Anthropogenic disturbance impacts stand structure and susceptibility of an iconic tree species to an endemic canker pathogen a,b* a c a a Trudy Paap , Treena I. Burgess , Victor Rolo , Emma Steel , Giles E. St. J. Hardy aCentre for Phytophthora Science and Management, School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, 6150 bDepartment of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002, South Africa cForest Research Group, INDEHESA, University of Extremadura, 10600, Plasencia, Spain * Corresponding author Email addresses:
[email protected] (T. Paap),
[email protected] (T.I. Burgess),
[email protected] (E. Steel),
[email protected] (V. Rolo),
[email protected] G.E.S.J Hardy) Highlights • The incidence of an endemic canker pathogen increased with anthropogenic disturbance. • Disturbed edges showed significantly different composition from forest transects. • Increased tree species diversity was associated with decreased canker incidence. • We demonstrate the impact of global change and anthropogenic drivers on forest health. 1 Abstract Forest ecosystems characterised by higher tree species diversity have been linked to a reduced susceptibility to pathogens. Conversely, endemic pathogens contribute to forest ecosystem dynamics and process. In the face of global change, however, negative impacts arising from more frequent and severe forest disturbances are increasingly observed. An increase in the susceptibility of Corymbia calophylla, a keystone tree species of southwest Western Australia, to cankers caused by the endemic fungus Quambalaria coyrecup, has emerged in recent decades. Landscape scale assessment of disease incidence has implicated the predisposing role of anthropogenic disturbance, indicating a need for this to be examined at a finer resolution.