Overview of Mpeg-5 Part 2 – Low Complexity

Total Page:16

File Type:pdf, Size:1020Kb

Overview of Mpeg-5 Part 2 – Low Complexity ITU Journal: ICT Discoveries, Vol. 3(1), 8 June 2020 OVERVIEW OF MPEG-5 PART 2 – LOW COMPLEXITY ENHANCEMENT VIDEO CODING (LCEVC) Florian Maurer1, Stefano Battista2, Lorenzo Ciccarelli3, Guido Meardi3, Simone Ferrara3 1RWTH Aachen University, Germany, 2Università Politecnica delle Marche (UNIVPM), Italy, 3V-Nova, UK Abstract – This paper provides an overview of MPEG-5 Part 2 Low Complexity Enhancement Video Coding (LCEVC), a novel video coding standard from the MPEG ISO Working Group. The codec is designed for use in conjunction with existing video codecs, leveraging specific tools for encoding "residuals", i.e. the difference between the original video and its compressed representation. LCEVC can improve compression efficiency and reduce the overall computational complexity using a small number of specialized enhancement tools. This paper provides an outline of the coding structure of encoder and decoder, coding tools, and an overview of the performance of LCEVC with regard to both compression efficiency and processing complexity. Keywords – Low Complexity Enhancement Video Coding (LCEVC), MPEG-5 Part 2, multi-resolution video coding, video compression. 1. INTRODUCTION is the case, changing codecs cannot be done without relevant up-front investments and large amounts of This paper provides an overview of MPEG-5 Part 2 time. Accordingly, having the possibility to upgrade Low Complexity Enhancement Video Coding an ecosystem without the need to replace it (LCEVC), a new video coding standard developed by completely and still having the freedom to select a MPEG that is scheduled to be published as base codec of their choice is an important option ISO/IEC 23094-2 [1]. that operators need to have. Rather than being a replacement for existing video Further, service operators, small and big alike, are coding schemes, LCEVC is designed to leverage increasingly concerned about the cost of delivering existing (and future) codecs to enhance their a growing number of services, often using performances whilst reducing their computational decentralized infrastructures such as cloud-based complexity. It is not meant to be an alternative to systems or battery-powered edge devices. The need other codecs, but rather a useful complement to any to increase the overall efficiency of video delivery codec. systems must also be balanced with the seemingly This is achieved by a combination of processing an conflicting needs to upgrade video resolutions and input video at a lower resolution with an existing consume less power. single-layer codec and using a simple and small set Finally, the “softwarization” of solutions across the of highly specialized tools to correct impairments, technological spectrum has brought up the need to upscale and add details to the processed video. have also codec solutions which do not necessarily require a bespoke dedicated hardware for 2. COMMERCIAL REASONS FOR THE operating efficiently, but rather can operate as a STANDARD software layer on top of existing infrastructures and LCEVC was driven by several commercial needs put deliver the required performances. forward to MPEG by many leading industry experts LCEVC seeks to solve the above issues by providing from various areas of the video delivery chain, from a solution that is compatible with existing vendors to traditional broadcasters, from satellite (and future) ecosystems whilst delivering it at a providers to over-the-top (OTT) service providers lower computational cost than it would be and social media [2]. otherwise possible with a tout-court upgrade. Service providers work with complex ecosystems. Aside from rapidly improving the efficiency of They make choices on codecs based on various legacy workflows, LCEVC can also improve the factors, including maximum compatibility with business case for the adoption of next-generation their existing ecosystems, costs of deploying the codecs, by combining their superior coding technology (including royalty rates), etc. Sometimes efficiency with significantly lower processing they are forced to make certain choices. Whichever requirements. © International Telecommunication Union, 2020 Some rights reserved. This work is available under the CC BY-NC-ND 3.0 IGO license: https://creativecommons.org/licenses/by-nc-nd/3.0/igo/. More information regarding the license and suggested citation, additional permissions and disclaimers is available at: https://www.itu.int/en/journal/2020/001/Pages/default.aspx ITU Journal: ICT Discoveries, Vol. 3(1), 8 June 2020 3. KEY TECHNICAL FEATURES 3.5 Parallelization LCEVC deploys a small number of very specialized The scheme does not use any inter-block prediction. coding tools that are well suited for the type of data The image is processed by applying small (2x2 or it processes. Some of the key technical features are 4x4) independent transform kernels over the layers highlighted below. of residual data. Since no prediction is made between blocks, each 2x2 or 4x4 block can be 3.1 Sparse residual data processing processed independently and in a parallel manner. As further shown in Section 5, the coding scheme Moreover, each layer is processed separately, thus processes one or two layers of residual data. This allowing the decoding of the blocks and decoding of residual data is produced by taking differences the layers to be done in a largely parallel manner. between a reference video frame (e.g., a source video) and a base-decoded upscaled version of the 4. BITSTREAM STRUCTURE video. The resulting residual data is sparse The LCEVC bitstream contains a base layer, which information, typically edges, dots and details which may be at a lower resolution, and an enhancement are then efficiently processed using very simple and layer consisting of up to two sub-layers. The small transforms which are designed to deal with following section briefly explains the structure of sparse information. this bitstream and how the information can be 3.2 Efficient use of existing codecs extracted. The base codec is typically used at a lower While the base layer can be created using any video resolution. Because of this, the base codec operates encoder and is not specified further in the LCEVC on a smaller number of pixels, thus allowing the standard, the enhancement layer must follow the codec to use less power, operate at a lower structure as specified. Similar to other MPEG codecs quantization parameter (QP) and use tools in a [3][4], the syntax elements are encapsulated in more efficient manner. network abstraction layer (NAL) units which also help synchronize the enhancement layer 3.3 Resilient and adaptive coding process information with the base layer decoded The scheme allows the overall coding process to be information. Depending on the position of the frame resilient to the typical coding artefacts introduced within a group of pictures (GOP), additional data by traditional discrete cosine transform (DCT) specifying the global configuration and for block-based codecs. The first enhancement controlling the decoder may be present. sub-layer (L-1 residuals) enables us to correct The data of one enhancement picture is encoded artefacts introduced by the base codec, whereas the into several chunks. These data chunks are second enhancement sub-layer (L-2 residuals) hierarchically organized as shown in Fig. 1. For each enables us to add details and sharpness to the processed plane (nPlanes), up to two enhancement corrected upscaled base for maximum fidelity sub-layers (nLevels) are extracted. Each of them (up to lossless coding). Typically, the worse the again unfolds into numerous coefficient groups of base reconstruction is, the more the first layer may contribute to correct. Conversely, the better the Coefficient Group-1 data base reconstruction is, the more bit rate can be nLayers (0) allocated to the second sub-layer to add the finest details. Coefficient Group-1 data 3.4 Agnostic base enhancement nLevels (nLayers - 1) The scheme can enhance any base codec, from Plane Y existing ones (MPEG-2, VP8, AVC, HEVC, VP9, AV1, etc.) to future and under-development ones nPlanes Coefficient Group-2 data nLayers (0) (including EVC and VVC). The reason is that the enhancement operates on a decoded version of the base codec in the pixel domain, and therefore it can Plane V Coefficient Group-2 data be used on any format as it does not require any (nLayers - 1) information on how the base has been encoded and/or decoded. Fig. 1 – Encoded enhancement picture data chunk structure ITU Journal: ICT Discoveries, Vol. 3(1), 8 June 2020 entropy encoded transform coefficients. residuals. These residuals form the starting point The amount depends on the chosen type of for the encoding process of the first enhancement transform (nLayers). Additionally, if the temporal sub-layer. A number of coding tools, which will be prediction is used, for each processed plane an described further in the following subsection, additional chunk with temporal data for process the input and generate entropy encoded Enhancement sub-layer 2 is present. quantized transform coefficients. 5. CODING STRUCTURE 5.1.3 Enhancement sub-layer 2 As a last step of the encoding process, the 5.1 Encoder enhancement data for Layer 2 needs to be The encoding process to create an LCEVC generated. In order to create the residuals, the conformant bitstream is shown in Fig. 2 and can be coefficients from Layer 1 are processed by an in- depicted in three major steps. loop decoder to achieve the corresponding reconstructed picture. Since Layer 1 might have a 5.1.1 Base codec different resolution than the input sequence, the Firstly, the input sequence is fed into two reconstructed picture is processed by an upscaler, consecutive downscalers and is processed again depending on the chosen scaling mode. according to the chosen scaling modes. Any Finally, the residuals are calculated by a subtraction combination of the three available options of the input sequence and the upscaled (2-dimensional scaling, 1-dimensional scaling in the reconstruction.
Recommended publications
  • Press Release of 132Nd MPEG Meeting
    ISO/IEC JTC 1/SC 29/AG 03 N00007 ISO/IEC JTC 1/SC 29/AG 03 MPEG Liaison and Communication Convenorship: KATS (Korea, Republic of) Document type: Press Release Title: Press Release of 132nd MPEG Meeting Status: Approved Date of document: 2020-10-16 Source: Convenor Expected action: INFO No. of pages: 8 (incl. cover page) Email of convenor: [email protected] Committee URL: https://isotc.iso.org/livelink/livelink/open/jtc1sc29ag3 INTERNATIONAL ORGANIZATION FOR STANDARDIZATION ORGANISATION INTERNATIONALE DE NORMALISATION ISO/IEC JTC 1/SC 29/AG 03 MPEG LIAISON AND COMMUNICATION ISO/IEC JTC 1/SC 29/AG 03 N00007 Online Meeting – October 2020 Source: Convenor of ISO/IEC JTC 1/SC 29/AG 03 Status: Approved by AG 03 Subject: Press Release of 132nd MPEG Meeting Date: 16 October 2020 Serial Number 19862 MPEG Continues to Progress – First Meeting with the New Structure The 132nd MPEG meeting was held online, 12 – 16 October 2020 Table of Contents: MPEG CONTINUES TO PROGRESS – FIRST MEETING WITH THE NEW STRUCTURE .......................................... 3 VERSATILE VIDEO CODING (VVC) ULTRA-HD VERIFICATION TEST COMPLETED AND CONFORMANCE AND REFERENCE SOFTWARE STANDARDS REACH THEIR FIRST MILESTONE ........................................................... 3 MPEG COMPLETES GEOMETRY-BASED POINT CLOUD COMPRESSION STANDARD ......................................... 4 MPEG EVALUATES EXTENSIONS AND IMPROVEMENTS TO MPEG-G AND ANNOUNCES A CALL FOR EVIDENCE ON NEW ADVANCED GENOMICS FEATURES AND TECHNOLOGIES ................................................................ 4 MPEG ISSUES DRAFT CALL FOR PROPOSALS ON THE CODED REPRESENTATION OF HAPTICS .......................... 5 MPEG EVALUATES RESPONSES TO MPEG IPR SMART CONTRACTS CFP ......................................................... 6 MPEG COMPLETES STANDARD ON HARMONIZATION OF DASH AND CMAF .................................................. 6 MPEG COMPLETES 2ND EDITION OF THE OMNIDIRECTIONAL MEDIA FORMAT ..............................................
    [Show full text]
  • Why “Not- Compressing” Simply Doesn't Make Sens ?
    WHY “NOT- COMPRESSING” SIMPLY DOESN’T MAKE SENS ? Confidential IMAGES AND VIDEOS ARE LIKE SPONGES It seems to be a solid. But what happens when you squeeze it? It gets smaller! Why? If you look closely at the sponge, you will see that it has lots of holes in it. The sponge is made up of a mixture of solid and gas. When you squeeze it, the solid part changes it shape, but stays the same size. The gas in the holes gets smaller, so the entire sponge takes up less space. Confidential 2 IMAGES AND VIDEOS ARE LIKE SPONGES There is a lot of data that are not bringing any information to our human eyes, and we can remove it. It does not make sense to transport, store uncompressed images/videos. It is adding data that have an undeniable cost and that are not bringing any additional valuable information to the viewers. Confidential 3 A 4K TV SHOW WITHOUT ANY CODEC ▪ 60 MINUTES STORAGE: 4478.85 GB ▪ STREAMING: 9.953 Gbit per sec Confidential 4 IMAGES AND VIDEOS ARE LIKE SPONGES Remove Remove Remove Remove Temporal redundancy Spatial redundancy Visual redundancy Coding redundancy (interframe prediction,..) (transforms,..) (quantization,…) (entropy coding,…) Confidential 5 WHAT IS A CODEC? Short for COder & DECoder “A codec is a device or computer program for encoding or decoding a digital data stream or signal.” Note : ▪ It does not (necessarily) define quality ▪ It does not define transport / container format method. Confidential 6 WHAT IS A CODEC? Quality, Latency, Complexity, Bandwidth depend on how the actual algorithms are processing the content.
    [Show full text]
  • MEDIA KIT • Lead Generation – See Page 19 • US and European Events
    Unrivalled access to online audio and video markets around the world. • print – see page 4 • online – see page 11 MEDIA KIT • lead generation – see page 19 • US and European events www.streamingmediaglobal.com media kit BUSINESS TECHNOLOGY CONTENT Streaming Media has long been the number one global destination for professionals seeking breaking news, in-depth features, reviews, analysis, and directories for the online audio and video market – whether in print, online or in person. Whether you’re a startup, a scaleup or an established business, you want to ensure that your marcomms shine through the fog of white noise. Our print magazines represent status, pedigree and profile. Our extensive online presence delivers brand awareness, name recognition and traction. Bringing these vehicles together gives you benchmark-beating lead generation packages that will drive your business where you want it to go. In 2021, in both Europe and North America, Streaming Media’s print publications, online properties and in person and virtual events continue to bring together the entire rich media ecosystem. Taken together, Streaming Media’s global content and global community gives you unrivalled access to online audio and video markets around the world PAGE 2 www.streamingmediaglobal.com media kit BUSINESS TECHNOLOGY CONTENT at a glance – 2021 lead generation programmes EUROPE EDITION US EDITION COLLABORATIVE WEB EVENTS MAGAZINE ISSUE PUBLICATION INNOVATION SERIES PARTNER SECTION MAGAZINE ISSUE PUBLICATION INNOVATION SERIES PARTNER SECTION MONTH & DEADLINES DATE & DEADLINES DATE 1. JANUARY/FEBRUARY 18 Jan 2021 MEDIA & EXECUTIVE SUMMIT—THE STATE OF JAN Sponsored content: 16 Dec 2020 ENTERTAINMENT PREDICTIONS MEDIA & ENTERTAINMENT Ad materials: 18 Dec 2020 1.
    [Show full text]
  • (LCEVC) for Gaming Video Streaming Applications
    Evaluation of MPEG-5 Part 2 (LCEVC) for Gaming Video Streaming Applications Nabajeet Barman↥, Saman Zadtootaghaj, Maria G Martini↥ and Sebastian Möller ↥School of Computer Science and Mathematics, Kingston University, London, UK Quality and Usability Lab, Technische Universität Berlin, Germany [email protected], [email protected], [email protected] VQEG_CGI_2021_131 1 Objectives Evaluation of the new MPEG-5 Low Complexity Enhancement Video Coding (LCEVC) standard on Gaming Content Comparison of compression efficiency of LCEVC with existing practical implementation of video codec standards H.264/AVC and H.265/HEVC 2 High level LCEVC decoding workflow Image Source: https://docs.v-nova.com/v-nova/lcevc/lcevc-sdk-overview 3 LCEVC: Two sublayers of residual data Image Source: https://docs.v-nova.com/v-nova/lcevc/lcevc-sdk-overview 4 LCEVC Advantages Improved video compression efficiency (compared to base codec used at full resolution) Reduced overall encoding complexity Backwards compatible with existing ecosystem of device (no new chipsets needed) 5 Source Sequences Cloud Gaming Video Dataset (CGDVS) ● 14 reference gaming videos ● 1920x1080 ● 60 fps ● 30 seconds 6 Screenshots of six sample games used in this work (d) FIFA 2017 (a) Bejeweled (b) Worms (c) Fortnite (d) LoL (e) Maplestory (f) Overwatch 7 Spatial Information (SI) vs Temporal Information (TI) 8 Encoding Settings Summary 9 Results 10 Quality-BR curves 11 X264 vs LCEVC-x264 12 X265 vs LCEVC-x265 13 BD-BR 14 x264 vs LCEVC_x264 (medium preset) 15 x265 vs LCEVC_x265 (veryfast preset) 16 BD-BR Savings (VMAF) 17 High Complexity Games - Fortnite 18 High Complexity Games - Tekken 19 Low Complexity Games - LoL 20 Low Complexity Games - Worms 21 LCEVC demo: search ‘V-Nova’ in app stores Credentials: User name: LCEVC_Gaming Pwd: Gaming2021 22 Encoding Speed x264 (medium) --> LCEVC x264 (medium) is 1.7-2x faster x265 (veryfast) --> LCEVC x265 (veryfast) is 1.2-1.3x faster Note: This is a rough estimate based on few sample videos encoding on a Laptop.
    [Show full text]
  • Scat India 2020 - We Go Digital Edition Sets a New Benchmark Telebreeze & Kings Broadband Build on an Ambitious Partnership
    RNI No. 57078/1993. Postal Registration No. MCS/225/2019-21. License to Post Without Prepayment; WPP License No. MR/Tech/WPP/South/351/2019-21. Published on the 10th of every month.Posted on the 11th & 12th of every month at Mumbai Patrika Channel Sorting Office Mumbai 400001. Total 68 Pages NOVEMBER 2020 ` 100 SATELLITE & CABLE TV TRADE GUIDE SATELLITE NOVEMBER 2020 TRADE GUIDE OFFICIAL PUBLICATION VOL XXVIII / 9 / 2020 27 …….including Broadband & IPTV NOVEMBER 2020 SCAT INDIA 2020 - WE GO DIGITAL EDITION SETS A NEW BENCHMARK TELEBREEZE & KINGS BROADBAND BUILD ON AN AMBITIOUS PARTNERSHIP VOLUME XXVIII / 9 2020 INDIA’S NEW SPACE COMMUNICATION POLICY INDIA - SIXTH LARGEST OTT MARKET WALT DISNEY REJIGS MEDIA STRATEGY OTT NEWS …. BROADBAND .... DISH DOCTOR …. CHANNEL GUIDE .... AND LOTS MORE….!! INDIA’S MOST RESPECTED TRADE MAGAZINE FOR THE CABLE TV, BROADBAND, IPTV & SATELLITE INDUSTRY Education .. Made In SET TOP BOX BIS APPROVED Cable TV STB IPTV/ OTT/ANDROID CH+ CH- VOL+ VOL- POWER Satellite STB S/S2 CHAMPION EMCS- 4000SG TM CHAMPION 2000 IPTV/ OTT STB MCBS WINS STB INNOVATION AWARD MPEG-4 HD, SD, MPEG-2 Hybrid HD (Cable+IPTV) Android/GSM STB Now Now designdesign youryour ownown STBSTB asas perper customizedcustomized requirementrequirement IndianIndian STBSTB DesignDesign househouse forfor youryour STBSTB needsneeds INDIA’S LARGEST SELLING DIGITAL HEADEND SYSTEM CONVERGENCE HEADEND A Complete Solution For Cable, Satelite, Mobile & IPTV INTEGRATE InstalledInstalled basebase ofof IPTV / WEB TV / MOB TV / OTT WITH COMMON WEALTH CABLE NETWORK AND MCBSMCBS HeadendsHeadends GAMES 2010 BECOME NEXTGEN OPERATOR Already installed by manymany telecomtelecom operatorsoperators Analog Headends 20,000+ && MSO’sMSO’s inin IndiaIndia likelike JIOJIO !! ANDROID Digital Headends 3000+ Flash Streaming Super Headends 35+ Encoders 65,000+ HITS HEADENDS PRODUCTS MCBS has set up an ultra modern state-of-the-art Surface Mount Technology (SMT) plant, incorporating world's most renowned robotic machineries.
    [Show full text]
  • V-Nova LCEVC XDE / XSA Ultra-Density Video Encoding
    V-Nova LCEVC XDE / XSA Ultra-density Video Encoding • Increase throughput by up to 4x: 4Kp60 or multiple HD streams per card • Deliver higher quality at up to 50% lower bitrates • Simple deployment for existing or new encoding operations INTRODUCTION Hyperscale video services like social and e-sports networks need to encode and serve vast numbers of streams to their users. The server infrastructure required to satisfy this demand is often the largest cost for these businesses. V-Nova LCEVC running on Xilinx FPGA enables any service operating private cloud to radically transform their efficiency, reducing operating costs by up to 4x whilst improving the streaming quality-of-service for their users. Furthermore, public or private clouds can deploy LCEVC on Xilinx® AlveoTM Data Center accelerator cards as an ultra-dense encoding solution to offer significant quality and cost benefits to their video delivery customers. V-Nova LCEVC is the industry’s first optimised software for the MPEG-5 “Low Complexity Enhancement Video Coding” standard. LCEVC is the first enhancement standard and significantly improves the quality and throughput of any existing or future codec (e.g. AVC/H.264, HEVC, VP9, AV1, VVC, EVC). When combined with a Xilinx FPGA, V-Nova LCEVC provides the highest density encoding solution in the market enabling use cases such as live 4Kp60 encoding on a single card. Playback is supported on a broad range of devices as LCEVC leverages the hardware decoding capabilities of the underlying codec already present. PRODUCT OVERVIEW Xilinx FPGA support V-Nova LCEVC in two available configurations: • V-Nova LCEVC XSA is a single board FPGA acceleration solution providing up to 4x throughput increase on existing codec deployments, whether in software or in hardware.
    [Show full text]
  • The VC-6 Overview Whitepaper Mrmxf.Com/White-Paper by Mr MXF for V-Nova a New Compression Technology Is Required for This New Era in Media Technology
    Mr MXF Ltd The VC-6 Overview Whitepaper mrmxf.com/white-paper by Mr MXF for V-Nova A new compression technology is required for this new era in media technology. Novel workflows mixing smaller cheaper devices and advanced software that is often cloud based make the requirements of moving bulky imagery more complex and more nuanced. Couple these with new service oriented business models that allow billing per file that is based on size and resources consumed and you end up with the need for a codec that can be locally optimised on a workflow by workflow basis. We need a high quality video encoder that can extend its range from lossless to high compression ratios. It must be easy to compute, easy to scale in software it must be implemented in repeatable functional blocks in hardware, it must be synergistic with Machine Learning processes, it must be natively multi-resolution, it must be cloud friendly, energy efficient, available now AND an international standard. This white paper explores some of the facts and functionality behind SMPTE ST 2117-1 VC-6 is different Figure 1 - JPEG2000 vs VC-6 VC-6 shares many features of other coding schemes but also has significant difference. The figure above shows a comparison with JPEG2000 (J2K). Planes: VC-6 codes the original planes of the image to ensure there is not chance of mathematical error. J2K converts to a luminance plane and color difference planes. This improves . compression ratio but requires two different color transforms - one for lossy and a different one for lossless compression.
    [Show full text]
  • 12Th SMPTE EMERGING TECHNOLOGIES SEMINAR Thursday 15Th April 2021 – 15:00~18:00 Forum Europeo Digitale – Digital Edition ______
    22nd MAR 2021,update 12th SMPTE EMERGING TECHNOLOGIES SEMINAR Thursday 15th April 2021 – 15:00~18:00 Forum Europeo Digitale – Digital Edition ______________________________________________________________ The Italian Section of SMPTE, Society of Motion Picture and Television Engineers, is pleased to announce its twelfth Seminar dedicated to the Emerging Technologies. Following the success of the previous Seminars, SMPTE has deemed it appropriate to follow up on this consolidated initiative to fulfill its statutory mission which concerns the issue and dissemination of international technical standards governing the technologies of the moving image. This event is kindly hosted in the context of the European Digital Forum, which this year will be presented as online digital edition, will take place on April 15, 2021 starting at 15:00 and ending by 18:00 with the participation of international qualified experts. WORKSHOP PURPOSE The last twenty years have seen the achievement of a goal that television had set itself since its inception: to equal and exceed with video images the quality of the cinematic image on film which, in the first decades of the last century, had established itself as great media innovation in a rapidly evolving communication context. This ambition clearly emerged in 1980, when Dr. Takashi Fujio, director of the Research Laboratories of NHK (the Japanese public broadcaster) proposed an analog television standard for an "electronic film" named Hi-Vision: it was the first High Definition system that promised to improve the video image by focusing on increasing its spatial resolution (determined by the number of raster lines and the bandwidth of the video signal itself).
    [Show full text]
  • New Codecs for 5G
    New Codecs for 5G Thierry Fautier (Harmonic) ©2019 Harmonic Inc. All rights reserved worldwide. Forewords Forewords Codecs today Application Requirements Facts Codec Comparison 3GPP Multi Codec Conclusion ©2019 Harmonic Inc. All rights reserved worldwide. 2 Forewords VVC EVC LC-EVC Audio subject skipped as easier to tackle Video codec is an explosive topic, need time to soak into it Presentation based on data Codec can not be disassociated from the application Information presented aimed at triggering discussions Most thorough Mobile Video codec presentation done ©2019 Harmonic Inc. All rights reserved worldwide. 3 The 3 Cs of Codecs Compression Codec Complexity Commercials* Broadcast & Unicast have different dynamics * Licensing ©2019 Harmonic Inc. All rights reserved worldwide. 4 New Codec Matrix Legacy Device New Device Examples Simulcast 4G devices Existing Service V V OTT Streaming 99% VR Target 5G devices only New Service X V FeMBMS 1% Next Gen codec impact highly depends on mix service /device ©2019 Harmonic Inc. All rights reserved worldwide. 5 Where do we stand today? * Bitmoving report Q3’19 AVC still dominates, HEVC heir, challenged on PC by AV1 ©2019 Harmonic Inc. All rights reserved worldwide. 6 Some Mobile Codecs Data Points • Facts – Licensing: No streaming fees in HEVC from 3 PP (VELOS gives up streaming licenses, MC-IF sep’19 meeting) – Resolution: • In US Zero rating (unlimited video) is capped at 1.5M/s /SD AVC • On Mobile, SD/HD 50/50 today* • 360p judged “good quality” by 71% of users * • HW support : iOS (1080p),
    [Show full text]
  • The Sustainable Future of Video Entertainment from Creation to Consumption
    The Sustainable Future of Video Entertainment From creation to consumption August 2020 Chris Evans, Julian Issa, Simon Forrest The Sustainable Future of Video Entertainment 2 Contents Introduction ................................................................................................................... 3 Sustainability to define businesses in the 21st century ....................................... 4 Global Video Entertainment Facts & Figures (2019) ............................................. 6 The growth in video content consumption .............................................................. 9 Consumer electronics and consumer choices ..................................................... 12 Measuring sustainability across video entertainment ........................................ 16 Changes in broadcast business models ................................................................ 17 Linear or on-demand: which is more sustainable? .............................................. 18 Is video sustainable over broadband? .................................................................... 19 Sustainability is essential in data centres.............................................................. 21 How much energy do streaming services use? .................................................... 22 How the film industry is prioritising sustainability ............................................... 25 Case studies across the video supply chain ......................................................... 28 5G presents opportunities
    [Show full text]
  • Standards Action
    PUBLISHED WEEKLY BY THE AMERICAN NATIONAL STANDARDS INSTITUTE 25 WEST 43RD STREET NY, NY 10036 VOL. 52| NO. 33 August 13, 2021 CONTENTS American National Standards Project Initiation Notification System (PINS) ............................................................... 2 Call for Comment on Standards Proposals .................................................................. 5 Final Actions - (Approved ANS) .................................................................................. 17 Call for Members (ANS Consensus Bodies) ................................................................ 25 Accreditation Announcements (Standards Developers) ............................................ 27 Meeting Notices (Standards Developers) .................................................................. 28 American National Standards (ANS) Process ............................................................. 29 ANS Under Continuous Maintenance ........................................................................ 30 ANSI-Accredited Standards Developer Contact Information ..................................... 31 International Standards ISO and IEC Draft Standards ....................................................................................... 34 ISO Newly Published Standards ................................................................................. 39 International Organization for Standardization (ISO) ................................................ 41 Registration of Organization Names in the United States .........................................
    [Show full text]
  • LCEVC Enhanced AV1 Decoding on Mobile Devices V-Nova 2021
    LCEVC enhanced AV1 decoding on mobile devices V-Nova 2021 LCEVC Enhanced AV1 Decoding on mobile devices Introduction The Alliance for Open Media’s AV1 codec is a modern video compression format, designed to be royalty free and based on testing conducted by Facebook that approximates real world conditions, the AV1 reference encoder achieved 30% better compression than HEVC or VP9. However, as of April 2021 it could be multiple years until a wide range of consumers can gracefully decode AV1 on their mobile devices. For example, Android support for software decoding of AV1 is present from version 10, but most devices lack the processing resources to decode most videos reliably. Also, as of early 2021 there are only a very limited set of devices with hardware accelerated decoding capabilities, with Qualcomm not supporting AV1 decode in their chipsets currently and declining to commit to a timeline. The problem is further exacerbated on iPhones, particularly for those applications relying on decoding on Safari browser. This report aims to show that enhancing AV1 with the novel standard MPEG-5 Part 2 Low Complexity Enhancement Video Coding (LCEVC) could be the answer to unlocking reliable high-resolution AV1 decode in software for the wider mobile device user base. We tested a representative set of Android devices and focused our analysis on assessing LCEVC’s impact on decoding efficiency, rather than visual quality. Having said that, while running the videos at same bitrates and at resolutions enabling a smooth payback for both native AV1 and LCEVC-enhanced AV1, we noticed a perceptible visual quality improvement, confirmed by both objective and subjective methodologies.
    [Show full text]