Técnicas Forenses Y Anti-Forenses Para El Análisis De La Integridad Del Contenido Y De La Fuente De Adquisición En Vídeos Digitales De Dispositivos Móviles

Total Page:16

File Type:pdf, Size:1020Kb

Técnicas Forenses Y Anti-Forenses Para El Análisis De La Integridad Del Contenido Y De La Fuente De Adquisición En Vídeos Digitales De Dispositivos Móviles UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE INFORMÁTICA TESIS DOCTORAL Técnicas Forenses y Anti-Forenses para el Análisis de la Integridad del Contenido y de la Fuente de Adquisición en Vídeos Digitales de Dispositivos Móviles MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR Carlos Quinto Huamán Directores Luis Javier García Villalba Ana Lucila Sandoval Orozco Madrid ©Carlos Quinto Huamán, 2020 UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE INFORMÁTICA TESIS DOCTORAL Técnicas Forenses y Anti-Forenses para el Análisis de la Integridad del Contenido y de la Fuente de Adquisición en Vídeos Digitales de Dispositivos Móviles MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR Carlos Quinto Huamán Directores Luis Javier García Villalba Ana Lucila Sandoval Orozco Madrid, 2020 Técnicas Forenses y Anti-Forenses para el Análisis de la Integridad del Contenido y de la Fuente de Adquisición en Vídeos Digitales de Dispositivos Móviles TESIS DOCTORAL Memoria presentada para obtener el título de Doctor por la Universidad Complutense de Madrid en el Programa de Doctorado en Ingeniería Informática Carlos Quinto Huamán Directores Luis Javier García Villalba Ana Lucila Sandoval Orozco Facultad de Informática Universidad Complutense de Madrid Madrid, Septiembre de 2020 Tesis Doctoral presentada por el doctorando Carlos Quinto Huamán en la Facultad de Informática de la Universidad Complutense de Madrid para la obtención del título de Doctor por la Universidad Complutense de Madrid en el Programa de Doctorado en Ingeniería Informática. Terminada en Madrid el 06 de Septiembre de 2020. Título: Técnicas Forenses y Anti-Forenses de Dispositivos Móviles para el Análisis de la Integridad del Contenido y de la Fuente de Adquisición en Vídeos Digitales de Dispositivos Móviles Doctorando: Carlos Quinto Huamán ([email protected]) Departamento de Ingeniería del Software e Inteligencia Artificial Facultad de Informática Universidad Complutense de Madrid 28040 Madrid, España Directores: Luis Javier García Villalba ([email protected]) Ana Lucila Sandoval Orozco ([email protected]) Esta tesis doctoral ha sido realizada dentro del grupo de investigación GASS (Grupo de Análisis, Seguridad y Sistemas, grupo 910623 del catálogo de grupos reconocidos por la UCM) como parte de las actividades del proyecto de investigación RAMSES (Internet Forensic Platform for Tracking the Money Flow of Financially-Motivated Malware) financiado por la Comisión Europea dentro del Programa Marco de Investigación e Innovación Horizonte 2020 (H2020-FCT-2015/700326-RAMSES). Adicionalmente, esta Tesis ha sido realizada como parte de las actividades del proyecto UCM THEIA (Techniques for Integrity and Authentication of Multimedia Files of Mobile Devices) (FEI-EU-19-04). La presente Tesis está dedicada a mi familia, en especial a mi hija. Agradecimientos En primer lugar, quiero expresar mi agradecimiento a mis directores Javier y Ana Lucila por el apoyo, dedicación, motivación y confianza que me han proporcionado todos estos años. Sin duda estos factores han sido fundamentales y sin ellos esta Tesis no habría sido posible. También agradezco infinitamente todas las facilidades brindadas como medios, materiales y recursos que pusieron a mi entera disposición para desarrollar mis actividades de investigación de forma permanente y eficiente. Además, quiero expresar mi gratitud a los dos porque no solo fueron importantes para la consecución de este objetivo, sino también para otros, que son trascendentales. Agradezco a todos los miembros del Grupo de Análisis, Seguridad y Sistemas (GASS) por su sincera amistad y apoyo incondicional en todo el proceso de elaboración de esta Tesis y por los grandes momentos que hemos compartido. Un especial agradecimiento a Daniel por su colaboración y sugerencias acertadas que permitieron hacer frente a múltiples dificultades en todo el proceso de investigación. No puedo olvidarme de agradecer a mi querida familia por su ánimo, apoyo, paciencia y comprensión. Gracias también al Programa Nacional de Becas y Crédito Educativo del Ministerio de Educación de Perú, por haberme otorgado los años necesarios para desarrollar tareas de investigación en el programa de doctorado. Finalmente, de manera especial agradezco al Ministerio de Defensa del Perú y en concreto al Ejército del Perú, que a través de la Dirección de Educación y Doctrina, Jefatura de Educación del Ejército, Dirección de Relaciones Internacionales y la Comandancia General del Ejército promovieron la autorización de viaje al exterior en misión de estudios para cursar el programa de Doctorado en Ingeniería Informática y formar parte del equipo investigador del proyecto RAMSES. Esta Tesis doctoral ha sido realizada dentro del grupo de investigación GASS (Grupo de Análisis, Seguridad y Sistemas, grupo 910623 del catálogo de grupos reconocidos por la UCM) como parte de las actividades del proyecto de investigación RAMSES (Internet Forensic Platform for Tracking the Money Flow of Financially-Motivated Malware) financiado por la Comisión Europea dentro del Programa Marco de Investigación e Innovación Horizonte 2020 (H2020-FCT-2015/700326-RAMSES). Adicionalmente, esta Tesis ha sido realizada como parte de las actividades del proyecto UCM THEIA (Techniques for Integrity and Authentication of Multimedia Files of Mobile Devices) (FEI-EU-19-04). xi Índice General Índice de Figuras XVII Índice de Tablas XIX Índice de Algoritmos XXI Lista de Acrónimos XXIII Abstract XXIX Resumen XXXI 1. Introducción1 1.1. Motivación....................................4 1.2. Objetivos de la Investigación..........................5 1.3. Identificación del Problema...........................6 1.4. Resumen de las Contribuciones.........................7 1.5. Estructura del Trabajo..............................8 2. Vídeos Digitales 11 2.1. Introducción.................................... 11 2.2. Importancia.................................... 12 2.3. Proceso de Generación.............................. 14 2.3.1. Sistemas de Lentes............................ 17 2.3.2. Matriz de Filtros de Color........................ 18 2.3.3. Tipos de Sensores............................ 20 2.3.3.1. Sensores CCD......................... 21 2.3.3.2. Sensores CMOS........................ 22 2.3.3.3. Sensores QIS.......................... 24 2.4. Compresión de Vídeos Digitales......................... 25 2.4.1. Tipos de Codificación.......................... 26 xiii xiv ÍNDICE GENERAL 2.4.1.1. Codificación Intra....................... 27 2.4.1.2. Codificación Inter....................... 27 2.5. Estándares de Codificación MPEG....................... 27 2.5.1. Estándar H.264/AVC.......................... 31 2.5.1.1. Formato de la Trama H.264.................. 32 2.5.1.2. Formato de Tren de Bytes.................. 33 2.5.2. Estándar H.265/HEVC......................... 33 2.5.3. Estándar H.266/VVC.......................... 35 2.6. Compresión de Audio.............................. 35 2.6.1. Codificación de Audio Avanzada.................... 38 2.7. Contenedores Multimedia............................ 39 2.7.1. Metadatos en Vídeos Digitales..................... 40 2.7.2. Contendores Multimedia MP4, MOV y 3GP.............. 41 2.7.3. Herramientas de Extracción de Átomos................ 45 2.8. Síntesis del Capítulo............................... 49 3. Análisis Forense en Vídeos Digitales 51 3.1. Introducción.................................... 51 3.2. Aprendizaje Automático para el Análisis Forense en Vídeos......... 52 3.3. Características para el Análisis Forense de Vídeos............... 53 3.4. Técnicas de Análisis Forense en Vídeos..................... 54 3.4.1. Técnicas de Identificación de la Fuente................. 55 3.4.2. Técnicas de Detección de Manipulaciones............... 57 3.4.2.1. Técnicas de Detección de Falsificación............ 58 3.4.2.2. Técnicas de Detección de Post-Procesamiento........ 59 3.4.2.3. Técnicas de Detección/Recuperación de Contenido Oculto. 62 3.5. Técnicas de Análisis Anti-Forense en Vídeos.................. 62 3.5.1. Camuflaje de Post-Procesamiento.................... 63 3.5.2. Destrucción de Características para Identificar el Origen....... 63 3.5.3. Falsificación de la Identidad de una Imagen.............. 63 3.6. Síntesis del Capítulo............................... 65 4. Análisis de la Estructura del Contenedor Multimedia 67 4.1. Descripción de la Técnica............................ 67 4.2. Generación del Conjunto de Datos de Vídeos Digitales............ 68 4.2.1. Características del Conjunto de Datos de Vídeos Originales..... 70 4.2.2. Características del Conjunto de Datos de Plataformas Sociales... 74 ÍNDICE GENERAL xv 4.2.3. Características del Conjunto de Datos de Programas de Edición... 75 4.2.4. Comparación con Otros Conjuntos de Datos.............. 76 4.3. Algoritmo de Extracción de Átomos...................... 77 4.4. Estructura del DataFrame............................ 79 4.5. Análisis y Resultados............................... 80 4.5.1. Evaluación del Algoritmo de Extracción de Átomos.......... 80 4.5.2. Análisis Individual de Vídeos...................... 84 4.5.3. Análisis Masivo de Vídeos........................ 87 4.5.4. Análisis de Valores y Metadatos.................... 94 4.6. Ataques Anti-Forenses sobre Contenedores Multimedia............ 102 4.7. Síntesis del Capítulo............................... 103 5. Detección de Post-Procesamiento de Vídeos 105 5.1. Descripción de la Técnica............................ 105 5.1.1. Preparación del Conjunto de Datos................... 106 5.1.2. Extracción de la Estructura
Recommended publications
  • Versatile Video Coding – the Next-Generation Video Standard of the Joint Video Experts Team
    31.07.2018 Versatile Video Coding – The Next-Generation Video Standard of the Joint Video Experts Team Mile High Video Workshop, Denver July 31, 2018 Gary J. Sullivan, JVET co-chair Acknowledgement: Presentation prepared with Jens-Rainer Ohm and Mathias Wien, Institute of Communication Engineering, RWTH Aachen University 1. Introduction Versatile Video Coding – The Next-Generation Video Standard of the Joint Video Experts Team 1 31.07.2018 Video coding standardization organisations • ISO/IEC MPEG = “Moving Picture Experts Group” (ISO/IEC JTC 1/SC 29/WG 11 = International Standardization Organization and International Electrotechnical Commission, Joint Technical Committee 1, Subcommittee 29, Working Group 11) • ITU-T VCEG = “Video Coding Experts Group” (ITU-T SG16/Q6 = International Telecommunications Union – Telecommunications Standardization Sector (ITU-T, a United Nations Organization, formerly CCITT), Study Group 16, Working Party 3, Question 6) • JVT = “Joint Video Team” collaborative team of MPEG & VCEG, responsible for developing AVC (discontinued in 2009) • JCT-VC = “Joint Collaborative Team on Video Coding” team of MPEG & VCEG , responsible for developing HEVC (established January 2010) • JVET = “Joint Video Experts Team” responsible for developing VVC (established Oct. 2015) – previously called “Joint Video Exploration Team” 3 Versatile Video Coding – The Next-Generation Video Standard of the Joint Video Experts Team Gary Sullivan | Jens-Rainer Ohm | Mathias Wien | July 31, 2018 History of international video coding standardization
    [Show full text]
  • Overview of Technologies for Immersive Visual Experiences: Capture, Processing, Compression, Standardization and Display
    Overview of technologies for immersive visual experiences: capture, processing, compression, standardization and display Marek Domański Poznań University of Technology Chair of Multimedia Telecommunications and Microelectronics Poznań, Poland 1 Immersive visual experiences • Arbitrary direction of viewing System : 3DoF • Arbitrary location of viewer - virtual navigation - free-viewpoint television • Both System : 6DoF Virtual viewer 2 Immersive video content Computer-generated Natural content Multiple camera around a scene also depth cameras, light-field cameras Camera(s) located in a center of a scene 360-degree cameras Mixed e.g.: wearable cameras 3 Video capture Common technical problems • Synchronization of cameras Camera hardware needs to enable synchronization Shutter release error < Exposition interval • Frame rate High frame rate needed – Head Mounted Devices 4 Common task for immersive video capture: Calibration Camera parameter estimation: • Intrinsic – the parameters of individual cameras – remain unchanged by camera motion • Extrinsic – related to camera locations in real word – do change by camera motion (even slight !) Out of scope of standardization • Improved methods developed 5 Depth estimation • By video analysis – from at least 2 video sequences – Computationally heavy – Huge progress recently • By depth cameras – diverse products – Infrared illuminate of the scene – Limited resolution mostly Out of scope of standardization 6 MPEG Test video sequences • Large collection of video sequences with depth information
    [Show full text]
  • Versatile Video Coding (VVC)
    Versatile Video Coding (VVC) on the final stretch Benjamin Bross Fraunhofer Heinrich Hertz Institute, Berlin ITU Workshop on “The future of media” © Geneva, Switzerland, 8 October 2019 Versatile Video Coding (VVC) Joint ITU-T (VCEG) and ISO/IEC (MPEG) project Coding Efficiency Versatility 50% over H.265/HEVC Screen content HD / UHD / 8K resolutions Adaptive resolution change 10bit / HDR Independent sub-pictures 2 VVC – Coding Efficiency History of Video Coding Standards H.261 JPEG H.265 / H.264 / H.262 / (1991) (1990) PSNR MPEG-HEVC MPEG-4 AVC MPEG-2 (dB) (2013) (2003) (1995) 40 38 Bit-rate Reduction: 50% 35 36 34 32 30 28 0 100 200 300 bit rate (kbit/s) 3 VVC – Coding Efficiency History of Video Coding Standards H.261 JPEG H.265 / H.264 / H.262 / (1991) (1990) PSNR MPEG-HEVC MPEG-4 AVC MPEG-2 (dB) (2013) (2003) (1995) 40 38 36 Do we need more efficient video coding? 34 32 30 28 0 100 200 300 bit rate (kbit/s) 4 VVC – Coding Efficiency Jevons Paradox "The efficiency with which a resource is used tends to increase (rather than decrease) the rate of consumption of that resource." 5 VVC – Coding Efficiency Target for the final VVC standard H.262 / H.261 JPEG H.??? / H.265 / H.264 / MPEG-2 (1991) (1990) PSNR MPEG-VVC MPEG-HEVC MPEG-4 AVC (dB) (2013) (2003) (1995) 40 38 36 35 Bit-rate Reduction Target: 50% 34 32 30 28 0 100 200 300 bit rate (kbit/s) 6 VVC – Timeline 2015 Oct. – Exploration Phase • Joint Video Exploration Team (JVET) of ITU-T VCEG and ISO/IEC MPEG established October ‘15 in Geneva • Joint Video Exploration Model (JEM) as software playground to explore new coding tools • 34% bitrate savings for JEM relative to HEVC provided evidence to start a new joint standardization activity with a… 2017 Oct.
    [Show full text]
  • Download Recent and Forthcoming Books from This Series
    River Publishers Book Catalogue Series in Signal, Image and Speech Processing River Publishers Series in Signal, Image and Speech Processing Digital Video Coding for Next Generation Multimedia H.264, HEVC, VVC, EVC Video Compression Authors: Shreyanka Subbarayappa, Ramaiah University of Applied Sciences, India K. R. Rao, University of Texas at Arlington, Texas, U.S.A Humberto Ochoa Domínguez, Universidad Autónoma de Ciudad Juárez, México ISBN: 9788770224215 e-ISBN: 9788770224208 Available From: January 2022 Price: € 98.50 Description: Innovations in communication systems and technology are growing tremendously. In multimedia communication systems, technology has transformed from analog television to digital television in the video domain. Mobile phones are known as smart phones as they are used, not only to make voice calls, but also used to send emails, video calls, transfer data, GPS, taking pictures and so on. Due to the widespread user applications, compression of data becomes important to save system resources. Video occupies 75% of data transfer traffic and is expected to cover 80% by the end of 2021. Video is also continuously increasing in file size from standard definition (SD) to ultra-high definition (UHD - 4K, 8K and 12K) video. More data or size in video requires higher transmission bandwidth or more disk space to store which can be slow and expensive. This drives the improvements in compression and hence the demand for a new codec. Several algorithms are used to achieve compression of Image or Video files, these algorithms working together are classified in terms of codecs and we use different codecs for different applications. Advances in video compression technology reduce the utilization of system resources, like processing time, memory use, network bandwidth and battery life.
    [Show full text]
  • Kompresja Statycznego Obrazu 138
    Damian Karwowski Zrozumieć Kompresję Obrazu Podstawy Technik Kodowania Stratnego oraz Bezstratnego Obrazów Wydanie Pierwsze, wersja 1.2 Poznań 2019r. ISBN 978-83-953420-0-4 9 788395 342004 © Damian Karwowski – „Zrozumieć Kompresję Obrazu” © Copyright by DAMIAN KARWOWSKI. All rights reserved. Książka jest chroniona prawem autorskim i prawami pokrewnymi. Egzemplarz książki został zdeponowany w Kancelarii Notarialnej. Książka jest dostępna pod adresem: www.zrozumieckompresje.pl ISBN 978-83-953420-0-4 Projekt okładki książki oraz strona internetowa zostały wykonane przez Marka Piskulskiego. Serdecznie dziękuję za profesjonalną pracę Obraz „Miś Panda”, który jest częścią okładki, namalowała na płótnie Natalka Karwowska. Natalko, dziękuję Ci za Twój wysiłek Autor książki dołożył ogromnych starań, żeby zamieszczone w niej informacje były prawdziwe i rzetelnie przedstawione. Korzystając z książki Czytelnik robi to jednak wyłącznie na własną odpowiedzialność. Tym samym autor nie odpowiada za jakiekolwiek szkody, będące następstwem wykorzystania zawartej w książce wiedzy. Autor książki Dr inż. Damian Karwowski. Absolwent Politechniki Poznańskiej. Uzyskał tytuł zawodowy magistra inżyniera oraz stopień doktora nauk technicznych na Politechnice Poznańskiej, odpowiednio w latach 2003 i 2008. Obecnie pracownik naukowo-dydaktyczny na wyżej wymienionej uczelni. Od roku 2003 zawodowo zajmuje się kompresją obrazu. Autor ponad 50 publikacji naukowych o tematyce kompresji i przetwarzania obrazów. Brał udział w licznych projektach naukowych dotyczących wydajnej reprezentacji multimedialnych danych. Dodatkowo członek wielu zespołów badawczych, które w tematyce kompresji obrazu i dźwięku realizowały prace badawczo-wdrożeniowe dla przemysłu. Jego zainteresowania obejmują kompresję danych, techniki kodowania entropijnego danych oraz realizację kodeków obrazu i dźwięku na procesorach x86 oraz DSP. 4 | S t r o n a © Damian Karwowski – „Zrozumieć Kompresję Obrazu” Spis treści Spis treści 5 “Słowo” wstępu 11 Rozdział 1 15 Obraz i jego reprezentacja przestrzenna 15 1.1.
    [Show full text]
  • Contribuições À Codificação Eficiente De Imagem E Vídeo Utilizando Recorrência De Padrões Multiescala
    CONTRIBUIÇÕES À CODIFICAÇÃO EFICIENTE DE IMAGEM E VÍDEO UTILIZANDO RECORRÊNCIA DE PADRÕES MULTIESCALA Nelson Carreira Francisco Tese de Doutorado apresentada ao Programa de Pós-graduação em Engenharia Elétrica, COPPE, da Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do título de Doutor em Engenharia Elétrica. Orientadores: Eduardo Antônio Barros da Silva Nuno Miguel Morais Rodrigues Rio de Janeiro Novembro de 2012 CONTRIBUIÇÕES À CODIFICAÇÃO EFICIENTE DE IMAGEM E VÍDEO UTILIZANDO RECORRÊNCIA DE PADRÕES MULTIESCALA Nelson Carreira Francisco TESE SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR EM CIÊNCIAS EM ENGENHARIA ELÉTRICA. Examinada por: Prof. Eduardo Antônio Barros da Silva, Ph.D. Prof. Nuno Miguel Morais Rodrigues, Ph.D Prof. Sérgio Lima Netto, Ph.D. Prof. José Gabriel Rodriguez Carneiro Gomes, Ph.D. Prof. Ricardo Lopes de Queiroz, Ph.D Prof. Carla Liberal Pagliari, Ph.D RIO DE JANEIRO, RJ – BRASIL NOVEMBRO DE 2012 Francisco, Nelson Carreira Contribuições à Codificação Eficiente de Imagem e Vídeo Utilizando Recorrência de Padrões Multiescala/Nelson Carreira Francisco. – Rio de Janeiro: UFRJ/COPPE, 2012. XXII, 270 p.: il.; 29, 7cm. Orientadores: Eduardo Antônio Barros da Silva Nuno Miguel Morais Rodrigues Tese (doutorado) – UFRJ/COPPE/Programa de Engenharia Elétrica, 2012. Referências Bibliográficas: p. 257 – 270. 1. Casamento de Padrões Multiescalas. 2. Compressão de imagens estáticas. 3. Compressão de Documentos Compostos. 4. Compressão de Vídeo. 5. Filtragem de Redução de Efeito de Bloco. I. da Silva, Eduardo Antônio Barros et al.
    [Show full text]
  • Abkürzungs-Liste ABKLEX
    Abkürzungs-Liste ABKLEX (Informatik, Telekommunikation) W. Alex 1. Juli 2021 Karlsruhe Copyright W. Alex, Karlsruhe, 1994 – 2018. Die Liste darf unentgeltlich benutzt und weitergegeben werden. The list may be used or copied free of any charge. Original Point of Distribution: http://www.abklex.de/abklex/ An authorized Czechian version is published on: http://www.sochorek.cz/archiv/slovniky/abklex.htm Author’s Email address: [email protected] 2 Kapitel 1 Abkürzungen Gehen wir von 30 Zeichen aus, aus denen Abkürzungen gebildet werden, und nehmen wir eine größte Länge von 5 Zeichen an, so lassen sich 25.137.930 verschiedene Abkür- zungen bilden (Kombinationen mit Wiederholung und Berücksichtigung der Reihenfol- ge). Es folgt eine Auswahl von rund 16000 Abkürzungen aus den Bereichen Informatik und Telekommunikation. Die Abkürzungen werden hier durchgehend groß geschrieben, Akzente, Bindestriche und dergleichen wurden weggelassen. Einige Abkürzungen sind geschützte Namen; diese sind nicht gekennzeichnet. Die Liste beschreibt nur den Ge- brauch, sie legt nicht eine Definition fest. 100GE 100 GBit/s Ethernet 16CIF 16 times Common Intermediate Format (Picture Format) 16QAM 16-state Quadrature Amplitude Modulation 1GFC 1 Gigabaud Fiber Channel (2, 4, 8, 10, 20GFC) 1GL 1st Generation Language (Maschinencode) 1TBS One True Brace Style (C) 1TR6 (ISDN-Protokoll D-Kanal, national) 247 24/7: 24 hours per day, 7 days per week 2D 2-dimensional 2FA Zwei-Faktor-Authentifizierung 2GL 2nd Generation Language (Assembler) 2L8 Too Late (Slang) 2MS Strukturierte
    [Show full text]
  • ITU Contribution to the Implementation of the WSIS Outcomes: 2020 Draft Zero As of 7/12/2020
    ITU Contribution to the Implementation of the WSIS Outcomes: 2020 Draft Zero as of 7/12/2020 Table of Contents Page I. Introduction ......................................................................................................................... 5 II. WSIS Action Lines and the 2030 Agenda for Sustainable Development ................................... 7 (a) High Level Political Forum (HLPF) 2020 ................................................................................... 7 (b) WSIS Action Lines and SDG Matrix .......................................................................................... 9 III. Overview of ITU activities and projects undertaken since 2020 in the context of the implementation of WSIS Outcomes, also related to the 2030 agenda for Sustainable Development …………………………………………………………………………………………………………………………………………10 (a) Lead facilitator (along with UNESCO and UNDP) in organizing the multistakeholder implementation of the Geneva Plan of Action. ................................................................................. 10 (b) Facilitator of the WSIS Action Lines C2, C5, C6 ..................................................................... 15 Action Line C2: Information and Communication Infrastructure ................................................. 15 Action Line C5: Building Confidence and Security in the use of ICTs ............................................ 92 Action Line C6: Enabling Environment ........................................................................................ 113
    [Show full text]
  • Short Distance Intra Prediction of Screen Content in Versatile Video Coding (VVC) Mohsen Abdoli, Felix Henry, Patrice Brault, Pierre Duhamel, Frédéric Dufaux
    Short Distance Intra Prediction of Screen Content in Versatile Video Coding (VVC) Mohsen Abdoli, Felix Henry, Patrice Brault, Pierre Duhamel, Frédéric Dufaux To cite this version: Mohsen Abdoli, Felix Henry, Patrice Brault, Pierre Duhamel, Frédéric Dufaux. Short Distance Intra Prediction of Screen Content in Versatile Video Coding (VVC). IEEE Signal Processing Letters, Insti- tute of Electrical and Electronics Engineers, 2018, 25 (11), pp.1690-1694. 10.1109/LSP.2018.2871872. hal-01876742 HAL Id: hal-01876742 https://hal.archives-ouvertes.fr/hal-01876742 Submitted on 10 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. IEEE SIGNAL PROCESSING LETTERS, VOL. X, NO. X, MONTH 2018 1 Short Distance Intra Prediction of Screen Content in Versatile Video Coding (VVC) Mohsen Abdoli, Felix´ Henry, Patrice Brault, Senior Member, Pierre Duhamel, Fellow, IEEE and Fred´ eric´ Dufaux, Fellow, IEEE Abstract—A novel intra prediction algorithm is proposed to A. New tools and features improve the coding performance of screen content for the JVET consists of an exploration phase and a standardization emerging Versatile Video Coding (VVC) standard. The algorithm, called In-Loop Residual coding with Scalar Quantization (ILR- phase.
    [Show full text]
  • Neural Video Coding Using Multiscale Motion Compensation and Spatiotemporal Context Model
    1 Neural Video Coding using Multiscale Motion Compensation and Spatiotemporal Context Model Haojie Liu1, Ming Lu1, Zhan Ma1, Fan Wang2, Zhihuang Xie2, Xun Cao1, and Yao Wang3 1 Nanjing University, 2 OPPO.Inc, 3 New York University Abstract—Over the past two decades, traditional block-based bit rate consumption at the same reconstruction quality. This video coding has made remarkable progress and spawned a is well formulated as the minimization of Lagrangian cost J series of well-known standards such as MPEG-4, H.264/AVC of rate-distortion optimization (RDO) that is widely adopted and H.265/HEVC. On the other hand, deep neural networks (DNNs) have shown their powerful capacity for visual content in existing video coders, e.g., understanding, feature extraction and compact representation. min J = R + λ · D; (1) Some previous works have explored the learnt video coding algorithms in an end-to-end manner, which show the great with R and D represent the compressed bit rates and recon- potential compared with traditional methods. In this paper, we structed distortion respectively. propose an end-to-end deep neural video coding framework (NVC), which uses variational autoencoders (VAEs) with joint Motivation. Over the past three decades, video compres- spatial and temporal prior aggregation (PA) to exploit the sion technologies have been evolving and adapting con- correlations in intra-frame pixels, inter-frame motions and inter- stantly with coding efficiency improved by several folds, frame compensation residuals, respectively. Novel features of mostly driven under the efforts from the experts in ISO/IEC NVC include: 1) To estimate and compensate motion over a Moving Picture Experts Group (MPEG), ITU-T Video Cod- large range of magnitudes, we propose an unsupervised multi- scale motion compensation network (MS-MCN) together with a ing Experts Group (VCEG) and their joint task forces.
    [Show full text]
  • Volume 5, Number 1, December 2020
    VOL. 5 NO. 1 DECEMBER 2020 JOURNAL OF DIGITAL VIDEO VOLUME 5, NUMBER 1 December 2020 Society of Cable Telecommunications Engineers, Inc. International Society of Broadband Experts™ 140 Philips Road, Exton, PA 19341-1318 © 2020 by the Society of Cable Telecommunications Engineers, Inc. All rights reserved. As complied, arranged, modified, enhanced and edited, all license works and other separately owned materials contained in this publication are subject to foregoing copyright notice. No part of this journal shall be reproduced, stored in a retrieval system or transmitted by any means, electronic, mechanical, photocopying, recording or otherwise, without written permission from the Society of Cable Telecommunications Engineers, Inc. No patent liability is assumed with respect to the use of the information contained herein. While every precaution has been taken in the preparation of the publication, SCTE assumes no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained herein. Table of Contents 4 From the Editor SCTE•ISBE Engineering 5 All Coming Together: A Collaborative Effort To Committee Chair: Achieve Comprehensive End-To-End Ad Monitoring David Fellows, Mourad Kioumgi, VOD Solutions Architect, Sky UK, Sky Group, Comcast SCTE•ISBE Member Chris Hock, Head of Business Strategy and Development, Media & Entertainment, Adobe SCTE•ISBE Digital Video Dan Murray, Director, Product Marketing, Video Solutions, Subcommittee (DVS) Contributor, Telestream Committee Chair: Xavier Denis, Director, IP Ad Insertion Products, Contributor, CommScope Paul Hearty, Ph.D. Technology Advisors 24 Taming Video Spectrum Management For SCTE•ISBE Member Distributed Access Architecture (R-PHY And R-MACPHY) Christopher Poli, P.E., Sr.
    [Show full text]
  • Deep Neural Network Based Video Compression for Next Generation MPEG Video Codec Standardization
    Deep Neural Network based Video Compression for Next Generation MPEG Video Codec Standardization This article introduces a brief status of DNNVC-related activities, current issues in the DNNVC MPEG ad-hoc group, and its standardization efforts. Tae Meon Bae Ofinno • ofinno.com • October 2020 1. Introduction in April 2020. Since winning the ImageNet Challenge Video transmission is expected to dominate (ILSVRC) for image classification in 2012, DNN has 79% of current global internet traffic with an attracted the attention of engineers and researchers annual growth rate of 31% by 2020 [1]. With this [4]. DNN illustrated outstanding performance in trend, the advancement of video compression prediction and classification. Because prediction technology becomes more important to alleviate and classification are also particularly important in radically increasing internet traffic. The Moving video compression, codec experts started paying Picture Experts Group (MPEG) is one of the most attention to DNN as a promising candidate for the important standardization groups working on video next generation video coding approach. compression technologies. This article introduces a brief status of DNNVC-related MPEG is formed by International Organization for activities, current issues in the DNNVC MPEG ad-hoc Standardization/International Electrotechnical group, and its standardization efforts. To describe Commission (ISO/IEC) and has been leading the latest DNNVC approaches, we referenced papers audio and visual compression and transmission of Computer Vision and Pattern Recognition (CVPR) standardizations since the 1980s. The video codecs 2020, and a special section on learning-based image standardized by MPEG such as MPEG-2, MPEG-4, and video coding in IEEE Transactions on Circuits MPEG-4 Advanced Video Coding (AVC, or H.264), and Systems for Video Technology (TCSVT) 2020.
    [Show full text]