Healthy Infants Harbor Intestinal Bacteria That Protect Against Food Allergy

Total Page:16

File Type:pdf, Size:1020Kb

Healthy Infants Harbor Intestinal Bacteria That Protect Against Food Allergy LETTERS https://doi.org/10.1038/s41591-018-0324-z Healthy infants harbor intestinal bacteria that protect against food allergy Taylor Feehley1,9, Catherine H. Plunkett1,9, Riyue Bao 2,3,9, Sung Min Choi Hong1, Elliot Culleen1, Pedro Belda-Ferre 1, Evelyn Campbell1, Rosita Aitoro4, Rita Nocerino4, Lorella Paparo4, Jorge Andrade 2,3, Dionysios A. Antonopoulos5,6, Roberto Berni Canani4,7,8 and Cathryn R. Nagler 1* There has been a striking generational increase in life-threat- formula to manage ongoing allergic symptoms, whereas the healthy ening food allergies in Westernized societies1,2. One hypoth- donors received a standard cow’s milk-based formula5. Initial trans- esis to explain this rising prevalence is that twenty-first fer recipients were used as living repositories for subsequent experi- century lifestyle practices, including misuse of antibiotics, ments (see Online Methods). dietary changes, and higher rates of Caesarean birth and for- Groups of germ-free mice and mice colonized with either the mula feeding have altered intestinal bacterial communities; healthy or CMA infant microbiota were sensitized with BLG and early-life alterations may be particularly detrimental3,4. the mucosal adjuvant cholera toxin. Consistent with previous To better understand how commensal bacteria regulate food reports7,11, germ-free mice, devoid of any bacterial colonization, allergy in humans, we colonized germ-free mice with feces were highly susceptible to anaphylactic responses to food, as evi- from healthy or cow’s milk allergic (CMA) infants5. We found denced by a drop in core body temperature (Fig. 1a) and production that germ-free mice colonized with bacteria from healthy, of BLG-specific IgE and IgG1 (Fig. 1b,c). We also measured a sub- but not CMA, infants were protected against anaphylactic stantial reduction in core body temperature in mice colonized with responses to a cow’s milk allergen. Differences in bacterial fecal samples from each of the four CMA donors in response to BLG composition separated the healthy and CMA populations in challenge (Fig. 1a). Sensitized CMA-colonized mice produced sig- both the human donors and the colonized mice. Healthy and nificantly higher serum concentrations of BLG-specific IgE (Fig. 1b), CMA colonized mice also exhibited unique transcriptome sig- IgG1 (Fig. 1c) and mouse mast cell protease-1 (mMCPT-1) (Fig. 1d) natures in the ileal epithelium. Correlation of ileal bacteria compared with healthy-colonized mice. Notably, all of the mice that with genes upregulated in the ileum of healthy or CMA colo- received the four healthy infant microbiotas were protected from an nized mice identified a clostridial species, Anaerostipes caccae, anaphylactic response to BLG challenge; their core body tempera- that protected against an allergic response to food. Our find- ture post-challenge was significantly different from that measured ings demonstrate that intestinal bacteria are critical for regu- in germ-free or CMA-colonized mice (Fig. 1a). Histological analysis lating allergic responses to dietary antigens and suggest that did not reveal any evidence of pathology or inflammation in ileal or interventions that modulate bacterial communities may be colonic tissue samples taken post-challenge (Extended Data Fig. 1) therapeutically relevant for food allergy. or after long-term colonization (Extended Data Fig. 2). Microbial Work from our laboratory and others has demonstrated that analysis revealed that community diversity and evenness were simi- the fecal microbial communities of infants with CMA are mark- lar between healthy- and CMA-colonized mouse groups (Extended edly different from those of their healthy counterparts5,6. Based on Data Fig. 3). To examine whether the cow’s-milk-containing formula these results, as well as evidence that members of the microbiota contributed to microbiota-independent protection against anaphy- can be allergy protective7, we used a gnotobiotic mouse model laxis in the healthy-colonized mice, we performed additional fecal to investigate whether commensal bacteria have a causal role in transfers from breast-fed healthy and CMA donors (Supplementary protection against an allergic response to the cow’s milk allergen Table 2). Recipient mice received only plant-based mouse chow. β -lactoglobulin (BLG). Germ-free mice were colonized with human Mice colonized with feces from a breast-fed healthy donor were pro- feces from four healthy and four immunoglobulin E (IgE)-mediated tected from an anaphylactic response to BLG sensitization and chal- CMA infant donors who were matched for age, gender, and mode lenge. However, mice colonized with feces from a breast-fed CMA of birth8,9 (Supplementary Table 1). It has previously been reported donor exhibited a significantly greater drop in core body tempera- that diet is important for the stable colonization of germ-free mice ture compared with healthy-colonized mice (Extended Data Fig. 4a) with human feces10. To support the growth of human bacteria in and higher levels of BLG-specific IgE (Extended Data Fig. 4b). the murine hosts, mice received feces from formula-fed healthy or We also compared sensitization to BLG in germ-free mice fed water CMA infants and were fed the same formulas consumed by their or Enfamil. Both groups of mice responded robustly to sensitiza- human infant donors in addition to plant-based mouse chow. tion with BLG (Extended Data Fig. 5). There was no significant The CMA infant donors received an extensively hydrolyzed casein difference in their drop in core body temperature post-challenge 1Department of Pathology and Committee on Immunology, The University of Chicago, Chicago, IL, USA. 2Center for Research Informatics, The University of Chicago, Chicago, IL, USA. 3Department of Pediatrics, The University of Chicago, Chicago, IL, USA. 4Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy. 5Department of Medicine, The University of Chicago, Chicago, IL, USA. 6Biosciences Division, Argonne National Laboratory, Argonne, IL, USA. 7European Laboratory for the Investigation of Food-Induced Diseases, University of Naples Federico II, Naples, Italy. 8CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy. 9These authors contributed equally: Taylor Feehley, Catherine H. Plunkett, Riyue Bao. *e-mail: [email protected] 448 NatURE MEDICINE | VOL 25 | MARCH 2019 | 448–453 | www.nature.com/naturemedicine NATURE MEDICINE LETTERS abGerm-free P = 0.099 cd 1 Healthy 8,000 4,000 * 3,000 ** *** ) CMA ) 2,000 –1 –1 4,000 2,000 ) 1,000 g ml –1 μ 0 ( 2,000 500 500 (°C) ** 400 400 T ** 1,500 Δ 300 300 –1 1,000 200 200 mMCPT-1 (ng ml 500 BLG-specific IgE (ng ml 100 100 BLG-specific IgG1 –2 0 0 0 0510 15 20 25 30 35 40 45 50 55 60 65 70 CMA CMA CMA Time (min) Healthy Healthy Healthy Germ-free Germ-free Germ-free Fig. 1 | Transfer of healthy, but not CMA, infants’ microbiota protects against an allergic response to food. a, Change in core body temperature at indicated time points following first challenge with BLG in germ-free mice and in mice colonized with feces from each of eight donors (four healthy, four CMA; see Supplementary Table 1) that had been sensitized with BLG plus cholera toxin; n = 42 CMA, 31 healthy and 24 germ-free mice, with 4–12 mice for each of the eight donors, collected from two independent experiments. b–d, Serum BLG-specific IgE (b), BLG-specific IgG1 (c), and mMCPT-1 (d) from mice in a. For a, circles represent mean, and error bars represent s.e.m. For b–d, circles represent individual mice, and bars represent mean + s.e.m. Linear mixed-effect models were used to compare groups in a–d with the BH-FDR method for multiple testing correction. *P < 0.05, **P < 0.01, ***P < 0.001. a Healthy CMA b e Healthy CMA ) Protective 2,500 50 OTU abundance score per sample –1 Healthy CMA 40 OTUs 2,000 30 Unclassified_Lachnospiraceae 20 10 1,500 Unclassified_Erysipelotrichaceae 0 Unclassified_Enterobacteriaceae Non-protective 40 1,000 Streptococcus Other_Enterobacteriaceae 30 OTUs 20 500 Salmonella 10 Enterococcus 0 BLG-specific IgE (ng ml 0 Unclassified_Barnesiellaceae 4 321 8765 0 1234 Ruminococcus No. protective OTUs/ Unclassified_ruminococcaaceae DmDmDmDmDmDmDmDm Coprobacillus 1111294|Enterobacteriaceae no. non-protective OTUs 360015|Lachnospiraceae Other_Clostridiaceae New147|Clostridiaceae Unclassified_Clostridiales 628226|Clostridiaceae c 349024|Streptococcaceae ) Healthy CMA Other_Clostridiales 712677|Clostridiales_unclassified –1 500 780650|Clostridiaceae Blautia 843459|Clostridiaceae Parabacteroides 262095|Erysipelotrichaceae g ml 400 New166|Lachnospiraceae µ 579851|Erysipelotrichaceae ( 551822|Clostridiaceae Protective OTUs –4 –2 024 298247|Lachnospiraceae 300 345540|Enterobacteriaceae ( log [LDA score] 582691|Clostridiaceae n 10 259772|Lachnospiraceae = 34) 200 325419|Clostridiaceae 797229|Enterobacteriaceae 557627|Clostridiaceae 828483|Clostridiaceae 100 f 299267|Enterobacteriaceae 4448331|Enterobacteriaceae 3376513|Lachnospiraceae 0 h 813217|Enterobacteriaceae BLG-specific IgG1 01234 Healthy New56927|Lachnospiraceae g c 335701|Lachnospiraceae e d CMA 191999|Lachnospiraceae No. protective OTUs/ f b 183865|Lachnospiraceae a 231787|Enterobacteriaceae no. non-protective OTUs i 342397|Lachnospiraceae 581782|Enterobacteriaceae 304641|Enterobacteriaceae 4389289|Enterobacteriaceae d Healthy CMA 541119|Enterobacteriaceae 195258|Bacteroidaceae 800 a: Coriobacteriaceae 315846|Barnesiellaceae 551902|Ruminococcaceae ) b: Coriobacteriales
Recommended publications
  • WO 2018/064165 A2 (.Pdf)
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/064165 A2 05 April 2018 (05.04.2018) W !P O PCT (51) International Patent Classification: Published: A61K 35/74 (20 15.0 1) C12N 1/21 (2006 .01) — without international search report and to be republished (21) International Application Number: upon receipt of that report (Rule 48.2(g)) PCT/US2017/053717 — with sequence listing part of description (Rule 5.2(a)) (22) International Filing Date: 27 September 2017 (27.09.2017) (25) Filing Language: English (26) Publication Langi English (30) Priority Data: 62/400,372 27 September 2016 (27.09.2016) US 62/508,885 19 May 2017 (19.05.2017) US 62/557,566 12 September 2017 (12.09.2017) US (71) Applicant: BOARD OF REGENTS, THE UNIVERSI¬ TY OF TEXAS SYSTEM [US/US]; 210 West 7th St., Austin, TX 78701 (US). (72) Inventors: WARGO, Jennifer; 1814 Bissonnet St., Hous ton, TX 77005 (US). GOPALAKRISHNAN, Vanch- eswaran; 7900 Cambridge, Apt. 10-lb, Houston, TX 77054 (US). (74) Agent: BYRD, Marshall, P.; Parker Highlander PLLC, 1120 S. Capital Of Texas Highway, Bldg. One, Suite 200, Austin, TX 78746 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Targeting the Gut Microbiome in Allogeneic Hematopoietic Stem Cell Transplantation
    medRxiv preprint doi: https://doi.org/10.1101/2020.04.08.20058198; this version posted June 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Targeting the gut microbiome in allogeneic hematopoietic stem cell transplantation Marcel A. de Leeuw & Manuel X. Duval, GeneCreek List of Figures Contents 1 GM composition evolution across allo-HSCT . 2 I 2 Baseline GM composition and conditioning level . 3 NTRODUCTION 1 3 Top 10 variable importances estimated by the ran- dom survival forest models .............. 3 MATERIALS & METHODS 2 4 Biological safety level and aGvHD at onset . 3 DATA ANALYSIS .................. 2 5 Relative importance of regressors explaining the RESULTS 2 aGvHD status ...................... 3 OVERALL GM COMPOSITION EVOLUTION ACROSS 6 Co-exclusion by and co-occurrence with QPS species 4 ALLO-HSCT ................. 2 List of Tables CORRELATION BETWEEN CONDITIONING AND THE GM 2 BASELINE GM COMPOSITION AND SURVIVAL . 3 1 Prospective data sets used in the study . 1 AGVHD CASES, CONTROLS AND GM COMPOSITION 3 IMMUNO-MODULATING METABOLITES . 4 IN SILICO SCREENING OF THE ALLO-HSCT GM . 4 DISCUSSION 4 CONCLUSIONS 6 SUMMARY 6 DECLARATIONS 6 BIBLIOGRAPHY 7 NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. Revised manuscript medRxiv preprint doi: https://doi.org/10.1101/2020.04.08.20058198; this version posted June 9, 2020.
    [Show full text]
  • Butyrate Production in Phylogenetically Diverse Firmicutes
    mbt_244 Microbial Biotechnology (2011) doi:10.1111/j.1751-7915.2010.00244.x 1 Butyrate production in phylogenetically diverse 2 Firmicutes isolated from the chicken caecummbt_244 1..11 3 4 Venessa Eeckhaut,1* Filip Van Immerseel,1 present study indicates that butyrate producers 50 5 Siska Croubels,2 Siegrid De Baere,2 related to cluster XVI may play a more important role 51 6 Freddy Haesebrouck,1 Richard Ducatelle,1 in the chicken gut than in the human gut. 52 3 4 7 Petra Louis and Peter Vandamme 53 8 1Department of Pathology, Bacteriology and Avian Introduction 54 9 Diseases, Research Group Veterinary Public Health and 10 Zoonoses, and 2Department of Pharmacology, In the chicken gastrointestinal tract, the main sites of 55 11 Toxicology, Biochemistry and Organ Physiology, Faculty bacterial activity are the crop and the caeca and, to a 56 12 of Veterinary Medicine, Ghent University, Salisburylaan lesser extent, the small intestine. Lactobacillus spp. domi- 57 131 1 133, B-9820 Merelbeke, Belgium. nate the crop (Barnes et al., 1972; Watkins and Kratzer, 58 14 3Microbial Ecology Group, Rowett Institute of Nutrition 1983) and small intestinal tract (Lu et al., 2003), while the 59 15 and Health, University of Aberdeen, Greenburn Road, caecal microbiota are dominated by species of the 60 16 Bucksburn, Aberdeen AB219SB, UK. Clostridiales order, followed by Lactobacillales and Bacte- 61 17 4Laboratory of Microbiology, Faculty of Sciences, Ghent roidales (Dumonceaux et al., 2006). A molecular, culture- 62 18 University, K. L. Ledeganckstraat 35, B-9000 Ghent, independent study from Zhu and colleagues (2002) on the 63 19 Belgium.
    [Show full text]
  • Functional Genomic Examinations of Interactions Between Common Members of the Umh an Gut Microbiota Michael Mahowald Washington University in St
    Washington University in St. Louis Washington University Open Scholarship All Theses and Dissertations (ETDs) January 2010 Functional Genomic Examinations Of Interactions Between Common Members Of The umH an Gut Microbiota Michael Mahowald Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/etd Recommended Citation Mahowald, Michael, "Functional Genomic Examinations Of Interactions Between Common Members Of The umH an Gut Microbiota" (2010). All Theses and Dissertations (ETDs). 222. https://openscholarship.wustl.edu/etd/222 This Dissertation is brought to you for free and open access by Washington University Open Scholarship. It has been accepted for inclusion in All Theses and Dissertations (ETDs) by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY Division of Biology and Biomedical Sciences Molecular Microbiology and Microbial Pathogenesis Dissertation Examination Committee: Jeffrey I. Gordon, Chair Douglas E. Berg Michael G. Caparon Daniel E. Goldberg Elaine R. Mardis Clay F. Semenkovich FUNCTIONAL GENOMIC EXAMINATIONS OF INTERACTIONS BETWEEN COMMON MEMBERS OF THE HUMAN GUT MICROBIOTA by Michael Anthony Mahowald A dissertation presented to the Graduate School of Arts and Sciences of Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy May 2010 Saint Louis, Missouri Copyright by Michael Anthony Mahowald 2010 Dedication To my parents, Anthony P. and Mary Briody Mahowald ii ABSTRACT OF THE DISSERTATION Functional genomic examinations of interactions between common members of the human gut microbiota by Michael Anthony Mahowald Doctor of Philosophy in Biology and Biomedical Sciences (Molecular Microbiology and Microbial Pathogenesis) Washington University in St.
    [Show full text]
  • The Biology and Community Structure of CO2-Reducing
    The Biology and Community Structure of CO2-Reducing Acetogens in the Termite Hindgut Thesis by Elizabeth Ann Ottesen In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2009 (Defended September 25, 2008) i i © 2009 Elizabeth Ottesen All Rights Reserved ii i Acknowledgements Much of the scientist I have become, I owe to the fantastic biology program at Grinnell College, and my mentor Leslie Gregg-Jolly. It was in her molecular biology class that I was introduced to microbiology, and made my first attempt at designing degenerate PCR primers. The year I spent working in her laboratory taught me a lot about science, and about persistence in the face of experimental challenges. At Caltech, I have been surrounded by wonderful mentors and colleagues. The greatest debt of gratitude, of course, goes to my advisor Jared Leadbetter. His guidance has shaped much of how I think about microbes and how they affect the world around us. And through all the ups and downs of these past six years, Jared’s enthusiasm for microbiology—up to and including the occasional microscope session spent exploring a particularly interesting puddle—has always reminded me why I became a scientist in the first place. The Leadbetter Lab has been a fantastic group of people. In the early days, Amy Wu taught me how much about anaerobic culture work and working with termites. These last few years, Eric Matson has been a wonderful mentor, endlessly patient about reading drafts and discussing experiments. Xinning Zhang also read and helped edit much of this work.
    [Show full text]
  • Downloaded from the VFDB Data- Base (Virulence Factors Database) Containing Nucleotide Sample Collection and Metagenomic Sequencing Sequences of 2585 Genes [53]
    Dubinkina et al. Microbiome (2017) 5:141 DOI 10.1186/s40168-017-0359-2 RESEARCH Open Access Links of gut microbiota composition with alcohol dependence syndrome and alcoholic liver disease Veronika B. Dubinkina1,2,3,4, Alexander V. Tyakht2,5*, Vera Y. Odintsova2, Konstantin S. Yarygin1,2, Boris A. Kovarsky2, Alexander V. Pavlenko1,2, Dmitry S. Ischenko1,2, Anna S. Popenko2, Dmitry G. Alexeev1,2, Anastasiya Y. Taraskina6, Regina F. Nasyrova6, Evgeny M. Krupitsky6, Nino V. Shalikiani7, Igor G. Bakulin7, Petr L. Shcherbakov7, Lyubov O. Skorodumova2, Andrei K. Larin2, Elena S. Kostryukova1,2, Rustam A. Abdulkhakov8, Sayar R. Abdulkhakov8,9, Sergey Y. Malanin9, Ruzilya K. Ismagilova9, Tatiana V. Grigoryeva9, Elena N. Ilina2 and Vadim M. Govorun1,2 Abstract Background: Alcohol abuse has deleterious effects on human health by disrupting the functions of many organs and systems. Gut microbiota has been implicated in the pathogenesis of alcohol-related liver diseases, with its composition manifesting expressed dysbiosis in patients suffering from alcoholic dependence. Due to its inherent plasticity, gut microbiota is an important target for prevention and treatment of these diseases. Identification of the impact of alcohol abuse with associated psychiatric symptoms on the gut community structure is confounded by the liver dysfunction. In order to differentiate the effects of these two factors, we conducted a comparative “shotgun” metagenomic survey of 99 patients with the alcohol dependence syndrome represented by two cohorts—with and without liver cirrhosis. The taxonomic and functional composition of the gut microbiota was subjected to a multifactor analysis including comparison with the external control group. Results: Alcoholic dependence and liver cirrhosis were associated with profound shifts in gut community structures and metabolic potential across the patients.
    [Show full text]
  • Computer-Guided Design of Optimal Microbial Consortia for Immune
    RESEARCH ARTICLE Computer-guided design of optimal microbial consortia for immune system modulation Richard R Stein1,2,3,4†*, Takeshi Tanoue5,6†, Rose L Szabady7, Shakti K Bhattarai8, Bernat Olle7, Jason M Norman7, Wataru Suda6,9, Kenshiro Oshima9, Masahira Hattori9, Georg K Gerber10, Chris Sander1,4,11, Kenya Honda5,6, Vanni Bucci8,12,13* 1cBio Center, Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, United States; 2Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, United States; 3Department of Systems Biology, Harvard Medical School, Boston, United States; 4Broad Institute of MIT and Harvard, Cambridge, United States; 5RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; 6Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan; 7Vedanta Biosciences, Cambridge, United States; 8Engineering and Applied Sciences PhD Program, University of Massachusetts Dartmouth, North Dartmouth, United States; 9Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan; 10Massachusetts Host- Microbiome Center, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States; 11Department of Cell Biology, Harvard Medical School, Boston, United States; 12Department of Biology, University of Massachusetts Dartmouth, North Dartmouth, United States; 13Center for Microbial Informatics and Statistics, University of Massachusetts Dartmouth, North Dartmouth, United States *For correspondence:
    [Show full text]
  • Appendix 1. New and Emended Taxa Described Since Publication of Volume One, Second Edition of the Systematics
    188 THE REVISED ROAD MAP TO THE MANUAL Appendix 1. New and emended taxa described since publication of Volume One, Second Edition of the Systematics Acrocarpospora corrugata (Williams and Sharples 1976) Tamura et Basonyms and synonyms1 al. 2000a, 1170VP Bacillus thermodenitrificans (ex Klaushofer and Hollaus 1970) Man- Actinocorallia aurantiaca (Lavrova and Preobrazhenskaya 1975) achini et al. 2000, 1336VP Zhang et al. 2001, 381VP Blastomonas ursincola (Yurkov et al. 1997) Hiraishi et al. 2000a, VP 1117VP Actinocorallia glomerata (Itoh et al. 1996) Zhang et al. 2001, 381 Actinocorallia libanotica (Meyer 1981) Zhang et al. 2001, 381VP Cellulophaga uliginosa (ZoBell and Upham 1944) Bowman 2000, VP 1867VP Actinocorallia longicatena (Itoh et al. 1996) Zhang et al. 2001, 381 Dehalospirillum Scholz-Muramatsu et al. 2002, 1915VP (Effective Actinomadura viridilutea (Agre and Guzeva 1975) Zhang et al. VP publication: Scholz-Muramatsu et al., 1995) 2001, 381 Dehalospirillum multivorans Scholz-Muramatsu et al. 2002, 1915VP Agreia pratensis (Behrendt et al. 2002) Schumann et al. 2003, VP (Effective publication: Scholz-Muramatsu et al., 1995) 2043 Desulfotomaculum auripigmentum Newman et al. 2000, 1415VP (Ef- Alcanivorax jadensis (Bruns and Berthe-Corti 1999) Ferna´ndez- VP fective publication: Newman et al., 1997) Martı´nez et al. 2003, 337 Enterococcus porcinusVP Teixeira et al. 2001 pro synon. Enterococcus Alistipes putredinis (Weinberg et al. 1937) Rautio et al. 2003b, VP villorum Vancanneyt et al. 2001b, 1742VP De Graef et al., 2003 1701 (Effective publication: Rautio et al., 2003a) Hongia koreensis Lee et al. 2000d, 197VP Anaerococcus hydrogenalis (Ezaki et al. 1990) Ezaki et al. 2001, VP Mycobacterium bovis subsp. caprae (Aranaz et al.
    [Show full text]
  • Healthy Infants Harbor Intestinal Bacteria That Protect Against Food Allergy
    LETTERS https://doi.org/10.1038/s41591-018-0324-z Healthy infants harbor intestinal bacteria that protect against food allergy Taylor Feehley1,9, Catherine H. Plunkett1,9, Riyue Bao 2,3,9, Sung Min Choi Hong1, Elliot Culleen1, Pedro Belda-Ferre 1, Evelyn Campbell1, Rosita Aitoro4, Rita Nocerino4, Lorella Paparo4, Jorge Andrade 2,3, Dionysios A. Antonopoulos5,6, Roberto Berni Canani4,7,8 and Cathryn R. Nagler 1* There has been a striking generational increase in life-threat- formula to manage ongoing allergic symptoms, whereas the healthy ening food allergies in Westernized societies1,2. One hypoth- donors received a standard cow’s milk-based formula5. Initial trans- esis to explain this rising prevalence is that twenty-first fer recipients were used as living repositories for subsequent experi- century lifestyle practices, including misuse of antibiotics, ments (see Online Methods). dietary changes, and higher rates of Caesarean birth and for- Groups of germ-free mice and mice colonized with either the mula feeding have altered intestinal bacterial communities; healthy or CMA infant microbiota were sensitized with BLG and early-life alterations may be particularly detrimental3,4. the mucosal adjuvant cholera toxin. Consistent with previous To better understand how commensal bacteria regulate food reports7,11, germ-free mice, devoid of any bacterial colonization, allergy in humans, we colonized germ-free mice with feces were highly susceptible to anaphylactic responses to food, as evi- from healthy or cow’s milk allergic (CMA) infants5. We found denced by a drop in core body temperature (Fig. 1a) and production that germ-free mice colonized with bacteria from healthy, of BLG-specific IgE and IgG1 (Fig.
    [Show full text]
  • Microbial Shifts and Signatures of Long-Term Remission in Ulcerative Colitis After Faecal Microbiota Transplantation
    The ISME Journal (2017) 11, 1877–1889 © 2017 International Society for Microbial Ecology All rights reserved 1751-7362/17 www.nature.com/ismej ORIGINAL ARTICLE Microbial shifts and signatures of long-term remission in ulcerative colitis after faecal microbiota transplantation Susana Fuentes1,5, Noortje G Rossen2,5, Mirjam J van der Spek2, Jorn HA Hartman1, Laura Huuskonen3, Katri Korpela3, Jarkko Salojärvi4, Steven Aalvink1, Willem M de Vos1,3, Geert R D’Haens2, Erwin G Zoetendal1,6 and Cyriel Y Ponsioen2,6 1Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands; 2Department of Gastroenterology and Hepatology, Academic Medical Center Amsterdam, Amsterdam, The Netherlands; 3RPU Immunobiology, Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland and 4Department of Biosciences, University of Helsinki, Helsinki, Finland Faecal microbiota transplantation (FMT) may contribute towards disease remission in ulcerative colitis (UC), but it is unknown which factors determine long-term effect of treatment. Here, we aimed to identify bacterial signatures associated with sustained remission. To this end, samples from healthy donors and UC patients—grouped into responders and non-responders at a primary end point (week 12) and further stratified by sustained clinical remission and relapse assessed at ⩾ 1-year follow-up were analysed, comparing the efficacy of FMT from either a healthy donor or autologous faeces. Microbiota composition was determined with a 16S rRNA gene-based phylogenetic microarray on faecal and mucosal samples, and functional profiles were predicted using PICRUSt with quantitative PCR verification of the butyrate production capacity; short-chain fatty acids were measured in faecal samples. At baseline, UC patients showed reduced amounts of bacterial groups from the Clostridium cluster XIVa, and significantly higher levels of Bacteroidetes as compared with donors.
    [Show full text]
  • A Systematic Review of the Effect of Bariatric Surgery
    178:1 Y Guo, Z-P Hunag, C-Q Liu Microbiota and bariatric surgery 178:1 43–56 Clinical Study and others Modulation of the gut microbiome: a systematic review of the effect of bariatric surgery Yan Guo1,*, Zhi-Ping Huang2,3,*, Chao-Qian Liu3,*, Lin Qi4, Yuan Sheng3 and Da-Jin Zou1 Correspondence 1 2 Department of Endocrinology, Changhai Hospital, Shanghai, China, Third Department of Hepatic Surgery, should be addressed 3 Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China, Department of General Surgery, Shangai to Y Sheng or D-J Zou 4 Changhai Hospital, Shanghai, China, and Department of Orthopaedics, the Second Xiangya Hospital, Central Email South University, Changsha, Hunan, China shengyuan.smmu@aliyun. *(Y Guo, Z-P Hunag and C-Q Liu contributed equally to this work) com or zoudajin@hotmail. com Abstract Objective: Bariatric surgery is recommended for patients with obesity and type 2 diabetes. Recent evidence suggested a strong connection between gut microbiota and bariatric surgery. Design: Systematic review. Methods: The PubMed and OVID EMBASE were used, and articles concerning bariatric surgery and gut microbiota were screened. The main outcome measures were alterations of gut microbiota after bariatric surgery and correlations between gut microbiota and host metabolism. We applied the system of evidence level to evaluate the alteration of microbiota. Modulation of short-chain fatty acid and gut genetic content was also investigated. Results: Totally 12 animal experiments and 9 clinical studies were included. Based on strong evidence, 4 phyla (Bacteroidetes, Fusobacteria, Verrucomicrobia and Proteobacteria) increased after surgery; within the phylum Firmicutes, Lactobacillales and Enterococcus increased; and within the phylum Proteobacteria, Gammaproteobacteria, European Journal European of Endocrinology Enterobacteriales Enterobacteriaceae and several genera and species increased.
    [Show full text]
  • Cross-Feeding Between Bifidobacterium Infantis and Anaerostipes Caccae On
    1 Cross-feeding between Bifidobacterium infantis and Anaerostipes caccae on 2 lactose and human milk oligosaccharides 3 4 Loo Wee Chia1, Marko Mank2, Bernadet Blijenberg2, Roger S. Bongers2, Steven 5 Aalvink1, Kees van Limpt2, Harm Wopereis1,2, Sebastian Tims2, Bernd Stahl2, Clara 6 Belzer1*#, Jan Knol1,2* 7 * these authors contributed equally 8 1 Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 9 6708 WE Wageningen, the Netherlands. 10 2 Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, the Netherlands. 11 12 Running Head: Microbial cross-feeding in infant gut 13 14 # Address correspondence to [email protected]. 15 16 Conflict of Interest statement: 17 This project is financially supported by Nutricia Research. MM, BB, RB, HW, KvL, ST, 18 BS and JK are employed by Nutricia Research. 1 19 Abstract 20 The establishment of the gut microbiota immediately after birth is a dynamic process 21 that may impact lifelong health. At this important developmental stage in early life, 22 human milk oligosaccharides (HMOS) serve as specific substrates to promote the 23 growth of gut microbes, particularly the group of Actinobacteria (bifidobacteria). Later 24 in life, this shifts to the colonisation of Firmicutes and Bacteroidetes, which generally 25 dominate the human gut throughout adulthood. The well-orchestrated transition is 26 important for health, as an aberrant microbial composition and/or SCFA production 27 are associated with colicky symptoms and atopic diseases in infants. Here, we study 28 the trophic interactions between an HMOS-degrader, Bifidobacterium longum subsp. 29 infantis and the butyrogenic Anaerostipes caccae using carbohydrate substrates that 30 are relevant in this early life period, i.e.
    [Show full text]