Paper Title (Use Style: Paper Title)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Videocodecs in a Nutshell
Videocodecs in a Nutshell Wie funktioniert’s und was gibt’s neues? darkbit 14.08.2021 14.08.21 1 Gliederung ● Motivation ● Grundlagen moderner Videocodecs am Beispiel von HEVC ● Neue Videocodecs – AOMedia Video 1 (AV1) – Versatile Video Coding (VVC) – Essential Video Coding (EVC) – Low Complexity Enhancement Video Codec (LC EVC) ● Vergleich der Codecs ● Ausblick 14.08.21 Videocodecs in a Nutshell - darkbit 2 Motivation ● Rohvideo ist groß ● Bsp: Spielfilm auf DVD – Pixel hat je 8 Bit für die RGB-Komponenten => 24 bits pro Pixel – Übliche Auflösung 720x576 Pixel => 414‘720 Pixel => ~9,953Mbit pro Bild – 25 Bilder pro Sekunde => 248,825 Mbit/s – 90 Minuten Spielfilmlänge => 1,344 Tbit (168 Gbyte) pro Film – Wir haben aber nur max. 8,5 Gbyte pro DVD (Dual-Layer) – Wir müssen unser Video um mind. 95% komprimieren! ● Ziel eines Videocodecs: Möglichst hohe Kompression bei möglichst geringer visuellen Qualitätseinbußungen. 14.08.21 Videocodecs in a Nutshell - darkbit 3 Motivation CC-BY 3.0 - Blender Foundation CC-BY-SA 3.0 - Rdikeman Anforderungen On-Demand Video Live Video Kompression möglichst hoch auf Kanalbandbreite Encodingspeed irrelevant in Echtzeit Decodingspeed in Echtzeit in Echtzeit Bitrate adaptiv konstant 14.08.21 Videocodecs in a Nutshell - darkbit 4 State of the Art Videocodecs Veröffentlichung Codec Bitraten-reduktion Anwendungen Mai 1996 H.262, MPEG-2 Part 2 DVD, SDTV, Blu-Ray März 2003 AVC (H.264, MPEG-4 -50% gegenüber HDTV, Webvideo, Part 10) H.262 WebRTC, Blu-Ray September 2008 (seit VP8 -5% gegenüber AVC Webvideo, 2010 lizenzfrei) WebRTC Mai 2013 VP9 -20% gegenüber AVC Webvideo, WebRTC Dezember 2013 HEVC (H.265, MPEG-H -20% gegenüber AVC UHD Blu-Ray Part 2) 14.08.21 Videocodecs in a Nutshell - darkbit 5 Patentproblematiken Quelle: Jonatan Samuelsson und Per Hermansson. -
Press Release of 132Nd MPEG Meeting
ISO/IEC JTC 1/SC 29/AG 03 N00007 ISO/IEC JTC 1/SC 29/AG 03 MPEG Liaison and Communication Convenorship: KATS (Korea, Republic of) Document type: Press Release Title: Press Release of 132nd MPEG Meeting Status: Approved Date of document: 2020-10-16 Source: Convenor Expected action: INFO No. of pages: 8 (incl. cover page) Email of convenor: [email protected] Committee URL: https://isotc.iso.org/livelink/livelink/open/jtc1sc29ag3 INTERNATIONAL ORGANIZATION FOR STANDARDIZATION ORGANISATION INTERNATIONALE DE NORMALISATION ISO/IEC JTC 1/SC 29/AG 03 MPEG LIAISON AND COMMUNICATION ISO/IEC JTC 1/SC 29/AG 03 N00007 Online Meeting – October 2020 Source: Convenor of ISO/IEC JTC 1/SC 29/AG 03 Status: Approved by AG 03 Subject: Press Release of 132nd MPEG Meeting Date: 16 October 2020 Serial Number 19862 MPEG Continues to Progress – First Meeting with the New Structure The 132nd MPEG meeting was held online, 12 – 16 October 2020 Table of Contents: MPEG CONTINUES TO PROGRESS – FIRST MEETING WITH THE NEW STRUCTURE .......................................... 3 VERSATILE VIDEO CODING (VVC) ULTRA-HD VERIFICATION TEST COMPLETED AND CONFORMANCE AND REFERENCE SOFTWARE STANDARDS REACH THEIR FIRST MILESTONE ........................................................... 3 MPEG COMPLETES GEOMETRY-BASED POINT CLOUD COMPRESSION STANDARD ......................................... 4 MPEG EVALUATES EXTENSIONS AND IMPROVEMENTS TO MPEG-G AND ANNOUNCES A CALL FOR EVIDENCE ON NEW ADVANCED GENOMICS FEATURES AND TECHNOLOGIES ................................................................ 4 MPEG ISSUES DRAFT CALL FOR PROPOSALS ON THE CODED REPRESENTATION OF HAPTICS .......................... 5 MPEG EVALUATES RESPONSES TO MPEG IPR SMART CONTRACTS CFP ......................................................... 6 MPEG COMPLETES STANDARD ON HARMONIZATION OF DASH AND CMAF .................................................. 6 MPEG COMPLETES 2ND EDITION OF THE OMNIDIRECTIONAL MEDIA FORMAT .............................................. -
2021 TIW DRAFT AGENDA Revi
24th ITEA Test and Training Instrumentation Workshop Innovating for Tomorrow’s Challenges 5/5/21 REV I 11-May First Day – Tutorials 8:00 a.m. – 12:00 p.m. Morning Tutorials Basics of Aircraft Instrumentation Systems Bruce Johnson, NAWCAD This course will cover a wide variety of topics related to Aircraft Instrumentation. Data, Telemetry, Instrumentation System Block Diagram, Standards, Data Requirements, Transducers / Specifications, Video, 1553 Bus, Using Requirements to Configure an Analog Data Channel, Creating a PCM Map to Obtain a Sample Rate, Telemetry Bandwidth, Record Time, GPS, Audio, Telemetry Attributes Transfer Standard (TMATS), and Measurement Uncertainty - Interpreting the Results. This is great introduction for new hires or a refresher for current employees. IRIG 106-17 Chapter 7 Packet Telemetry Downlink Basis and Implementation Fundamentals Johnny Pappas, Safran Data Systems, Inc. This course will focus on presenting information to establish a basic understanding of the 2017 release of the IRIG 106, Chapter 7, Packet Telemetry Downlink Standard. It will also focus on the implementation of airborne and ground system hardware and methods to handle IRIG 106, Chapter 7, Packet Telemetry data. The presentation will address the implementation of special features necessary to support legacy RF Transmission, data recording, RF Receiving, Ground Reproduction, and Chapter 10 data processing methods. Predictive Analytics for Performance Assessment Mark J. Kiemele, Air Academy Associates Design of Experiments (DOE) is a method that can and should be used not only in the design and development of systems, but also in the modeling and validation of system performance. Building useful prediction models and then validating them can ease the burden of making procurement decisions. -
Why “Not- Compressing” Simply Doesn't Make Sens ?
WHY “NOT- COMPRESSING” SIMPLY DOESN’T MAKE SENS ? Confidential IMAGES AND VIDEOS ARE LIKE SPONGES It seems to be a solid. But what happens when you squeeze it? It gets smaller! Why? If you look closely at the sponge, you will see that it has lots of holes in it. The sponge is made up of a mixture of solid and gas. When you squeeze it, the solid part changes it shape, but stays the same size. The gas in the holes gets smaller, so the entire sponge takes up less space. Confidential 2 IMAGES AND VIDEOS ARE LIKE SPONGES There is a lot of data that are not bringing any information to our human eyes, and we can remove it. It does not make sense to transport, store uncompressed images/videos. It is adding data that have an undeniable cost and that are not bringing any additional valuable information to the viewers. Confidential 3 A 4K TV SHOW WITHOUT ANY CODEC ▪ 60 MINUTES STORAGE: 4478.85 GB ▪ STREAMING: 9.953 Gbit per sec Confidential 4 IMAGES AND VIDEOS ARE LIKE SPONGES Remove Remove Remove Remove Temporal redundancy Spatial redundancy Visual redundancy Coding redundancy (interframe prediction,..) (transforms,..) (quantization,…) (entropy coding,…) Confidential 5 WHAT IS A CODEC? Short for COder & DECoder “A codec is a device or computer program for encoding or decoding a digital data stream or signal.” Note : ▪ It does not (necessarily) define quality ▪ It does not define transport / container format method. Confidential 6 WHAT IS A CODEC? Quality, Latency, Complexity, Bandwidth depend on how the actual algorithms are processing the content. -
MEDIA KIT • Lead Generation – See Page 19 • US and European Events
Unrivalled access to online audio and video markets around the world. • print – see page 4 • online – see page 11 MEDIA KIT • lead generation – see page 19 • US and European events www.streamingmediaglobal.com media kit BUSINESS TECHNOLOGY CONTENT Streaming Media has long been the number one global destination for professionals seeking breaking news, in-depth features, reviews, analysis, and directories for the online audio and video market – whether in print, online or in person. Whether you’re a startup, a scaleup or an established business, you want to ensure that your marcomms shine through the fog of white noise. Our print magazines represent status, pedigree and profile. Our extensive online presence delivers brand awareness, name recognition and traction. Bringing these vehicles together gives you benchmark-beating lead generation packages that will drive your business where you want it to go. In 2021, in both Europe and North America, Streaming Media’s print publications, online properties and in person and virtual events continue to bring together the entire rich media ecosystem. Taken together, Streaming Media’s global content and global community gives you unrivalled access to online audio and video markets around the world PAGE 2 www.streamingmediaglobal.com media kit BUSINESS TECHNOLOGY CONTENT at a glance – 2021 lead generation programmes EUROPE EDITION US EDITION COLLABORATIVE WEB EVENTS MAGAZINE ISSUE PUBLICATION INNOVATION SERIES PARTNER SECTION MAGAZINE ISSUE PUBLICATION INNOVATION SERIES PARTNER SECTION MONTH & DEADLINES DATE & DEADLINES DATE 1. JANUARY/FEBRUARY 18 Jan 2021 MEDIA & EXECUTIVE SUMMIT—THE STATE OF JAN Sponsored content: 16 Dec 2020 ENTERTAINMENT PREDICTIONS MEDIA & ENTERTAINMENT Ad materials: 18 Dec 2020 1. -
Ict R&D 기술로드맵 2025
ICT R&D 기술로드맵 2025 ICT융합·방송·콘텐츠 ICT융합 방송·미디어 디지털콘텐츠 ICT R&D 기술로드맵 2025 ICT융합·방송·콘텐츠 ICT융합 방송·미디어 디지털콘텐츠 ICT R&D 기술로드맵 2025 ICT융합·방송·콘텐츠 Contents 01 ICT융합 분야 02 방송·미디어 분야 ● ● Ⅰ. 개념 및 범위 006 Ⅰ. 개념 및 범위 160 Ⅱ. 동향 조사 분석 018 Ⅱ. 동향 조사 분석 162 Ⅲ. 기술 발전 전망 080 Ⅲ. 기술 발전 전망 176 Ⅳ. 대상 기술 선정 096 Ⅳ. 대상 기술 선정 182 Ⅴ. 기술로드맵 124 Ⅴ. 기술로드맵 192 Ⅵ. 기술 확보 전략 130 Ⅵ. 기술 확보 전략 194 03 디지털콘텐츠 분야 ● Ⅰ. 개념 및 범위 210 Ⅱ. 동향 조사 분석 216 Ⅲ. 기술 발전 전망 236 Ⅳ. 대상 기술 선정 242 Ⅴ. 기술로드맵 248 Ⅵ. 기술 확보 전략 250 [참고] 참여 전문가 명단 258 ICT R&D 기술로드맵 2025 ICT융합·방송·콘텐츠 ICT융합 분야 006 018 Ⅰ. 개념 및 범위 Ⅱ. 동향 조사 분석 080 096 Ⅲ. 기술 발전 전망 Ⅳ. 대상 기술 선정 124 130 Ⅴ. 기술로드맵 Ⅵ. 기술 확보 전략 개념 및 범위 Ⅰ ICT R&D 기술로드맵 2025 1.개념 및 정의 ICT 융합의 개념 ICT 융합 분야는 지능정보 기술 등 다양한 ICT 기술을 융합하여 미래사회 문제에 대응하고, 全 산업의‘디지털 전환(Digital Transformation)’을 통해 사람 중심(Human Driven)의 혁신적인 新 융합기술·서비스 실현을 목표로 함 - 기존 산업구조 기반에서 마련된 현재의 기술과의 융합에서 벗어나, ICT 기술을 뒷받침하는 이론에서 파생한 새로운 융합 신기술 발굴 - 미래의 ICT 융합은‘인간을 위한’도구로서, 인간의 편리하고 안전한 삶을 지원하고, 사회 전반의 고민과 과제를 해결하는데 기여하는 사람 중심(Human-Driven)의 핵심기술로 정의함 < ICT융합분야 개념도 > 006 ICT융합 분야 Ⅰ. 개념 및 범위 2.기술분류(Technology Tree) ICT 융합기술의 응용대상 분야 ※ ICT 융합 분야 특성상 융합기술을 활용한 서비스 중점 도출이 유의미하다고 판단하여, 본 로드맵에서 기존 기술분류체계(<참고>)를 기반으로 ICT융합기술 응용 대상 분야를 아래와 같이 새로이 설정하여 이에 따른 기술을 매칭하여 활용 ‘ 혁신성장을 위한 사람 중심의「4차산업혁명 대응계획」’(`18. -
Overview of Mpeg-5 Part 2 – Low Complexity
ITU Journal: ICT Discoveries, Vol. 3(1), 8 June 2020 OVERVIEW OF MPEG-5 PART 2 – LOW COMPLEXITY ENHANCEMENT VIDEO CODING (LCEVC) Florian Maurer1, Stefano Battista2, Lorenzo Ciccarelli3, Guido Meardi3, Simone Ferrara3 1RWTH Aachen University, Germany, 2Università Politecnica delle Marche (UNIVPM), Italy, 3V-Nova, UK Abstract – This paper provides an overview of MPEG-5 Part 2 Low Complexity Enhancement Video Coding (LCEVC), a novel video coding standard from the MPEG ISO Working Group. The codec is designed for use in conjunction with existing video codecs, leveraging specific tools for encoding "residuals", i.e. the difference between the original video and its compressed representation. LCEVC can improve compression efficiency and reduce the overall computational complexity using a small number of specialized enhancement tools. This paper provides an outline of the coding structure of encoder and decoder, coding tools, and an overview of the performance of LCEVC with regard to both compression efficiency and processing complexity. Keywords – Low Complexity Enhancement Video Coding (LCEVC), MPEG-5 Part 2, multi-resolution video coding, video compression. 1. INTRODUCTION is the case, changing codecs cannot be done without relevant up-front investments and large amounts of This paper provides an overview of MPEG-5 Part 2 time. Accordingly, having the possibility to upgrade Low Complexity Enhancement Video Coding an ecosystem without the need to replace it (LCEVC), a new video coding standard developed by completely and still having the freedom to select a MPEG that is scheduled to be published as base codec of their choice is an important option ISO/IEC 23094-2 [1]. that operators need to have. -
(LCEVC) for Gaming Video Streaming Applications
Evaluation of MPEG-5 Part 2 (LCEVC) for Gaming Video Streaming Applications Nabajeet Barman↥, Saman Zadtootaghaj, Maria G Martini↥ and Sebastian Möller ↥School of Computer Science and Mathematics, Kingston University, London, UK Quality and Usability Lab, Technische Universität Berlin, Germany [email protected], [email protected], [email protected] VQEG_CGI_2021_131 1 Objectives Evaluation of the new MPEG-5 Low Complexity Enhancement Video Coding (LCEVC) standard on Gaming Content Comparison of compression efficiency of LCEVC with existing practical implementation of video codec standards H.264/AVC and H.265/HEVC 2 High level LCEVC decoding workflow Image Source: https://docs.v-nova.com/v-nova/lcevc/lcevc-sdk-overview 3 LCEVC: Two sublayers of residual data Image Source: https://docs.v-nova.com/v-nova/lcevc/lcevc-sdk-overview 4 LCEVC Advantages Improved video compression efficiency (compared to base codec used at full resolution) Reduced overall encoding complexity Backwards compatible with existing ecosystem of device (no new chipsets needed) 5 Source Sequences Cloud Gaming Video Dataset (CGDVS) ● 14 reference gaming videos ● 1920x1080 ● 60 fps ● 30 seconds 6 Screenshots of six sample games used in this work (d) FIFA 2017 (a) Bejeweled (b) Worms (c) Fortnite (d) LoL (e) Maplestory (f) Overwatch 7 Spatial Information (SI) vs Temporal Information (TI) 8 Encoding Settings Summary 9 Results 10 Quality-BR curves 11 X264 vs LCEVC-x264 12 X265 vs LCEVC-x265 13 BD-BR 14 x264 vs LCEVC_x264 (medium preset) 15 x265 vs LCEVC_x265 (veryfast preset) 16 BD-BR Savings (VMAF) 17 High Complexity Games - Fortnite 18 High Complexity Games - Tekken 19 Low Complexity Games - LoL 20 Low Complexity Games - Worms 21 LCEVC demo: search ‘V-Nova’ in app stores Credentials: User name: LCEVC_Gaming Pwd: Gaming2021 22 Encoding Speed x264 (medium) --> LCEVC x264 (medium) is 1.7-2x faster x265 (veryfast) --> LCEVC x265 (veryfast) is 1.2-1.3x faster Note: This is a rough estimate based on few sample videos encoding on a Laptop. -
Scat India 2020 - We Go Digital Edition Sets a New Benchmark Telebreeze & Kings Broadband Build on an Ambitious Partnership
RNI No. 57078/1993. Postal Registration No. MCS/225/2019-21. License to Post Without Prepayment; WPP License No. MR/Tech/WPP/South/351/2019-21. Published on the 10th of every month.Posted on the 11th & 12th of every month at Mumbai Patrika Channel Sorting Office Mumbai 400001. Total 68 Pages NOVEMBER 2020 ` 100 SATELLITE & CABLE TV TRADE GUIDE SATELLITE NOVEMBER 2020 TRADE GUIDE OFFICIAL PUBLICATION VOL XXVIII / 9 / 2020 27 …….including Broadband & IPTV NOVEMBER 2020 SCAT INDIA 2020 - WE GO DIGITAL EDITION SETS A NEW BENCHMARK TELEBREEZE & KINGS BROADBAND BUILD ON AN AMBITIOUS PARTNERSHIP VOLUME XXVIII / 9 2020 INDIA’S NEW SPACE COMMUNICATION POLICY INDIA - SIXTH LARGEST OTT MARKET WALT DISNEY REJIGS MEDIA STRATEGY OTT NEWS …. BROADBAND .... DISH DOCTOR …. CHANNEL GUIDE .... AND LOTS MORE….!! INDIA’S MOST RESPECTED TRADE MAGAZINE FOR THE CABLE TV, BROADBAND, IPTV & SATELLITE INDUSTRY Education .. Made In SET TOP BOX BIS APPROVED Cable TV STB IPTV/ OTT/ANDROID CH+ CH- VOL+ VOL- POWER Satellite STB S/S2 CHAMPION EMCS- 4000SG TM CHAMPION 2000 IPTV/ OTT STB MCBS WINS STB INNOVATION AWARD MPEG-4 HD, SD, MPEG-2 Hybrid HD (Cable+IPTV) Android/GSM STB Now Now designdesign youryour ownown STBSTB asas perper customizedcustomized requirementrequirement IndianIndian STBSTB DesignDesign househouse forfor youryour STBSTB needsneeds INDIA’S LARGEST SELLING DIGITAL HEADEND SYSTEM CONVERGENCE HEADEND A Complete Solution For Cable, Satelite, Mobile & IPTV INTEGRATE InstalledInstalled basebase ofof IPTV / WEB TV / MOB TV / OTT WITH COMMON WEALTH CABLE NETWORK AND MCBSMCBS HeadendsHeadends GAMES 2010 BECOME NEXTGEN OPERATOR Already installed by manymany telecomtelecom operatorsoperators Analog Headends 20,000+ && MSO’sMSO’s inin IndiaIndia likelike JIOJIO !! ANDROID Digital Headends 3000+ Flash Streaming Super Headends 35+ Encoders 65,000+ HITS HEADENDS PRODUCTS MCBS has set up an ultra modern state-of-the-art Surface Mount Technology (SMT) plant, incorporating world's most renowned robotic machineries. -
V-Nova LCEVC XDE / XSA Ultra-Density Video Encoding
V-Nova LCEVC XDE / XSA Ultra-density Video Encoding • Increase throughput by up to 4x: 4Kp60 or multiple HD streams per card • Deliver higher quality at up to 50% lower bitrates • Simple deployment for existing or new encoding operations INTRODUCTION Hyperscale video services like social and e-sports networks need to encode and serve vast numbers of streams to their users. The server infrastructure required to satisfy this demand is often the largest cost for these businesses. V-Nova LCEVC running on Xilinx FPGA enables any service operating private cloud to radically transform their efficiency, reducing operating costs by up to 4x whilst improving the streaming quality-of-service for their users. Furthermore, public or private clouds can deploy LCEVC on Xilinx® AlveoTM Data Center accelerator cards as an ultra-dense encoding solution to offer significant quality and cost benefits to their video delivery customers. V-Nova LCEVC is the industry’s first optimised software for the MPEG-5 “Low Complexity Enhancement Video Coding” standard. LCEVC is the first enhancement standard and significantly improves the quality and throughput of any existing or future codec (e.g. AVC/H.264, HEVC, VP9, AV1, VVC, EVC). When combined with a Xilinx FPGA, V-Nova LCEVC provides the highest density encoding solution in the market enabling use cases such as live 4Kp60 encoding on a single card. Playback is supported on a broad range of devices as LCEVC leverages the hardware decoding capabilities of the underlying codec already present. PRODUCT OVERVIEW Xilinx FPGA support V-Nova LCEVC in two available configurations: • V-Nova LCEVC XSA is a single board FPGA acceleration solution providing up to 4x throughput increase on existing codec deployments, whether in software or in hardware. -
The Emerging Mpeg-5 Evc Standard - Applications, Technology and Results
THE EMERGING MPEG-5 EVC STANDARD - APPLICATIONS, TECHNOLOGY AND RESULTS Jonatan Samuelsson1, Kiho Choi2, Jianle Chen3, Dmytro Rusanovskyy4 1Divideon, 2Samsung, 3Futurewei, 4Qualcomm ABSTRACT For more than 30 years, digitalization in the media industry has enabled new services, increased reach of conventional services and brought a continuously improving TV experience to consumers all over the world. One of the most central technology components in digital media distribution and consumption is compression and in particular video compression, since video data represents by far the largest amount of data in most media services. Over the years, multiple different video coding standards and proprietary codecs have emerged and the compression performance of new generations of codecs is constantly improving. However, the compression efficiency is not the only factor that determines how well a codec is suited for usage in different application areas – and eventually – how widely deployed the codec will become. The MPEG-5 Essential Video Coding (EVC) standard, presented in this paper, is being developed by MPEG using a novel process targeted at addressing business requirements, including licensing, as well as technical requirements, so as to facilitate rapid deployment and widespread use of the standard throughout the media industry. INTRODUCTION Development of a standard typically starts with an analysis of the requirements: What are the problems that will be addressed by this standard? What are the desirable technical properties of this standard? How will this standard interact with other components of the eco-system? What are the target applications and use cases? For video coding standards, the core problem has remained the same over the years: reduce the size of transmitted video data as much as possible while keeping the visual quality as close as possible to the original video. -
The VC-6 Overview Whitepaper Mrmxf.Com/White-Paper by Mr MXF for V-Nova a New Compression Technology Is Required for This New Era in Media Technology
Mr MXF Ltd The VC-6 Overview Whitepaper mrmxf.com/white-paper by Mr MXF for V-Nova A new compression technology is required for this new era in media technology. Novel workflows mixing smaller cheaper devices and advanced software that is often cloud based make the requirements of moving bulky imagery more complex and more nuanced. Couple these with new service oriented business models that allow billing per file that is based on size and resources consumed and you end up with the need for a codec that can be locally optimised on a workflow by workflow basis. We need a high quality video encoder that can extend its range from lossless to high compression ratios. It must be easy to compute, easy to scale in software it must be implemented in repeatable functional blocks in hardware, it must be synergistic with Machine Learning processes, it must be natively multi-resolution, it must be cloud friendly, energy efficient, available now AND an international standard. This white paper explores some of the facts and functionality behind SMPTE ST 2117-1 VC-6 is different Figure 1 - JPEG2000 vs VC-6 VC-6 shares many features of other coding schemes but also has significant difference. The figure above shows a comparison with JPEG2000 (J2K). Planes: VC-6 codes the original planes of the image to ensure there is not chance of mathematical error. J2K converts to a luminance plane and color difference planes. This improves . compression ratio but requires two different color transforms - one for lossy and a different one for lossless compression.