Air Pollution Knows No Boundaries
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Riau Natural Gas Power Project ESIA Vol.5 Technical Appendices Part F
DRAFT Environmental and Social Impact Assessment Report Project Number: 50182-001 November 2018 INO: Riau Natural Gas Power Project ESIA Vol.5_Technical Appendices Part F Prepared by ESC for the Asian Development Bank The environmental and social impact assessment is a document of the project sponsor. The views expressed herein do not necessarily represent those of ADB’s Board of Directors, Management, or staff, and may be preliminary in nature. Your attention is directed to the “Terms of Use” section of this website. In preparing any country program or strategy, financing any project, or by making any designation of or reference to a particular territory or geographic area in this document, the Asian Development Bank does not intend to make any judgments as to the legal or other status of or any territory or area. Volume 5: Technical Appendices Appendix E. KA-ANDAL Approval Letter 6 AM039100-400-GN-RPT-1014 Volume 5: Technical Appendices Appendix F. The Ministry of Agraria and Spatial Planning issued Recommendation Letter 7 AM039100-400-GN-RPT-1014 Volume 5: Technical Appendices Appendix G. Comparison of WBG EHS Guidelines with Indonesian Regulations 8 AM039100-400-GN-RPT-1014 Appendix A. Comparisons of Standards Comparison of World Bank Group IFC Environmental Health and Safety (EHS) Guidelines with Indonesian Environmental Standards Table A1: Gaseous emission for Natural Gas (all turbine types) IFC Guidelines for Thermal Power Plant Indonesian Standard** Parameter Remark Non DA (mg/m3) DA (mg/m3) Limit (mg/Nm3) Particulate Indonesian standards are N/A N/A 30 mg/Nm3 Matter stricter CO NA NA NA - NOx 51* 51* 400 mg/Nm3 IFC guidelines are stricter Indonesian standards are SO2 NA NA 150 mg/Nm3 stricter Opacity NA NA N/A - Note: The figures in red are the more stringent requirements **At dry gas, excess O2 content 15% **Gas volume counted on standard (25 deg C and 1 bar atm) **this is for 95% normal operation in 3 (three) months period ***Source: Ministry of Environmental Regulation No. -
Contaminated Soil in Gardens
Contaminated Soil in Gardens How to avoid the harmful effects EUR/ICP/LVNG 03 01 02(A) E64737 EUROPEAN HEALTH21 TARGET 11 HEALTHIER LIVING By the year 2015, people across society should have adopted healthier patterns of living (Adopted by the WHO Regional Committee for Europe at its forty-eighth session, Copenhagen, September 1998) Abstract In many cities, gardens are located on old, abandoned landfills and dumping sites. Cities have expanded by filling up spaces around the city with garbage, rubble and earth. The places where old landfills were have often become gardens where citizens can get away and enjoy the open air away from the noise and racket of cities. Normal garbage and rubble in landfills do not present a problem, however industrial and chemical waste can present a health hazard, especially when concentrations of contaminants are above acceptable limits. Some special precautions are proposed in this booklet so that the potential ill effects of contaminated soil can be avoided. Keywords SOIL POLLUTANTS RISK MANAGEMENT GUIDELINES URBAN HEALTH Contents The soil is contaminated – what then? .......................................................1 What is in the ground under us?.................................................................2 How harmful substances may affect the body ............................................3 How to reduce the risk................................................................................4 The best way to garden..............................................................................5 -
Social and Environmental Impact Assessment for the Proposed Rössing Uranium Desalination Plant Near Swakopmund, Namibia
Rössing Uranium Limited SOCIAL AND ENVIRONMENTAL IMPACT ASSESSMENT FOR THE PROPOSED RÖSSING URANIUM DESALINATION PLANT NEAR SWAKOPMUND, NAMIBIA DRAFT SOCIAL AND ENVIRONMENTAL MANAGEMENT PLAN PROJECT REFERENCE NO: 110914 DATE: NOVEMBER 2014 PREPARED BY ON BEHALF OF Rössing Uranium Desalination Plant: Draft SEMP PROJECT DETAILS PROJECT: Social and Environmental Impact Assessment for the Proposed Rössing Uranium Desalination Plant, near Swakopmund, Namibia AUTHORS: Andries van der Merwe (Aurecon) Patrick Killick (Aurecon) Simon Charter (SLR Namibia) Werner Petrick (SLR Namibia) SEIA SPECIALISTS: Birds –Mike and Ann Scott (African Conservation Services CC) Heritage – Dr John Kinahan (Quaternary Research Services) Marine ecology – Dr Andrea Pulfrich (Pisces Environmental Services (Pty) Ltd) Noise - Nicolette von Reiche (Airshed Planning Professionals) Socio-economic - Auriol Ashby (Ashby Associates CC) - Dr Jonthan Barnes (Design and Development ServicesCC) Visual – Stephen Stead (Visual Resource Management Africa) Wastewater discharge modelling –Christoph Soltau (WSP Group) Shoreline dynamics - Christoph Soltau (WSP Group) PROPONENT: Rio Tinto Rössing Uranium Limited REPORT STATUS: Draft Social and Environmental Management Plan REPORT NUMBER: 9408/110914 STATUS DATE: 28 November 2014 .......................................... .......................................... Patrick Killick Simon Charter Senior Practitioner: Aurecon Environment and Advisory Senior Practitioner: SLR Environmental Consulting ......................................... -
Residential Wood Combustion Technology Review Appendices
EPA-600/R-98-174b December 1998 Residential Wood Combustion Technology Review Volume 2. Appendices Prepared by: James E. Houck and Paul E.Tiegs OMNI Environmental Services, Inc. 5465 SW Western Avenue, Suite G Beaverton, OR 97005 EPA Purchase Order 7C-R285-NASX EPA Project Officer: Robert C. McCrillis U.S. Environmental Protection Agency (MD-61) National Risk Management Research Laboratory Air Pollution Prevention and Control Division Research Triangle Park, NC 27711 Prepared for: U.S. Environmental Protection Agency Office of Research and Development Washington, D.C. 20460 A-i Abstract A review of the current states-of-the-art of residential wood combustion (RWC) was conducted. The key environmental parameter of concern was the air emission of particles. The technological status of all major RWC categories was reviewed. These were cordwood stoves, fireplaces, masonry heaters, pellet stoves, and wood-fired central heating furnaces. Advances in technology achieved since the mid-1980's were the primary focus. These study objectives were accomplished by reviewing the published literature and by interviewing nationally recognized RWC experts. The key findings of the review included: (1) The NSPS certification procedure only qualitatively predicts the level of emissions from wood heaters under actual use in homes, (2) Wood stove durability varies with model and a method to assess the durability problem is controversial, (3) Nationally the overwhelming majority of RWC air emissions are from non-certified devices (primarily from older non-certified woodstoves), (4) New technology appliances and fuels can reduce emissions significantly, (5) The ISO and EPA NSPS test procedures are quite dissimilar and data generated by the two procedures would not be comparable, and, (6) The effect of wood moisture and wood type on particulate emission appears to be real but to be less than an order of magnitude. -
Land Application of Industrial Waste
Land Application of Industrial Waste This document is intended for use by persons or operations that generate industrial waste suitable for land application to help them determine what type(s) of regulatory oversight and/or permit is required for land application. Land application of sewage sludge (biosolids), animal manure, and petroleum contaminated soil are regulated separately from other wastes and are not the focus of this document. 1. Is the material a fertilizer or soil conditioner? Is the material managed as a valuable commodity, i.e. does the generator sell the material? Element Percent Is the intent of land applying the material to replace or offset the use of more traditional fertilizers or soil Calcium (Ca) 1.00 conditioners? Are claims or guaranties made to land owners Magnesium (Mg) 0.50 concerning the nutrient value? Sulfur (S) 1.00 Do the N, P, and K, values equal 20 when added Boron (B) 0.02 together? Chlorine (Cl) 0.10 Is the material capable of changing the pH of the soil? Cobalt (Co) 0.0005 When added to the soil or applied to plants would the Copper (Cu) 0.05 material produce a favorable growth, yield or quality of Iron (Fe) 0.10 crop or soil flora or fauna or other improved soil Manganese (Mn) 0.05 characteristics? Molybdenum (Mo) 0.0005 Does the material provide any of the following plant Sodium (Na) 0.10 nutrients at or above the level indicated in the chart Zinc (Zn) 0.05 above? If the answer to one or more of these questions is “yes” then it is possible the material could be registered and regulated by the Iowa Department of Agriculture and Land Stewardship as a fertilizer or soil conditioner and not a waste. -
Annual Report Good Neighbor Environmental Board
Annual Report of the Good Neighbor Environmental Board A Presidential and Congressional Advisory Committee on U.S.-Mexico Border Environmental and Infrastructure Issues April 1997 THE GOOD NEIGHBOR ENVIRONMENTAL BOARD AN ADVISORY COMMITTEE ON U.S.- MEXICO BORDER ENVIRONMENTAL AND INFRASTRUCTURE ISSUES The President The Speaker of the House of Representatives The Vice President The Good Neighbor Environmental Board advisory committee was established by Congress in 1994, to address U.S.-Mexico border environmental and infrastructure issues and needs. The Board is comprised of a broad spectrum of individuals from business, nonprofit organizations, and state and local governments from the four states which border Mexico. The Board also has representation from eight U.S. departments and agencies. The legislation establishing the Board requires it to submit an annual report to the President and the Congress. On behalf of the Good Neighbor Environmental Board, I am happy to present this second annual report. During the past year, the Board has had extensive discussions about critical issues facing the border region, including receiving input from citizens in each of the communities where we met, and has developed a series of recommendations reflected in the enclosed report. The report and recommendations focus on changing the development paradigm along the U.S.-Mexico border--to begin to establish a sustainable development vision for the region. In addition to conventional environmental issues, the Board is also addressing health, transportation, housing, and economic development issues. The current recommendations relate largely to implementation of the new binational Border XXI framework and plan, coordination and leveraging of federal programs in the border region, encouragement of greater private sector participation, and development of needed infrastructure. -
How a Landfill Works Presented By: American Environmental Landfill, Inc
How a Landfill Works Presented by: American Environmental Landfill, Inc. 1420 W. 35th Street, Suite B Tulsa, OK 74107 Phone: 918-245-7786 Fax: 918-245-7774 How a Landfill Works So you have just finished your meal at a fast food restaurant and you throw your uneaten food, food wrappers, drink cup, utensils and napkins into the trash can. Odds are you don’t think about that waste again. On trash pickup day in your neighborhood, you push your can out to the curb, and workers dump the contents into a big truck and haul it away. You don’t have to think about that waste again, either. But maybe you have wondered, as you watch the trash truck pull away, just where that garbage ends up. Americans generate trash at an astonishing rate of four to seven pounds per day per person, which translates to at least 600,000 tons per day or at least 210 million tons per year! This is almost twice as much trash per person as most other major countries. What happens to this trash? Some gets recycled or recovered and some is burned, but the majority is buried in landfills. In this overview of how a landfill works, we will examine how a landfill is made, what happens to the trash in landfills, what risks are associated with a landfill and how these risks are solved. How is Trash Disposed of? The trash production in the United States has almost tripled since 1960 (Figure 2). This trash is handled in various ways. About 27 % of the trash is recycled or composted, 16% is burned and 57% is buried in landfills. -
EPA's Guide for Industrial Waste Management
Guide for Industrial Waste Management Protecting Land Ground Water Surface Water Air Building Partnerships Introduction EPA’s Guide for Industrial Waste Management Introduction Welcome to EPA’s Guide for Industrial Waste Management. The pur- pose of the Guide is to provide facility managers, state and tribal regulators, and the interested public with recommendations and tools to better address the management of land-disposed, non-haz- ardous industrial wastes. The Guide can help facility managers make environmentally responsible decisions while working in partnership with state and tribal regulators and the public. It can serve as a handy implementation reference tool for regulators to complement existing programs and help address any gaps. The Guide can also help the public become more informed and more knowledgeable in addressing waste management issues in the community. In the Guide, you will find: • Considerations for siting industrial waste management units • Methods for characterizing waste constituents • Fact sheets and Web sites with information about individual waste constituents • Tools to assess risks that might be posed by the wastes • Principles for building stakeholder partnerships • Opportunities for waste minimization • Guidelines for safe unit design • Procedures for monitoring surface water, air, and ground water • Recommendations for closure and post-closure care Each year, approximately 7.6 billion tons of industrial solid waste are generated and disposed of at a broad spectrum of American industrial facilities. State, tribal, and some local governments have regulatory responsibility for ensuring proper management of these wastes, and their pro- grams vary considerably. In an effort to establish a common set of industrial waste management guidelines, EPA and state and tribal representatives came together in a partnership and developed the framework for this voluntary Guide. -
Home and Garden Pesticides
HAZARDOUS WASTES G3453 Home and garden pesticides DISPOSING OF This publication describes the proper General information way to dispose of general-use pesticides, ome and garden pesticides are disinfectants, no-pest strips, moth flakes chemicals used to kill or repel and mothballs, wood preservatives, pet FROM THE HOME pests. They include many common H flea and tick powders, pet collars, and pet Jonathan Rivin household products that you may not shampoos. If you have questions about and Elaine Andrews consider particularly hazardous, such as how to dispose of specific home and disinfectants and flea collars, and they are garden products not described in this of five main types, fact sheet, please call your local or county • herbicides, which kill plants, public health department, solid waste • insecticides, which kill insects, department, or call the UW Extension Solid & Hazardous Waste Education Center. To • fungicides, which kill fungi or mold, Home and garden learn about alternatives to pesticide use, • rat poisons, which kill rats, and contact your county agriculture extension pesticides pose a health • disinfectants, which kill infectious agent. microorganisms. Please note: Toxicity guidelines change All home and garden pesticides are rapidly, so do not rely entirely on this fact hazard if misused, and if poisonous to some degree. Do not dispose sheet for information about hazardous of these toxic substances in the home drain materials. For additional advice, contact disposed of improperly or storm sewer. Share them with someone your county extension office, the Pesticide else who can use them, or save them for Program within the Wisconsin Department a household hazardous waste collection of Agriculture, Trade and Consumer can contaminate drinking program. -
EHS Guidelines for Themal Power Plants
Environmental, Health, and Safety Guidelines THERMAL POWER PLANTS DRAFT FOR SECOND PUBLIC CONSULTATION—MAY/JUNE 2017 WORLD BANK GROUP Environmental, Health, and Safety Guidelines for Thermal Power Plants Introduction 1. The Environmental, Health, and Safety (EHS) Guidelines are technical reference documents with general and industry-specific examples of Good International Industry Practice (GIIP).1 When one or more members of the World Bank Group are involved in a project, these EHS Guidelines are applied as required by their respective policies and standards. These industry sector EHS guidelines are designed to be used together with the General EHS Guidelines document, which provides guidance to users on common EHS issues potentially applicable to all industry sectors. For complex projects, use of multiple industry-sector guidelines may be necessary. A complete list of industry-sector guidelines can be found at: www.ifc.org/ehsguidelines. 2. The EHS Guidelines contain the performance levels and measures that are generally considered to be achievable in new facilities by existing technology at reasonable costs. Application of the EHS Guidelines to existing facilities may involve the establishment of site-specific targets, based on environmental assessments and/or environmental audits as appropriate, with an appropriate timetable for achieving them. 3. The applicability of the EHS Guidelines should be tailored to the hazards and risks established for each project on the basis of the results of an environmental assessment (EA) in which site-specific variables, such as host country context, assimilative capacity of the environment, and other project factors, are taken into account. The applicability of specific technical recommendations should be based on the professional opinion of qualified and experienced persons. -
BTF Incident Objectives and Requirements 2011
Bridger-Teton National Forest WFDSS Incident Objectives and Requirements 2011 Incident Objectives and Requirements This list was compiled from objectives included in old WFSAs (Blind Trail, Boulder, Cow Camp, East Table) and requirements in the FMP. CONTENTS INCIDENT OBJECTIVES ............................................................................................................... 2 General ....................................................................................................................................... 2 Economic .................................................................................................................................... 2 Local business/outfitters and guides ................................................................................. 2 Range ..................................................................................................................................... 2 Recreation .............................................................................................................................. 2 Special uses and private property ...................................................................................... 2 Environmental ........................................................................................................................... 3 Air quality ............................................................................................................................... 3 Cultural resources ................................................................................................................ -
Provincial Framework for AIRSHED PLANNING
Provincial Framework for AIRSHED PLANNING CONTENTS ii PREFACE iii EXECUTIVE SUMMARY 1 INTRODUCTION 7 THE PLANNING FRAMEWORK 9 Stage 1: Evaluate the need for a plan 12 Stage 2: Identify and engage stakeholders 14 Stage 3: Investigate planning synergies 16 Stage 4: Determine priority sources 18 Stage 5: Develop the plan 20 Stage 6: Implement, monitor, and report 22 CONCLUSION 23 REFERENCES 26 GLOSSARY OF TERMS AND ACRONYMS 29 Appendix 1: Background to the framework 33 Appendix 2: Air quality planning and information 35 Appendix 3: Examples of related planning processes 36 Appendix 4: Examples of best practices and local bylaws i PREFACE This document describes a framework for preparing air quality management plans, or "airshed plans," in British Columbia. As such, it should be of interest to a broad range of local stakeholders in air quality, including local and regional governments, health professionals, industry, businesses, environmental and community interest groups, and private citizens. The framework is designed to help those considering or undertaking a planning process to better understand what the Province of British Columbia (the Province) expects from an airshed plan in terms of approach and content. The intent is to encourage greater consistency and efficiency in planning efforts, towards implementation of the Canada-Wide Standards for particulate matter and ozone – key pollutants of concern due to their health and environmental impacts. The Draft Provincial Framework for Airshed Planning represents the culmination of a development process that started in 2005 and included two rounds of stakeholder consultation (see Appendix 1). More than 60 participants contributed to these consultations, drawn from local and regional government, industry, academia, health authorities, and environmental and community organizations.