Phosphorus-Containing Catalyst and Catalytic Cracking Process Utilizing the Same
Total Page:16
File Type:pdf, Size:1020Kb
Patentamt 0 095 364 JEuropâischesê European Patent Office (fî) Publication number: B1 Office européen des brevets ® EUROPEAN PATENT SPECIFICATION (§) Date of publication of patent spécification: 22.10.86 (§) Int.CI.4: B 01 J 29/08, C 10 G 11/05 (â) Application number: 83302938.2 ® Date offiling: 23.05.83 (54) Phosphorus-containing catalyst and catalytic cracking process utilizing the same. (§) Priority: 24.05.82 US 381388 (73) Proprietor: Exxon Research and Engineering Company P.O.Box 390 180 Park Avenue (§) Date of publication of application: Florham Park New Jersey 07932 (US) 30.11.83 Bulletin 83/48 @ Inventor: Pine, Lloyd Albert . (§) Publication of the grant of the patent: 5858 Berkshire Drive 22.10.86 Bulletin 86/43 Bâton Rouge Louisiana (US) Inventor: Cull, Neville Leverne 6260 Rolling Acres Drive (84) Designated Contracting States: Baker Louisiana (US) BE DE FR GB IT NL (74) Representative: Somers, Harold Arnold et al References cited : ESSO Engineering (Europe) Ltd. Patents & EP-A-0 045 61 8 Licences Apex Tower High Street GB-A-1 524 123 New Maiden Surrey KT3 4DJ (GB) US-A-3 595 611 US-A-3 657154 CÛ US-A-3 781 199 US-A-3 867 279 US-A-4036 739 US-A-4044065 US-A-4 182 923 US-A-4198 319 m US-A-4 356 338 o> o o Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall ou be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been LU paid. (Art. 99(1 ) European patent convention). Courier Press, Leamington Spa, England. Background of the invention 1. Field of the invention The present invention relates to a phosphorus-containing catalyst prepared from a clay starting material and to a hydrocarbon catalytic cracking process utilizing the catalyst. 2. Description of the prior art Catalytic cracking processes in which a hydrocarbonaceous oil is converted to lower boiling hydrocarbon products in the presence of cracking catalysts are well-known. Catalysts comprising a zeolite and a silica-alumina residue made from a calcined clay starting material in which the zeolite is produced in the clay are known. See, for example, U.S. Patent 3,663,165. It is also known to produce low alkali metal content zeolites by cation exchanging, followed by calcination at a temperature of 400 to 1500°F (204.4 to 815.6°C) followed by at least an additional ion exchange step. See, for example, U.S. Patent US-E 28,629 which is a reissue of U.S. Patent 3,402,996. U.S. Patent 3,943,233 discloses a continuous method of ion exchanging microspheres containing zeolites in sodium form (i.e. calcined clay derived catalysts) in which sodium form zeolite-containing microspheres are first slurried in a spent ion exchange solution, which accomplishes preliminary ion exchange (column 3, lines 16-18). The bulk of the solution is drained and the main ion exchange is carried out with fresh ion exchange solution followed by draining and washing the microspheres. U.S. Patent 4,048,284 discloses multistage ion exchanging of sodium on zeolite-containing microspheres. British Patent 1,524,123 discloses the preparation of a clay derived zeolite. The sodium content of the catalyst is reduced to less than about 1 weight percent by either of two exchange processes. In the second process, the product is exchanged twice with ammonium sulfate solution and once with rare earth metal salt solution. U.S. Patent 3,595,611 discloses reducing the sodium content of the zeolite via steps of ammonium exchange, then rare earth exchange, calcination and further ammonium exchange. Example 4 describes applying this ion exchange method to a faujasite prepared from calcined clay. U.S. Patent 3,375,065 discloses cation exchanging a zeolite by a sequence which comprises cation exchange with ammonium ions, followed by heat treatment at a temperature above 350°F (176.7°C), and further cation exchange with ammonium, followed by cation exchange with magnesium, rare earth and mixtures thereof. U.S. Patent 3,676,368 discloses a sequence of ion-exchanging a zeolite with rare earth ions, calcination of the exchanged zeolite, and exchanging the calcined zeolite with ammonium ions. The final exchange may be conducted on the zeolite alone or on the zeolite incorporated in a conventional matrix. U.S. Patent 4,036,739 discloses hydrothermally stable and ammonia stable Y zeolite in which a sodium Y zeolite is ion exchanged to partially exchange sodium ions for ammonium ions, steam calcined and further ion exchanged with ammonium ions to reduce the final sodium oxide content to below 1 weight percent, and calcining the reexchanged product, or according to U.S. Patent 3,781,199, the second calcination may be conducted after the zeolite is admixed with the refractory oxide. US-A-3657154 describes and claims a cracking catalyst composition in the form of attrition-resistant microspheres containing ion-exchanged crystallized faujasite and an amorphous alumina-silica residue of caustic leached kaolin clay which has undergone the kaoline exotherm during calcination, said microspheres analyzing, on a volatile-free basis, at least 90% combined Si02+AI203 in a Si02/AI203 molar ratio within the range of 0.8 to 1.4 to 1. The catalyst composition is made by spray-drying a kaolin-water mixture to form microspheres, calcining the resulting microspheres at 1600 to 2200°F (871.1. to 1204.4°C) to cause dehydration and for the kaolin to undergo the characteristic kaolin exotherm. The resulting calcined silica-alumina microspheres are suspended in aqueous alkali (e.g. NaOH) solution and heated while being agitated until sodium faujasite crystals form. The latter, after recovery, may be ion-exchanged with non-alkali metal cations to reduce their alkali metal cations to reduce their alkali metal content. It has now been found that a catalyst comprising a clay derived zeolite and phosphorus prepared by a specified method has increased activity for cracking hydrocarbonaceous feeds. Summary of the invention In accordance with the invention, there is provided a catalyst comprising a crystalline Y-type aluminosilicate zeolite prepared from a clay starting material, a residue derived from said clay, and an effective amount of phosphorus, said catalyst having been prepared by the steps which comprise: (a) ion exchanging a clay derived alkali metal-containing Y-type crystalline aluminosilicate zeolite and the clay derived residue with a cation of a non-alkali metal-containing zeolite; (b) calcining the resulting ion exchange zeolite and clay derived residue at a temperature in the range of from 500 to 1400°F (260 to 760°C), and (c) contacting the resulting calcined zeolite and clay derived residue with a medium comprising an anion selected from the group consisting of dihydrogen phosphate anion, dihydrogen phosphite anion and mixtures thereof for a time sufficient to composite an effective amount of phosphorus with said calcined zeolite and residue. In accordance with the invention there is also provided a hydrocarbon catalytic cracking process utilizing the above-stated catalyst. Detailed description of the invention The catalyst of the present invention comprises a Y-type crystalline aluminosilicate zeolite derived from a clay starting material and the clay derived residue (e.g. silica-alumina) which remains associated with the zeolite when it crystallizes in the clay starting material. The catalyst comprises an effective amount of phosphorus to enhance the activity of the catalyst relative to the same catalyst without the incorporation of phosphorus by the specified method. Suitable amounts of phosphorus present in the catalyst include from at least 0.1 weight percent, preferably from at least 0.2 weight percent, more preferably from 0.5 to 0.8 weight percent phosphorus, calculated as elemental phosphorus, based on the weight of the zeolite plus clay derived residue. The required amount of phosphorus will in part depend on the zeolite content of the catalyst. Thus, for a catalyst comprising from about 15 to 20 weight percent zeolite, amounts of phosphorus ranging from 0.2 to 0.8 weight percent based on the weight of the zeolite plus clay residue will be desirable. By "Y-type zeolite" is intended herein a crystalline aluminosilicate zeolite having the structure of faujasite and having a silica to alumina mole ratio of at least about 3:1. The catalyst of the present invention is characterized by its method of preparation to incorporate the phosphorus component. The Y-type crystalline alumino-silicate can be prepared by any known method of preparing a zeolite from clay and an additional source of silica to produce the high silica to alumina Y-type zeolite. The additional source of silica may be, for example, an alkali metal silicate salt or added exothermed kaolin or an aqueous silica sol. Known methods of preparation include use of reaction mixtures containing clay and sodium silicate and subsequent treatment with sodium hydroxide to form the zeolite; treatment of mixtures of exothermed kaolin and metakaolin with sodium hydroxide to form the zeolite. Zeolitic catalysts made from a clay starting material are commercially available. See, for example, Chemical Week, July 26, 1978, pages 42-44, in which Engelhard's in situ produced zeolitic catalysts made from a kaolin starting material are described. The commercially available zeolite-containing catalysts made from a clay starting material have usually been subjected to at least one conventional cation exchange step to reduce the alkali metal content generally to slightly below 1 weight percent, calculated as the alkali metal oxide, based on the total catalyst.