Pushing Gravitypushing
Total Page:16
File Type:pdf, Size:1020Kb
47584 cover 27/5/05 1:38 PM Page 1 Pushing Gravity Edwards (ed.) Since Newton’s time many have proposed that gravitation arises from the absorption by material bodies of minute particles or waves filling space. Such absorption would cause bodies to be pushed into each other's shadows. The principal early proponent of this idea was Georges-Louis Le Sage. This book explores: • The remarkable three hundred-year saga of Le Sage’s theory • Gravitational shielding and the experiments of Q. Majorana • New and recent Le Sage models Pushing Gravity Pu NEW PERSPECTIVES ON The reasons for the present resurgence of Le Sage-type models of gravitation LE SAGE’S THEORY OF GRAVITATION are their simplicity and depth - features desirable in any physical theory.Whereas shing Gravity Newton’s theory and (later) Einstein’s relativity were essentially mathematical descriptions of the motions of bodies in gravitation, Le Sage’s theory attempts to arrive at the very cause of gravity. - from the Preface by Matthew Edwards Apeiron Edited by Matthew R. Edwards Preface To many readers of physics, the history of theories of gravitation may be summed up approximately as follows. After a chaotic period featuring vortex ether models and the like, gravity was at last put on a firm scientific footing by Newton. In the following centuries Newton’s theory saw success after success, until a few unexplained anomalies, such as the advance of the perihelion of Mercury, paved the way for Einstein’s General Relativity. The latter theory has remained without serious challenge to the present day. In this grand progres- sion, few will likely have heard of a simple mechanical theory of gravitation, which from Newton’s time has come down through the centuries almost un- changed. Its principal early expression was given by Georges-Louis Le Sage of Geneva in the mid-eighteenth century. Le Sage’s theory of gravitation has a unique place in science. For over three centuries it has periodically attracted some of the greatest physicists of the day, including Newton, who expressed interest in Fatio’s earlier version of the theory, and later Kelvin, who attempted to modernize the theory in the late 1800’s. At the same time, the theory has drawn just as many notable critics, in- cluding Euler, Maxwell and Poincaré. Despite frequent and spirited obituaries, Le Sage’s theory in various guises has always survived to challenge the pre- vailing wisdom of the day. Now, at the start of this new century, it appears that the theory may be on the rise again. The reasons for the present resurgence of Le Sage-type models of gravita- tion are their simplicity and depth—features desirable in any physical theory. Whereas Newton’s theory and (later) Einstein’s relativity were essentially mathematical descriptions of the motions of bodies in gravitation, Le Sage’s theory attempts to arrive at the very cause of gravity. The basic idea runs like this. Space is filled with minute particles or waves of some description which strike bodies from all sides. A tiny fraction of the incident waves or particles is absorbed in this process. A single body will not move under this influence, but where two bodies are present each will be progressively urged into the shadow of the other. If any theory of gravity can be said to satisfy Occam’s Razor, it is surely Le Sage’s. Its simplicity and clarity guarantee that it will be conjured up again and again by those who seek to understand gravity’s mechanism, as op- posed to merely its rules. Other reasons also exist for the recent upsurge of interest. Over the last half century, it has become increasingly common to view space once more as endowed with energy-dense fields, known variously as the zero-point fields, the quantum vacuum and many other names. Since the existence of such fields is the central postulate of Le Sage-type theories, the status of such theories has correspondingly risen. In addition, parallel veins of research in geophysics and cosmology also seem to point to in the direction of Le Sage. As Halton Arp discusses in his foreword, the geophysical link is to the theory of earth expan- Pushing Gravity: new perspectives on Le Sage’s theory of gravitation i edited by Matthew R. Edwards (Montreal: Apeiron 2002) ii Preface sion (as opposed to conventional plate tectonics), while the cosmological link is to alternative cosmologies (rather than the Standard Model). The first papers in the book explore the impressive three hundred-year history of Le Sage’s theory. In the opening paper Evans discusses Le Sage’s own contribution and the discouraging reception that Le Sage received from the scientists of his day, such as Euler and Laplace. Le Sage was in fact fight- ing a trend in the eighteenth century away from mechanical models of gravita- tion. The setting for his theory was actually much more favourable in the pre- vious century, when another Genevan, Nicolas Fatio de Duillier, burst upon the scene with a very similar theory. Fatio’s role is discussed by van Lunteren in his paper. Newton’s own views on gravitation, which at times were very close to Le Sage’s and Fatio’s, are discussed in the reprinted paper by Aiton. The pa- per by Edwards discusses the attempt by Kelvin and others to revive Le Sage’s theory in the late 1800’s, when the theory was shown to be compatible with the kinetic theory of gases. This paper also has an overview of some twentieth cen- tury developments in the theory. The modern wave of Le Sage-type theories is represented in the next group of papers. (While in later centuries it became common for authors to use “Lesage” or “LeSage”, in this book we shall adopt the original spelling.) In these papers there will be seen to be many points of agreement, but also many differences. Some of the models, such as those of Van Flandern, Slabinski and Mingst and Stowe, are corpuscular models in the direct tradition of Le Sage. Others, such as those of Kierein, Edwards and Popescu-Adamut, explore elec- tromagnetic analogues of Le Sage’s theory. Historically, there have been countless names given to the Le Sage corpuscles or waves. In some of the pa- pers the authors have adopted the term ‘graviton’ to refer to these entities. The paper by Radzievskii and Kagalnikova provides a good overview of Le Sage’s theory as well as a detailed mathematical description of a modern Le Sage theory. In their model, the gravitational force is propagated by material particles travelling at c. This paper was originally published in 1960 and later translated in a U.S. government technical report, of which the present paper is a slightly corrected version. Dr. Radzievskii, although reported to be ill at this time, nonetheless expressed his strong support for this project. In his paper, Van Flandern develops Le Sage’s theory from a modern standpoint and explores its relations to such problems as the existence of gravi- tational shielding, the advance of the perihelion of Mercury and heating effects. As did Le Sage, he argues that the absence of observed gravitational aberration is explicable with the gravitons having superluminal velocities. A potentially major advance in Le Sage-type theories is given in the paper by Slabinski. In the past, these theories have generally supposed that the gravi- tons incident on bodies are either totally scattered or totally absorbed. In the former case, no gravitational force results, while in the latter an excessive heat- ing of bodies is expected. Slabinski shows that, provided some small fraction Preface iii of the gravitons is absorbed, the scattered gravitons can indeed generate a sig- nificant force. In his paper, Kierein suggests that the Le Sage medium is in the form of very long wavelength radiation, as had earlier been proposed by Charles Brush. Such radiation penetrates matter easily and, in Kierein’s model, a portion of the radiation traversing bodies is converted to mass through a Compton effect mechanism. The absorption of radiation leads to gravitation, while the mass in- crease is linked to earth expansion. The paper by Edwards proposes that the absorption of gravitons by bodies in a Le Sage mechanism is proportional to the bodies’ velocities as measured in the preferred reference frame defined by the gravitons (essentially the same frame as the cosmic background radiation). Graviton absorption increases the mass and rest energy of the bodies, which therefore lose velocity in the pre- ferred frame. Overall there is conservation of energy (and thus no heating ef- fect) since the rest energy gained by the bodies equals the kinetic energy lost. The paper by Toivo Jaakkola is adapted from a longer paper that was originally published posthumously in the memorial issue of Apeiron dedicated to him. It presents Jaakkola’s Le Sage-type model and many observations and conclusions about Le Sage theories in general. The paper by Veselov, reprinted from Geophysical Journal, presents a novel type of Le Sage mechanism, which Veselov links to earth expansion and various astrophysical phenomena. In their paper, Mingst and Stowe present a corpuscular Le Sage model. Dynamical aspects of this and other Le Sage models are discussed in the companion paper by Stowe. In her paper, Popescu-Adamut reviews and updates the “electrothermodynamical theory of gravitation” proposed in the 1980’s by her father, Iosif Adamut. The next several papers consider the question of gravitational shielding, with special reference to the work of Quirino Majorana. Unlike Le Sage, Majorana proposed that matter itself emits an energy flux of some kind which produces gravitational effects on other bodies.