RESEARCH Revista Mexicana de F´ısica 66 (4) 516–524 JULY-AUGUST 2020 Diffusion processes in multilayer transportation networks: the flight of the Coronavirus A. Y. Yamamoto-Elizaldea;b, E. Hernandez-Lemus´ b;c, and G. de Anda-Jauregui´ b;d;¤ aSchool of Sciences, National Autonomous University of Mexico (UNAM), Mexico.´ bComputational Genomics Division, National Institute of Genomic Medicine, Mexico.´ cCenter for Complexity Sciences, National Autonomous University of Mexico (UNAM), Mexico.´ dPrograma de Catedras´ CONACYT. National Council on Science and Technology (CONACYT), Mexico.´ ¤e-mail:
[email protected] Received 28 February 2020; accepted 7 April 2020 At the end of December of 2019, a new type of coronavirus, SARS-CoV-2, responsible of the disease now called COVID-19, started spreading in Wuhan, China and later throughout the world. Due to the global emergency state, the official pandemic declaration by the World Health Organization, as well as the need to investigate more about the danger Mexico is in, we worked on analyzing the risk of the COVID-19 importation to Mexico through the Air Transportation Network with a multilayer network approach. Based on the data obtained from the public data bases of OpenFlights, we created a multiplex network in which nodes represented airports, flights represented links, and airlines represented layers. We then simulated the propagation of the coronavirus using an unbiased random walk model with probability p = 1 of infection once the random walker steps in a certain airport. We found the COVID-19 spread behavior the first month is anomalous (subdiffusion) and later behaves as a normal diffusion.