Versatile Video Coding (VVC) – the New Standard and Its Capabilities

Total Page:16

File Type:pdf, Size:1020Kb

Versatile Video Coding (VVC) – the New Standard and Its Capabilities 19/11/2020 Versatile Video Coding (VVC) – The New Standard and its Capabilities Gary Sullivan Co-chair, ITU-T/ISO/IEC Joint Video Experts Team (JVET) Microsoft Research based primarily on slides prepared by Benjamin Bross, Fraunhofer Heinrich Hertz Institute, Berlin 1 Versatile Video Coding (VVC) Joint ITU-T (VCEG) and ISO/IEC (MPEG) project, completed July 2020 Rec. ITU-T H.266 & ISO/IEC 23090-3 Coding Efficiency Versatility Rendered ”screen“ content coding ~50% saving over H.265/HEVC Adaptive resolution changes Independent sub-pictures emph. HD / UHD / 8K resolutions Tiles, slices and wavefronts emph. HDR / WCG Layered multistream & scalability emph. 10 bit Bitstream extraction and merging 360° video projection handling Random access & splicing features Gradual decoder refresh 2 2 1 19/11/2020 History of Video Coding Standards Quality VVC HEVC AVC MPEG-2 / PSNR H.266 / MPEG-I H.265 / MPEG-H H.264 / MPEG-4 H.262 (dB) 41 (2020) (2013) (2003) (1995) 39 37 35 BasketballDrive (1920 x 1080, 50Hz) 33 31 bit rate 0 5 10 15 20 25 30 35 40 (Mbit/s) 3 3 VVC – Coding Efficiency Jevons Paradox "The efficiency with which a resource is used tends to increase (rather than decrease) the rate of consumption of that resource." Video is >80% of internet traffic (and rising) 4 4 2 19/11/2020 Video Coding Consumption 2018–2020 82% 12X 7X of all Internet increase in AR/VR increase in video traffic is now video traffic monitoring traffic * Cisco Visual Networking Index: Forecast and Trends, 2018–2022 5 5 VVC – Timeline 2015 Oct. – Exploration Phase • Joint Video Exploration Team (JVET) of ITU-T VCEG and ISO/IEC MPEG established October ‘15 in Geneva • Joint Video Exploration Model (JEM) as software playground to explore new coding tools • 34% bitrate savings for JEM relative to HEVC provided evidence to start a new joint standardization activity with a… 2017 Oct. – Joint Call for Proposals (CfP) • Submit bitstreams and decoded video for proposed video coding technology • Compare submission with HEVC anchor for given sequences, bitrates and coding conditions 2018 Apr. – Development Phase • Subjective evaluation results of submitted CfP responses and HEVC anchor • Initial starting point of standard development 2020 Jul. – Final Standard 6 6 3 19/11/2020 VVC – Call for Proposals Results • JVET received submissions from 32 organizations. • 40% or more bitrate savings in terms of PSNR over HEVC were shown. • All submissions were superior in terms of subjective quality than… • HEVC (in most test cases). • JEM (in a relevant number of test cases). 7 7 VVC – Call for Proposals Subjective testing result example Best performing HEVC anchor JEM (for this sequence) SunsetBeach (UHD, HLG) 10 9 8 7 6 ◇ 10 Mbit/s 5 △ 6 Mbit/s 4 3 ☐ 3 Mbit/s 2 – 1.5 Mbit/s Mean Opinion Score Mean (MOS) Opinion Score 1 0 JVET-J0080: “Results of Subjective Testing of Responses to the Joint CfP on Video Compression th Technology with Capability beyond HEVC”, 10 JVET Meeting,8 San Diego, April 2018 8 4 19/11/2020 VVC – Development Draft 1 and First Test Model (VTM-1.0) • Start off with a clean slate • Add quadtree plus multi-type tree block partitioning (QT+MTT) • Fundamental impact on all coding tools to be added • Most common partitioning scheme among all CfP submissions • VVC Test Model (VTM) as reference implementation of VVC specification draft • Test promising coding tools from CfP on that lean basis (efficiency / complexity aspects) • Agree on adding tested coding tools until sufficient bitrate reduction is achieved 9 9 VVC – Development Draft 10 and VTM-10 - New coding tools for coding efficiency • Quadtree with Multi-type Tree (QT+MTT) • Bi-prediction with CU weights (BCW) • Separate Tree for Luma and Chroma (CST) • Decoder-side motion vector refinement (DMVR) • Dependent Quantization (DQ) • Symmetric motion vector difference (SMVD) • Joint coding of chrominance residuals (JCCR) • Sub-block transform (SBT) • Multiple Transform Set (MTS) • Combined intra/inter prediction (CIIP) • Low frequency non-separable transform (LFNST) • Multi-reference line intra prediction (MRL) • Adaptive Loop Filter (ALF) • Intra block copy (IBC) • Affine Motion Compensation • Intra sub-partitioning (ISP) • Subblock-based Temporal Merging Candidates • Matrix based intra prediction (MIP) • Adaptive motion vector resolution (AMVR) • Cross-component Linear Model (CCLM) • Geometric partition mode (GPM) • Luma mapping with chroma scaling (LMCS) • Bi-directional optical flow (BDOF) • Transform Skip Residual Coding (TSRC) • Merge with MVD (MMVD) • Quantized residual DPCM … • Adaptive color transform (ACT) 10 10 5 19/11/2020 VVC – Coding Efficiency VVC reference software (VTM) vs. HEVC reference software (HM) 40 15 38 40 40 14 Even higher than 35 38 39 13 36 12 34 HEVC vs. AVC 30 28 32 11 10 25 10.0 9 9.7 9.4 9.1 8.8 8 20 8.0 7 Subjective gains seem a 7.4 YUV BD-Rate savings 6 15 Enc. Speed 5 bit higher than this 5.2 4 10 11 Dec. Speed Bit rate reduction [%] rate reduction Bit 3.6 3 5 2.2 2 0.8 1.3 1.8 1.9 1.8 2.0 1.9 1 / increase runtime Complexity 0 1.3 1.5 1.6 0 11 11 VVC – Coding Efficiency VVC reference software (VTM) vs. HEVC reference software (HM) UHD SDR subjective verification testing Oct 2020 Subjective gain • ~43 % for VTM enc reference software • ~49 % for VVenC (>100x faster, 12 subjective opt.) 12 6 19/11/2020 VVC – Versatility Screen content coding (SCC) Application Problem Solution Gaming, screen sharing / • Video codecs typically • Special screen content remote desktop,… optimized for camera coding tools captured video (different • HEVC v4 SCC extensions -> signal characteristics) not in main profile! • Reduces coding efficiency • VVC supports SCC already for screen content in v1 Main profile Arena of Valor (1080p60) 13 13 VVC – Versatility Adaptive resolution change Application Problem Solution Adaptive streaming with • Different resolution • Resample different resolution resolution switching reference pictures cannot reference picture be used in inter-picture • VVC supports reference prediction picture resampling (RPR) • Reduces coding efficiency • RPR as enabler for spatial at switching points scalability in VVC v1 14 14 7 19/11/2020 VVC – Versatility Tile-based streaming Application Problem Solution Tiled streaming of 360-degree • Managing a decoder • More efficient coding of videos sample budget dynamically independent sub-pictures post-encoding (in-picture padding) degree degree ERP Full 360 360 Full • • video video Throwing 24K video (tiles) Flexible block addressing for Preferred at a 4K decoder easier extraction and viewing direction merging of sub-pictures 1 15 15 VVC – Profiles Multi-layer Main 10 4:4:4 (Six, logically related) Multi-layer Main 10 Main 10 4:4:4 Supports layers for scalability, multiview, Supports additional chroma formats and alpha planes, etc. coding tools 1) Main 10 profile: monochrome and 4:2:0, 8 to 10 bits, 1 layer Main 10 Supports 4:2:0 & monochrome, up to 10 bits 2) Main 10 Still Picture profile: Main 10 Still Picture based on the Main 10 profile, 1 picture only Main 10 4:4:4 Still Picture 3) Main 10 4:4:4 profile: based on Main 10 profile, also supports 4:2:2 and 4:4:4 Figure originally by Virginie Drugeon of Panasonic 4) Main 10 4:4:4 Still Picture profile: based on the Main 10 4:4:4 profile, 1 picture only 5) Multilayer Main 10 profile, based on the Main 10 profile, >= 1 layer 6) Multilayer Main 10 4:4:4 profile, based on the Main 10 4:4:4 profile, >= 1 layer 16 16 8 19/11/2020 Versatile Video Coding (VVC) Summary • Coding Efficiency – VVC Test Model 6.1 over HEVC (HM) H.264 / AVC • ~50% lower bit rate for equal subjective quality HD and UHD (40% for PSNR) • ~9x encoder and 1.6x decoder runtime • Versatility – enabled by: H.265 / HEVC • Screen content coding tools (gaming, screen sharing,…) • Reference picture resampling (adaptive streaming) • Spatial scalability using RPR filters, also temporal, view, quality scalability • Independent sub-pictures (360 video, ROI) H.266 / VVC • Boundary handling for 360°video & gradual decoder refresh • Bitstream extraction & merging • Random access & splicing features • Final Standard established July 2020 17 17 Thank you very much! Further Information: [email protected] [email protected] jvet.hhi.fraunhofer.de 18 18 9.
Recommended publications
  • Versatile Video Coding – the Next-Generation Video Standard of the Joint Video Experts Team
    31.07.2018 Versatile Video Coding – The Next-Generation Video Standard of the Joint Video Experts Team Mile High Video Workshop, Denver July 31, 2018 Gary J. Sullivan, JVET co-chair Acknowledgement: Presentation prepared with Jens-Rainer Ohm and Mathias Wien, Institute of Communication Engineering, RWTH Aachen University 1. Introduction Versatile Video Coding – The Next-Generation Video Standard of the Joint Video Experts Team 1 31.07.2018 Video coding standardization organisations • ISO/IEC MPEG = “Moving Picture Experts Group” (ISO/IEC JTC 1/SC 29/WG 11 = International Standardization Organization and International Electrotechnical Commission, Joint Technical Committee 1, Subcommittee 29, Working Group 11) • ITU-T VCEG = “Video Coding Experts Group” (ITU-T SG16/Q6 = International Telecommunications Union – Telecommunications Standardization Sector (ITU-T, a United Nations Organization, formerly CCITT), Study Group 16, Working Party 3, Question 6) • JVT = “Joint Video Team” collaborative team of MPEG & VCEG, responsible for developing AVC (discontinued in 2009) • JCT-VC = “Joint Collaborative Team on Video Coding” team of MPEG & VCEG , responsible for developing HEVC (established January 2010) • JVET = “Joint Video Experts Team” responsible for developing VVC (established Oct. 2015) – previously called “Joint Video Exploration Team” 3 Versatile Video Coding – The Next-Generation Video Standard of the Joint Video Experts Team Gary Sullivan | Jens-Rainer Ohm | Mathias Wien | July 31, 2018 History of international video coding standardization
    [Show full text]
  • 특집 : VVC(Versatile Video Coding) 표준기술
    26 특집 : VVC(Versatile Video Coding) 표준기술 특집 VVC(Versatile Video Coding) 표준기술 Versatile Video Codec 의 Picture 분할 구조 및 부호화 단위 □ 남다윤, 한종기 / 세종대학교 요 약 터를 압축할 수 있는 고성능 영상 압축 기술의 필요 본 고에서는 최근 표준화가 진행되어 2020년에 표준화 완 성이 제기되었다. 고용량 비디오 신호를 압축하는 성을 앞두고 있는 VVC 의 표준 기술들 중에서 화면 정보를 코덱 기술은 그 시대 산업체의 요청에 따라 계속 발 구성하는 픽쳐의 부호화 단위 및 분할 구조에 대해 설명한 전해왔으며, 이에 따라 다양한 표준 코덱 기술들이 다. 본 고에서 설명되는 내용들은 VTM 6.0 을 기준으로 삼는 다. 세부적으로는 한 개의 픽처를 분할하는 구조들인 슬라 발표되었다. 현재 가장 활발히 쓰이고 있는 동영상 이스, 타일, 브릭, 서브픽처에 대해서 설명한 후, 이 구조들 압축 코덱들 중에는 H.264/AVC[1] 와 HEVC[2] 가 의 내부를 구성하는 CTU 및 CU 의 분할 구조에 대해서 설명 있다. H.264/AVC 기술은 2003년에 ITU-T 와 한다. MPEG 이 공동으로 표준화한 코덱 기술이고, 높은 압축률로 선명한 영상으로 복호화 할 수 있다. I. 서 론 H.264/AVC[1] 개발 후 10년 만인 2013년에 H.264 /AVC 보다 2배 이상의 부호화 효율을 지원하는 최근 동영상 촬영 장비, 디스플레이 장비와 같은 H.265/HEVC(High Efficiency Video Coding) 가 하드웨어가 발전되고, 동시에 5 G 통신망을 통해 실 개발되었다[2]. 그 후 2018년부터는 ITU-T VCEG 시간으로 고화질 영상의 전송이 가능해졌다. 따라 (Video Coding Experts Group) 와 ISO/IEC 서 4 K(UHD) 에서 더 나아가 8 K 고초화질 영상, 멀 MPEG(Moving Picture Experts Group) 은 티뷰 영상, VR 컨텐츠와 같은 동영상 서비스에 대 JVET(Joint Video Experts Team) 그룹을 만들어, 한 관심이 높아지고 있다.
    [Show full text]
  • Overview of Technologies for Immersive Visual Experiences: Capture, Processing, Compression, Standardization and Display
    Overview of technologies for immersive visual experiences: capture, processing, compression, standardization and display Marek Domański Poznań University of Technology Chair of Multimedia Telecommunications and Microelectronics Poznań, Poland 1 Immersive visual experiences • Arbitrary direction of viewing System : 3DoF • Arbitrary location of viewer - virtual navigation - free-viewpoint television • Both System : 6DoF Virtual viewer 2 Immersive video content Computer-generated Natural content Multiple camera around a scene also depth cameras, light-field cameras Camera(s) located in a center of a scene 360-degree cameras Mixed e.g.: wearable cameras 3 Video capture Common technical problems • Synchronization of cameras Camera hardware needs to enable synchronization Shutter release error < Exposition interval • Frame rate High frame rate needed – Head Mounted Devices 4 Common task for immersive video capture: Calibration Camera parameter estimation: • Intrinsic – the parameters of individual cameras – remain unchanged by camera motion • Extrinsic – related to camera locations in real word – do change by camera motion (even slight !) Out of scope of standardization • Improved methods developed 5 Depth estimation • By video analysis – from at least 2 video sequences – Computationally heavy – Huge progress recently • By depth cameras – diverse products – Infrared illuminate of the scene – Limited resolution mostly Out of scope of standardization 6 MPEG Test video sequences • Large collection of video sequences with depth information
    [Show full text]
  • Versatile Video Coding (VVC)
    Versatile Video Coding (VVC) on the final stretch Benjamin Bross Fraunhofer Heinrich Hertz Institute, Berlin ITU Workshop on “The future of media” © Geneva, Switzerland, 8 October 2019 Versatile Video Coding (VVC) Joint ITU-T (VCEG) and ISO/IEC (MPEG) project Coding Efficiency Versatility 50% over H.265/HEVC Screen content HD / UHD / 8K resolutions Adaptive resolution change 10bit / HDR Independent sub-pictures 2 VVC – Coding Efficiency History of Video Coding Standards H.261 JPEG H.265 / H.264 / H.262 / (1991) (1990) PSNR MPEG-HEVC MPEG-4 AVC MPEG-2 (dB) (2013) (2003) (1995) 40 38 Bit-rate Reduction: 50% 35 36 34 32 30 28 0 100 200 300 bit rate (kbit/s) 3 VVC – Coding Efficiency History of Video Coding Standards H.261 JPEG H.265 / H.264 / H.262 / (1991) (1990) PSNR MPEG-HEVC MPEG-4 AVC MPEG-2 (dB) (2013) (2003) (1995) 40 38 36 Do we need more efficient video coding? 34 32 30 28 0 100 200 300 bit rate (kbit/s) 4 VVC – Coding Efficiency Jevons Paradox "The efficiency with which a resource is used tends to increase (rather than decrease) the rate of consumption of that resource." 5 VVC – Coding Efficiency Target for the final VVC standard H.262 / H.261 JPEG H.??? / H.265 / H.264 / MPEG-2 (1991) (1990) PSNR MPEG-VVC MPEG-HEVC MPEG-4 AVC (dB) (2013) (2003) (1995) 40 38 36 35 Bit-rate Reduction Target: 50% 34 32 30 28 0 100 200 300 bit rate (kbit/s) 6 VVC – Timeline 2015 Oct. – Exploration Phase • Joint Video Exploration Team (JVET) of ITU-T VCEG and ISO/IEC MPEG established October ‘15 in Geneva • Joint Video Exploration Model (JEM) as software playground to explore new coding tools • 34% bitrate savings for JEM relative to HEVC provided evidence to start a new joint standardization activity with a… 2017 Oct.
    [Show full text]
  • The Whole H.264 Standard
    DRAFT ISO/IEC 14496-10 : 2002 (E) Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG Document: JVT-G050 (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6) Filename: JVT-G050d35.doc 7th Meeting: Pattaya, Thailand, 7-14 March, 2003 Title: Draft ITU-T Recommendation and Final Draft International Standard of Joint Video Specification (ITU-T Rec. H.264 | ISO/IEC 14496-10 AVC) Status: Approved Output Document of JVT Purpose: Text Author(s) or Thomas Wiegand Tel: +49 - 30 - 31002 617 Contact(s): Heinrich Hertz Institute (FhG), Fax: +49 - 30 - 392 72 00 Einsteinufer 37, D-10587 Berlin, Email: [email protected] Germany Gary Sullivan Microsoft Corporation Tel: +1 (425) 703-5308 One Microsoft Way Fax: +1 (425) 706-7329 Redmond, WA 98052 USA Email: [email protected] Source: Editor _____________________________ This document is an output document to the March 2003 Pattaya meeting of the JVT. Title page to be provided by ITU-T | ISO/IEC DRAFT INTERNATIONAL STANDARD DRAFT ISO/IEC 14496-10 : 2002 (E) DRAFT ITU-T Rec. H.264 (2002 E) DRAFT ITU-T RECOMMENDATION TABLE OF CONTENTS Foreword ................................................................................................................................................................................xi 0 Introduction ..................................................................................................................................................................xii 0.1 Prologue................................................................................................................................................................
    [Show full text]
  • Download Recent and Forthcoming Books from This Series
    River Publishers Book Catalogue Series in Signal, Image and Speech Processing River Publishers Series in Signal, Image and Speech Processing Digital Video Coding for Next Generation Multimedia H.264, HEVC, VVC, EVC Video Compression Authors: Shreyanka Subbarayappa, Ramaiah University of Applied Sciences, India K. R. Rao, University of Texas at Arlington, Texas, U.S.A Humberto Ochoa Domínguez, Universidad Autónoma de Ciudad Juárez, México ISBN: 9788770224215 e-ISBN: 9788770224208 Available From: January 2022 Price: € 98.50 Description: Innovations in communication systems and technology are growing tremendously. In multimedia communication systems, technology has transformed from analog television to digital television in the video domain. Mobile phones are known as smart phones as they are used, not only to make voice calls, but also used to send emails, video calls, transfer data, GPS, taking pictures and so on. Due to the widespread user applications, compression of data becomes important to save system resources. Video occupies 75% of data transfer traffic and is expected to cover 80% by the end of 2021. Video is also continuously increasing in file size from standard definition (SD) to ultra-high definition (UHD - 4K, 8K and 12K) video. More data or size in video requires higher transmission bandwidth or more disk space to store which can be slow and expensive. This drives the improvements in compression and hence the demand for a new codec. Several algorithms are used to achieve compression of Image or Video files, these algorithms working together are classified in terms of codecs and we use different codecs for different applications. Advances in video compression technology reduce the utilization of system resources, like processing time, memory use, network bandwidth and battery life.
    [Show full text]
  • High Efficiency Video Coding (HEVC) and Its Extensions
    2/13/2015 High Efficiency Video Coding (HEVC) and its Extensions Gary Sullivan Microsoft, Rapporteur Q6/16, co-chair JCT-VC, JCT-3V, MPEG Video 13 Febuary 2015 Major Video Coding Standards Mid 1990s: Mid 2000s: Mid 2010s: MPEG-2 H.264/MPEG-4 AVC HEVC • These are the joint work of the same two bodies ▫ ISO/IEC Moving Picture Experts Group (MPEG) ▫ ITU-T Video Coding Experts Group (VCEG) ▫ Most recently working on High Efficiency Video Coding (HEVC) as Joint Collaborative Team on Video Coding (JCT-VC) • HEVC version 1 was completed in January 2013 ▫ Standardized by ISO/IEC as ISO/IEC 23008-2 (MPEG-H Part 2) ▫ Standardized by ITU-T as H.265 Gary J. Sullivan 2015-02-13 1 2/13/2015 H.264/MPEG-4 Advanced Video Coding (AVC): The basic idea (2003) • Compress digital video content • Twice as much as you did before • With the same video quality, e.g. as MPEG-2 or H.263 • Or get higher quality with the same number of bits (or a combo) • Example: higher quality may mean higher resolution, e.g. HD • And better adaptation to applications and network environments • Unfortunately, with substantially higher computing requirements and memory requirements for both encoders and decoders Gary J. Sullivan 2015-02-13 High Efficiency Video Coding (HEVC): The basic idea (2013) • Compress digital video content • Twice as much as you did before • With the same video quality, e.g. as H.264 / MPEG-4 AVC • Or get higher quality with the same number of bits (or a combo) • Example: higher quality may mean higher resolution, e.g.
    [Show full text]
  • Kompresja Statycznego Obrazu 138
    Damian Karwowski Zrozumieć Kompresję Obrazu Podstawy Technik Kodowania Stratnego oraz Bezstratnego Obrazów Wydanie Pierwsze, wersja 1.2 Poznań 2019r. ISBN 978-83-953420-0-4 9 788395 342004 © Damian Karwowski – „Zrozumieć Kompresję Obrazu” © Copyright by DAMIAN KARWOWSKI. All rights reserved. Książka jest chroniona prawem autorskim i prawami pokrewnymi. Egzemplarz książki został zdeponowany w Kancelarii Notarialnej. Książka jest dostępna pod adresem: www.zrozumieckompresje.pl ISBN 978-83-953420-0-4 Projekt okładki książki oraz strona internetowa zostały wykonane przez Marka Piskulskiego. Serdecznie dziękuję za profesjonalną pracę Obraz „Miś Panda”, który jest częścią okładki, namalowała na płótnie Natalka Karwowska. Natalko, dziękuję Ci za Twój wysiłek Autor książki dołożył ogromnych starań, żeby zamieszczone w niej informacje były prawdziwe i rzetelnie przedstawione. Korzystając z książki Czytelnik robi to jednak wyłącznie na własną odpowiedzialność. Tym samym autor nie odpowiada za jakiekolwiek szkody, będące następstwem wykorzystania zawartej w książce wiedzy. Autor książki Dr inż. Damian Karwowski. Absolwent Politechniki Poznańskiej. Uzyskał tytuł zawodowy magistra inżyniera oraz stopień doktora nauk technicznych na Politechnice Poznańskiej, odpowiednio w latach 2003 i 2008. Obecnie pracownik naukowo-dydaktyczny na wyżej wymienionej uczelni. Od roku 2003 zawodowo zajmuje się kompresją obrazu. Autor ponad 50 publikacji naukowych o tematyce kompresji i przetwarzania obrazów. Brał udział w licznych projektach naukowych dotyczących wydajnej reprezentacji multimedialnych danych. Dodatkowo członek wielu zespołów badawczych, które w tematyce kompresji obrazu i dźwięku realizowały prace badawczo-wdrożeniowe dla przemysłu. Jego zainteresowania obejmują kompresję danych, techniki kodowania entropijnego danych oraz realizację kodeków obrazu i dźwięku na procesorach x86 oraz DSP. 4 | S t r o n a © Damian Karwowski – „Zrozumieć Kompresję Obrazu” Spis treści Spis treści 5 “Słowo” wstępu 11 Rozdział 1 15 Obraz i jego reprezentacja przestrzenna 15 1.1.
    [Show full text]
  • Contribuições À Codificação Eficiente De Imagem E Vídeo Utilizando Recorrência De Padrões Multiescala
    CONTRIBUIÇÕES À CODIFICAÇÃO EFICIENTE DE IMAGEM E VÍDEO UTILIZANDO RECORRÊNCIA DE PADRÕES MULTIESCALA Nelson Carreira Francisco Tese de Doutorado apresentada ao Programa de Pós-graduação em Engenharia Elétrica, COPPE, da Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do título de Doutor em Engenharia Elétrica. Orientadores: Eduardo Antônio Barros da Silva Nuno Miguel Morais Rodrigues Rio de Janeiro Novembro de 2012 CONTRIBUIÇÕES À CODIFICAÇÃO EFICIENTE DE IMAGEM E VÍDEO UTILIZANDO RECORRÊNCIA DE PADRÕES MULTIESCALA Nelson Carreira Francisco TESE SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR EM CIÊNCIAS EM ENGENHARIA ELÉTRICA. Examinada por: Prof. Eduardo Antônio Barros da Silva, Ph.D. Prof. Nuno Miguel Morais Rodrigues, Ph.D Prof. Sérgio Lima Netto, Ph.D. Prof. José Gabriel Rodriguez Carneiro Gomes, Ph.D. Prof. Ricardo Lopes de Queiroz, Ph.D Prof. Carla Liberal Pagliari, Ph.D RIO DE JANEIRO, RJ – BRASIL NOVEMBRO DE 2012 Francisco, Nelson Carreira Contribuições à Codificação Eficiente de Imagem e Vídeo Utilizando Recorrência de Padrões Multiescala/Nelson Carreira Francisco. – Rio de Janeiro: UFRJ/COPPE, 2012. XXII, 270 p.: il.; 29, 7cm. Orientadores: Eduardo Antônio Barros da Silva Nuno Miguel Morais Rodrigues Tese (doutorado) – UFRJ/COPPE/Programa de Engenharia Elétrica, 2012. Referências Bibliográficas: p. 257 – 270. 1. Casamento de Padrões Multiescalas. 2. Compressão de imagens estáticas. 3. Compressão de Documentos Compostos. 4. Compressão de Vídeo. 5. Filtragem de Redução de Efeito de Bloco. I. da Silva, Eduardo Antônio Barros et al.
    [Show full text]
  • The Arrival of the High Efficiency Video Coding Standard (HEVC)
    3/21/2013 H.264/MPEG-4 Advanced Video The Arrival of the High Efficiency Coding (AVC): The basic idea (2003) Video Coding Standard (HEVC) • Compress digital video content • Twice as much as you did before (Rec. ITU-T H.265 | ISO/IEC 23008-2 | MPEG-H Part 2) • With the same video quality, e.g. as MPEG-2 or H.263 • Or get higher quality with the same number of bits (or a combo) • Example: higher quality may mean higher resolution, e.g. HD Gary J. Sullivan • And better adaptation to applications and network environments Co-Chair JCT-VC, Co-Chair JCT-3V, Chair VCEG, Co-Chair MPEG Video, • Unfortunately, with substantially higher computing requirements Video & Image Technology Architect, Microsoft <[email protected]> and memory requirements for both encoders and decoders 20 March 2013 Presentation for Data Compression Conference (DCC 2013) HEVC presentation for DCC 2013 Gary J. Sullivan 2013-03-20 High Efficiency Video Coding Chronology of International Video Coding Standards (HEVC): The basic idea (2013) MPEG-1 • Compress digital video content MPEG-4 Visual (1993) (1998-2001+) • Twice as much as you did before ISO/IEC • With the same video quality, e.g. as AVC H.262 / MPEG-2 H.264 / MPEG-4 • Or get higher quality with the same number of bits (or a combo) (1994/95- AVC T - 1998+) (2003-2009+) • Example: higher quality may mean higher resolution, e.g. Ultra-HD H.261 (1990+) • And better adaptation to applications and network environments ITU H.263 H.120 (1995-2000+) • Unfortunately, with substantially higher computing requirements (1984- and memory requirements for both encoders and decoders 1988) ▫ But this time the decoder is not so tough (~1.5x) ▫ And the memory increase is not so much 1990 1992 1994 1996 1998 2000 2002 2004 ▫ And the parallelism opportunities are better (throughout) HEVC presentation for DCC 2013 Gary J.
    [Show full text]
  • Abkürzungs-Liste ABKLEX
    Abkürzungs-Liste ABKLEX (Informatik, Telekommunikation) W. Alex 1. Juli 2021 Karlsruhe Copyright W. Alex, Karlsruhe, 1994 – 2018. Die Liste darf unentgeltlich benutzt und weitergegeben werden. The list may be used or copied free of any charge. Original Point of Distribution: http://www.abklex.de/abklex/ An authorized Czechian version is published on: http://www.sochorek.cz/archiv/slovniky/abklex.htm Author’s Email address: [email protected] 2 Kapitel 1 Abkürzungen Gehen wir von 30 Zeichen aus, aus denen Abkürzungen gebildet werden, und nehmen wir eine größte Länge von 5 Zeichen an, so lassen sich 25.137.930 verschiedene Abkür- zungen bilden (Kombinationen mit Wiederholung und Berücksichtigung der Reihenfol- ge). Es folgt eine Auswahl von rund 16000 Abkürzungen aus den Bereichen Informatik und Telekommunikation. Die Abkürzungen werden hier durchgehend groß geschrieben, Akzente, Bindestriche und dergleichen wurden weggelassen. Einige Abkürzungen sind geschützte Namen; diese sind nicht gekennzeichnet. Die Liste beschreibt nur den Ge- brauch, sie legt nicht eine Definition fest. 100GE 100 GBit/s Ethernet 16CIF 16 times Common Intermediate Format (Picture Format) 16QAM 16-state Quadrature Amplitude Modulation 1GFC 1 Gigabaud Fiber Channel (2, 4, 8, 10, 20GFC) 1GL 1st Generation Language (Maschinencode) 1TBS One True Brace Style (C) 1TR6 (ISDN-Protokoll D-Kanal, national) 247 24/7: 24 hours per day, 7 days per week 2D 2-dimensional 2FA Zwei-Faktor-Authentifizierung 2GL 2nd Generation Language (Assembler) 2L8 Too Late (Slang) 2MS Strukturierte
    [Show full text]
  • ITU Contribution to the Implementation of the WSIS Outcomes: 2020 Draft Zero As of 7/12/2020
    ITU Contribution to the Implementation of the WSIS Outcomes: 2020 Draft Zero as of 7/12/2020 Table of Contents Page I. Introduction ......................................................................................................................... 5 II. WSIS Action Lines and the 2030 Agenda for Sustainable Development ................................... 7 (a) High Level Political Forum (HLPF) 2020 ................................................................................... 7 (b) WSIS Action Lines and SDG Matrix .......................................................................................... 9 III. Overview of ITU activities and projects undertaken since 2020 in the context of the implementation of WSIS Outcomes, also related to the 2030 agenda for Sustainable Development …………………………………………………………………………………………………………………………………………10 (a) Lead facilitator (along with UNESCO and UNDP) in organizing the multistakeholder implementation of the Geneva Plan of Action. ................................................................................. 10 (b) Facilitator of the WSIS Action Lines C2, C5, C6 ..................................................................... 15 Action Line C2: Information and Communication Infrastructure ................................................. 15 Action Line C5: Building Confidence and Security in the use of ICTs ............................................ 92 Action Line C6: Enabling Environment ........................................................................................ 113
    [Show full text]