Engineering Semiconductor Nanocrystals For

Total Page:16

File Type:pdf, Size:1020Kb

Engineering Semiconductor Nanocrystals For ENGINEERING SEMICONDUCTOR NANOCRYSTALS FOR MOLECULAR, CELLULAR, AND IN VIVO IMAGING A Dissertation Presented to The Academic Faculty By Andrew Michael Smith In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Department of Biomedical Engineering Georgia Institute of Technology December, 2008 Copyright © 2008 by Andrew Michael Smith ENGINEERING SEMICONDUCTOR NANOCRYSTALS FOR MOLECULAR, CELLULAR, AND IN VIVO IMAGING Approved by: Dr. Shuming Nie, Advisor Dr. Zhong L. Wang School of Biomedical Engineering School of Materials Science and Georgia Institute of Technology Engineering Georgia Institute of Technology Dr. Gang Bao School of Biomedical Engineering Dr. Lily Yang Georgia Institute of Technology Department of Surgery Emory University Dr. Niren Murthy School of Biomedical Engineering Georgia Institute of Technology Date approved: October 16, 2008 ACKNOWLEDGEMENTS I dedicate this thesis to my parents, Marge and Winston, and my brother Edward, who have always supported me. I owe to them my values, work ethic, and aspiration to pursue a life of continuous learning. I thank my beautiful and incredibly intelligent girlfriend Mia for being compassionate and patient through the completion of my degree. I am grateful for guidance and inspiration from my friends, family members, and teachers, especially George Petsch, France Dorman, Mark Sommerville, James Powers, Athanassios Sambanis, Joseph Berglund, Schiue-Cheng Tang, Jonathan Beech, and James Mickens. I also thank Matthew Rhyner, Aaron Mohs, Michael Mancini, and Brad Kairdolf, who have taken part in the collaborative efforts of this thesis. Finally, I thank my research advisor, Shuming Nie, an inspiring leader and a brilliant mind who has given me tremendous opportunities over the past six years to learn a broad range of scientific disciplines, the encouragement to work harder than I have ever thought possible, and a vision for my future and the future of science and innovation. iii TABLE OF CONTENTS ACKNOWLEDGEMENTS . iii LIST OF TABLES . ix LIST OF FIGURES . x SUMMARY . xx CHAPTER 1 INTRODUCTION . 1 1.1 Thesis goals . 2 1.2 Themes and significant findings. 3 1.3 References . 5 2 SEMICONDUCTOR NANOCRYSTALS AND BIOLOGICAL APPLICATIONS 7 2.1 Semiconductor physics. 8 2.1.1 The electronic bandgap . 8 2.1.2 Absorption and luminescence. 11 2.1.3 Direct and indirect bandgaps . 12 2.1.4 Effective mass . 15 2.1.5 Excitons . 16 2.1.6 Semiconductor materials . 17 2.1.7 Chemical trends . 19 2.1.8 Band offsets . 26 2.2 Physics of semiconductor nanocrystals. 27 2.2.1 Quantum confinement . 27 2.2.2 Brus model of quantum confinement . 30 iv 2.2.3 Optical properties of quantum dots . 32 2.2.4 Surface properties of quantum dots . 36 2.2.5 Bandgap engineering . 41 2.3 Chemical synthesis of semiconductor nanocrystals . 44 2.3.1 Early quantum dot synthesis methods . 44 2.3.2 Coordinating solvent synthesis . 44 2.3.3 Heterostructure growth . 47 2.3.4 Engineering of quantum dot bioimaging probes . 48 2.4 Biological applications of semiconductor nanocrystals . 58 2.4.1 Comparison with conventional fluorophores . 61 2.4.2 In vitro diagnostic assays . 64 2.4.3 Cellular labeling . 69 2.4.4 In vivo animal imaging . 77 2.4.5 Quantum dot toxicity . 84 2.4.6 Outlook . 89 2.5 References . 91 3 QUANTUM DOT BANDGAP ENGINEERING VIA CATION EXCHANGE . 114 3.1 Synthesis methods . 115 3.2 Synthesis strategy . 120 3.3 Optical properties of cadmium mercury telluride nanocrystals . 123 3.4 Solvent impact on mercury cation exchange . 132 3.5 Mercury exchange with other II-VI materials . 135 3.6 Cation exchange mechanism . 137 3.7 Graded shell growth . 141 3.8 Outlook . 145 3.9 References . 147 v 4 QUANTUM DOT SHELL GROWTH AND THE IMPACT OF STRAIN . 150 4.1 Lattice strain in nanocrystals . 151 4.2 Colloidal synthesis methods for strained (core)shell nanocrystals . 156 4.3 Optical properties of strained (core)shell quantum dots . 162 4.4 Structural characterization of strained heterostructures . 176 4.5 Modeling of strain and band structures . 192 4.6 Other structural and quantum mechanical mechanisms . 198 4.7 Outlook . 201 4.8 References . 204 5 QUANTUM DOT SURFACE MODIFICATION AND SIZE MINIMIZATION . 210 5.1 Comparison of ligand and polymer coatings . 211 5.1.1 Experimental methods . 214 5.1.2 Optical and colloidal characterization . 217 5.1.3 Optical and structural stability assays . 221 5.1.4 Self-assembly and nanoparticle interface theory . 233 5.1.5 Selection of surface coatings for specific applications. 235 5.2 Quantum dot size minimization . 235 5.2.1 Size minimization of quantum dot micelles . 236 5.2.2 Size minimization using multivalent ligands . 241 5.2.2.1 Methods . 243 5.2.2.2 Multidentate ligand assembly . 253 5.2.2.3 Molar capping ratio . 257 5.2.2.4 Minimum size . 260 5.2.2.5 Stability . 261 5.2.2.6 Size comparison with proteins . 262 5.2.2.7 Outlook . 263 vi 5.3 References . 265 6 AMPHIPHILIC MULTIDENTATE LIGAND COATINGS . 270 6.1 Nanocrystal synthesis methods . 271 6.2 Hydrophilic and hydrophobic coatings in an amphibious bath . 276 6.2.1 Colloidal characterization . 278 6.2.2 Polymer shell characterization . 281 6.2.3 Reaction mechanism . 284 6.2.4 Materials compositions . 286 6.2.5 Applications of amphibious nanocrystals . 290 6.3 Control of nanocrystal growth, nucleation, and structure . 291 6.3.1 Reaction kinetics . 292 6.3.2 Lattice structure and morphology . 301 6.3.3 (Core)shell nanocrystal synthesis . 302 6.3.4 CdTe fluorescence stabilization . 305 6.4 Outlook . 308 6.5 References . 310 7 BIOCOMPATIBILITY OF QUANTUM DOTS . 314 7.1 Nonspecific binding to proteins . 315 7.1.1 Quantum dot surface coatings . 316 7.1.2 Quantum dot size and charge . 318 7.1.3 Mechanism of size-dependent protein adsorption . 323 7.2 Cellular binding and uptake of quantum dots . 329 7.2.1 Protocols . 329 7.2.2 Quantum dot charge effects . 330 7.2.3 Quantum dot size effects . 332 7.3 Bioconjugation to polyhistidine-tagged proteins . 339 vii 7.3.1 Quantum dot-protein A conjugation . 340 7.3.2 Quantum dot-protein A-IgG conjugation . 345 7.3.3 Optical properties of quantum dot-protein conjugates . 348 7.4 Quantum dot cytotoxicity . 353 7.4.1 Methods . 354 7.4.2 Cytotoxicity of reduced-cadmium quantum dots . 355 7.4.3 Cytotoxicity of core quantum dots. ..
Recommended publications
  • Andrew-Smith-Cv-1718.Pdf
    Andrew M. Smith Department of Bioengineering, University of Illinois at Urbana-Champaign 3114 Micro and Nanotechnology Laboratory, 208 N Wright St, M/C 249, Urbana, IL 61801 [Tel]: (404) 642-1303, [Fax]: (217) 265-0246, [Email]: [email protected] EDUCATION 2008 Ph.D. Bioengineering Georgia Institute of Technology, Atlanta, GA 2002 B.S. Chemistry Georgia Institute of Technology, Atlanta, GA RESEARCH POSITIONS AND EMPLOYMENT 2017- AssistAnt Professor of TeChnology Entrepreneurship University of Illinois at Urbana-Champaign 2017- AssistAnt Professor And AssoCiAte Course DireCtor Carle Illinois College of Medicine 2016- ReseArCh Theme FACulty of OmiCs NAnoteChnology for CAnCer PreCision MediCine (ONC-PM) Carl R. Woese Institute for Genomic Biology (IGB) University of Illinois at Urbana-Champaign 2016- AssoCiAte HeAd of UndergrAduAte ProgrAms, DepArtment of Bioengineering (Interim 2016-2017) University of Illinois at Urbana-Champaign 2013- Full-Time Resident FaCulty of the MiCro And Nanotechnology Laboratory (MNTL) University of Illinois at Urbana-Champaign 2013- AffiliAte FACulty of MAterials Science and Engineering University of Illinois at Urbana-Champaign 2012- AssistAnt Professor of Bioengineering University of Illinois at Urbana-Champaign 2010-2012 NIH/NCI K99/R00 PostdoCtorAl Fellow in CanCer NanoteChnology Emory University, Atlanta, GA and Yeshiva University Albert Einstein College of Medicine, Bronx, NY Research mentor: Professor Shuming Nie, Collaborator John Condeelis 2008-2012 Distinguished CCNE PostdoCtorAl Fellow Emory University
    [Show full text]
  • 第十一届中美华人纳米论坛程序册 the 11Th Sino-US Nano Forum
    第十一届中美华人纳米论坛程序册 The 11th Sino-US Nano Forum 会议地点:南京大学仙林校区恩玲剧场 6 月 18 日 7:50-8:00 开幕式 刘忠范 主题: 8:00-8:40 2-D nanocarbons: attraction, reality and future 北京大学 2D 材料 Wang Feng Probing Dirac electron physics in graphitic 8:40-9:00 UC, Berkeley materials 主持人 王欣然 Exploring organic semiconductors at the 刘杰 9:00-9:20 南京大学 two-dimensional limit 胡征 Yuan Hongtao Electric control of spin-coupled valleytronics 9:20-9:40 Stanford Univ. in layered metal dichalcogenides 9:40-10:00 茶歇 黄晓 Gas sensors based on nanomaterials in 10:00-10:20 南京工业大学 non-invasive diagnosis 彭海琳 New two-dimensional crystals: controlled 10:20-10:40 北京大学 synthesis and optoelectronic devices 陈伟 Interface engineering for 2D phosphorene 主持人 10:40-11:00 石高全 NUS, Singapore based optoelectronic devices Low dimensional inorganic solids: regulation 李丹 吴长征 11:00-11:20 of electric behavior and their energy 中科大 applications 王训 Self-assembly of sub-1nm ultrathin 11:20-11:40 清华大学 nanostructures 主持人:刘忠范 Panel 11:40-12:30 刘杰,段镶锋,郭万林,魏飞,Wang Feng,张华,李丹,张锦, discussion 瞿研… 12:14-14:00 午休 包信和 主题: Nano-catalysis and new horizon of C 14:00-14:40 复旦大学,大连化 1 纳米催化 chemistry 物所 吴屹影 Molecular analogs of MoS edges for superior 14:40-15:00 2 Iowa State Univ. hydrogen-evolution electrocatalysis 主持人 N-doped hierarchical porous carbon supported 苏党生 王勇 15:00-15:20 metal nanoparticles as an efficient catalyst for 浙江大学 刘斌 selective hydrogenation of aromatics 彭路明 Distinguishing faceted oxide nanocrystals with 15:20-15:40 17 南京大学 O solid-state NMR spectroscopy 15:40-16:00 茶歇 Low temperature aqueous-phase 马丁 16:00-16:20 Fischer-Tropsch synthesis reaction over Ru 北京大学 catalyst with ultra-high density of active sites 孙玉刚 Multiple functions of Pt nanocrystals in 16:20-16:40 主持人 Temple Univ.
    [Show full text]
  • Advances in Cancer Nanotechnology: Nci Alliance 2005-2010
    ADVANCES IN CANCER NANOTECHNOLOGY: NCI ALLIANCE 2005-2010 The NCI Office of Cancer Nanotechnology Research/ Center for Strategic Scientific Initiatives National Cancer Institute/ NIH NOVEMBER 2010 NCI Alliance for Nanotechnology in Cancer NCI Alliance for Nanotechnology in Cancer TABLE OF CONTENTS ABOUT THE ALLIANCE FOR NANOTECHNOLOGY IN CANCER ............................................ 3 SCIENTIFIC FOCUS ............................................................................................................................................................... 4 PROGRAM OPERATION AND STRUCTURE .......................................................................... 7 PROGRAM OPERATION ........................................................................................................................................................... 7 Office of Cancer Nanotechnology Research ....................................................................................................................... 8 PROGRAM INFRASTRUCTURE ..................................................................................................................................................... 8 Centers of Cancer Nanotechnology Excellence ................................................................................................................. 9 Cancer Nanotechnology Platform Partnerships .............................................................................................................. 11 Multidisciplinary Research Training and Team Development
    [Show full text]
  • To Download the PDF File
    SBE’s 6th International Conference on Bioengineering and Nanotechnology Co-Organizers University of California, Institute of Bioengineering and Berkeley Campus Nanotechnology June 24 – 27, 2012 Table of Contents Program Overview ..........................................................................2 Welcome Address ...........................................................................3 Organizing Committee and Sponsors ............................................4 Organizing Society and Poster Instuctions ....................................5 Technical Program ..................................................................... 6-7 Speaker Biographies ................................................................ 8-11 Oral and Invited Abstracts...................................................... 12-26 Poster Authors ..............................................................................27 Poster Abstracts ..................................................................... 28-45 Notes .............................................................................................47 1 Program Overview Sunday, June 24 4:00 – 5:30 PM Registration Claremont Hotel 5:30 – 6:30 PM Reception Claremont Hotel 6:30 – 6:40 PM Welcome by Matthew Tirrell and Luke Lee Claremont Hotel 6:40 – 7:40 PM Keynote Address – Shuming Nie (Georgia Institute of Technology) Claremont Hotel 7:40 – 9:00 PM Dinner Claremont Hotel Monday, June 25 7:30 AM – 3:00 PM Registration First Floor Atrium 8:00 – 8:30 AM Breakfast B1 Atrium 8:30 – 9:30 AM Keynote
    [Show full text]