7 and SK-HEP-1, MTT assay and colony formation assay was used to detect cell growth, flow cytometry assay was used to investigate cell apoptosis and cell cycle, wound-healing assay and Transwell assay were used to examine the tumor cell migration.