Sector Environmental Guideline: Solid Waste

Total Page:16

File Type:pdf, Size:1020Kb

Sector Environmental Guideline: Solid Waste KENDRA HELMA FOR USAID SECTOR ENVIRONMENTAL GUIDELINE SOLID WASTE Full Technical Update December 2018 DISCLAIMER: Until and unless this document is approved by USAID as a Sector Environmental Guideline, the contents may not necessarily reflect the views of the United States Agency for International Development or the United States Government. FRONT COVER: Recycling business worker: A woman poses at a recycling business on May 21, 2013, in Port-au-Prince, Haiti, that received a grant through a USAID-funded business plan competition. Photo credit: Kendra Helma PREPARED UNDER: The Global Environmental Management Support Project (GEMS), Award Number AID-OAA-M-13-00018. The Cadmus Group, LLC., prime contractor (www.cadmusgroup.com). iii | Solid Waste Management Sector Environmental Guideline USAID.GOV ABOUT THIS DOCUMENT AND THE SECTORAL ENVIRONMENTAL GUIDELINES This document presents guidelines for one sector of the Sector Environmental Guidelines prepared for USAID under the Agency’s Global Environmental Management Support (GEMS) program. Guidelines for all sectors are accessible at http://www.usaidgems.org/sectorGuidelines.htm. Purpose. The purpose of this document is to support the Environmental Impact Assessment (EIA) process for common USAID sectoral development activities by providing concise, plain-language information regarding: • The typical, potential adverse impacts of activities in these sectors, including impacts related to climate change • How to prevent or otherwise mitigate these impacts, both in the form of general design guidance and specific design, construction, and operating measures • How to minimize vulnerability of activities to climate change, as well as contributions of activities to climate change • More detailed resources for further exploration of these issues • How to develop environmental compliance applications. Environmental Compliance Applications. USAID’s mandatory life-of-project environmental compliance procedures require that the potential adverse impacts of USAID-funded and managed activities be assessed prior to implementation via the processes defined by 22 CFR 216 (Reg. 216) and the analyses which are documented via the Initial Environmental Examination (IEE), the Environmental Assessment (EA) and the Environmental Impact Statement (EIS). They also require that the environmental management/mitigation measures (“conditions”) identified by this process be written into award documents, implemented over the life of project, and monitored for compliance and sufficiency. Internationally, this process is recognized as an EIA and it is used throughout this document to allow its application globally. The procedures are USAID’s principal mechanism for assessment of environmental impacts associated with USAID-funded activities – and thus for protecting environmental resources, ecosystems, and the health and livelihoods of beneficiaries and other groups. They strengthen development outcomes and help safeguard the positive reputation of USAID. The Sector Environmental Guidelines directly support environmental compliance by providing information essential to assessing the potential impacts of activities and to identifying and designing appropriate mitigation and monitoring measures. However, they are not specific to USAID’s environmental procedures. They are generally written and are intended to support environmental impact assessment of these activities by all actors, regardless of the specific environmental requirements, regulations, or processes that apply, if any. USAID Guidelines Superseded. These Sector Environmental Guidelines replace the following guidance: Solid Waste Sector Environmental Guidelines (2014). iii | Solid Waste Management Sector Environmental Guideline USAID.GOV This document serves as an introductory tool to Agency staff for solid waste sector projects, programs and activities. This document is not intended to act as a complete compendium of all potential impacts, as contextual information is critical to determining those impacts. Further, the Guidelines are not a substitute for detailed sources of technical information or design manuals. Users are expected to refer to the accompanying list of references for additional information. Comments and corrections. Each sector of these guidelines is a work in progress. Comments, corrections, and suggested additions are welcome. Email: [email protected]. Advisory: The Guidelines are advisory only. They are not official USAID regulatory guidance or policy. Following the practices and approaches outlined in the Guidelines does not necessarily assure compliance with USAID environmental procedures or host country environmental requirements. iv | Solid Waste Management Sector Environmental Guideline USAID.GOV TABLE OF CONTENTS 1 CONTEXT AND INTRODUCTION .............................................................................................................................. 1 1.1 OVERVIEW .......................................................................................................................................................................... 1 1.2 THE SOLID WASTE MANAGEMENT SECTOR AND DEVELOPING COUNTRIES ....................................... 1 1.3 USAID INTERVENTIONS IN SOLID WASTE MANAGEMENT ............................................................................. 3 2 SOLID WASTE TYPES AND STREAMS .......................................................................................................................... 4 2.1 MUNICIPAL SOLID WASTE ........................................................................................................................................... 4 2.2 COMMERCIAL AND INDUSTRIAL WASTE .............................................................................................................. 5 2.3 AGRICULTURE, FISHING AND FORESTRY WASTE .............................................................................................. 6 2.4 CONSTRUCTION, DEMOLITION AND EXCAVATION WASTE ...................................................................... 7 2.5 HAZARDOUS WASTE ..................................................................................................................................................... 7 2.6 MEDICAL AND HEALTHCARE WASTE ..................................................................................................................... 8 2.7 WASTE ELECTRICAL AND ELECTRONIC EQUIPMENT ...................................................................................... 9 2.8 FECAL WASTE AND SEWAGE SLUDGE .................................................................................................................. 10 2.9 PLASTIC WASTE.............................................................................................................................................................. 11 2.10 OTHER WASTES ....................................................................................................................................................... 14 3 WASTE MANAGEMENT SYSTEMS: REDUCTION, COLLECTION, TREATMENT AND DISPOSAL ......... 15 3.1 WASTE REDUCTION .................................................................................................................................................... 15 3.2 COLLECTION, TRANSFER AND TRANSPORTATION SYSTEMS .................................................................... 19 3.3 MATERIAL RECOVERY .................................................................................................................................................. 24 3.4 ORGANIC WASTE TREATMENT ............................................................................................................................... 24 3.5 THERMAL TREATMENT ................................................................................................................................................ 26 3.6 ENERGY RECOVERY ...................................................................................................................................................... 27 3.7 LAND DISPOSAL ............................................................................................................................................................. 27 3.8 HAZARDOUS WASTE TREATMENT AND DISPOSAL ........................................................................................ 34 4 PLANNING AND IMPLEMENTING WASTE MANAGEMENT SYSTEMS ........................................................... 35 4.1 PLANNING AND FEASIBILITY .................................................................................................................................... 36 4.2 PROJECT PREPARATION ............................................................................................................................................. 37 4.3 SOLICITATION OF CONTRACTORS AND CONTRACT MANAGEMENT ................................................. 39 4.4 OPERATIONS AND MAINTENANCE ....................................................................................................................... 40 4.5 WASTE HANDLING AND DISPOSAL RATES, AND OTHER REVENUE STREAMS ..................................... 40 4.6 ESTIMATING PROJECT COSTS AND STAFFING REQUIREMENTS ................................................................. 40 4.7 INSTITUTIONAL CAPACITY, POLICY AND REGULATORY CONSIDERATIONS ..................................... 41 5 ENVIRONMENTAL AND SOCIAL IMPACTS FROM SOLID WASTE MANAGEMENT .................................
Recommended publications
  • Substandard Shipbreaking: a Global Challenge
    Substandard shipbreaking: a global challenge This document will provide you with a short overview of the concerns related to dirty and dangerous shipbreaking and the challenges of finding sustainable solutions for clean and safe ship recycling. The overview touches upon the current practices in South Asia, China, Turkey and ship recycling facilities in the rest of the world, business practices and the legal framework under international and European law. Click on the icons to find out more about these various topics in reports, photo galleries and videos. © 2017 by the NGO Shipbreaking Platform Edition of: February 2017 After an average life of thirty years at sea, large commercial vessels – bulkers and general cargo ships, container ships, oil and gas tankers, and passenger ships such as cruise ships and ferries – are sold to shipbreaking yards for demolition. In recent years, an average of around 1000 ships annually reached the end of their service life and were broken down in order to recover steel and other valuable materials. Due to low market prices, only 862 ocean ships were dismantled in 2016. The demolition of ships is a hazardous endeavour that requires adequate measures to protect the maritime environment, to ensure environmentally safe and sound management of hazardous waste, and to guarantee high health and safety standards for workers. Yet only a fraction of decommissioned ships is handled in a safe and sustainable manner. More than 75% of the end-of-life ships sold for dismantling today end up in South Asia, the region that has served as the main destination for obsolete tonnage in the last two decades.
    [Show full text]
  • Cost Analysis of the Impacts on Municipal Utilities and Biosolids Management to Address PFAS Contamination
    Cost Analysis of the Impacts on Municipal Utilities and Biosolids Management to Address PFAS Contamination October 2020 Table of Contents Executive Summary Section 1 Background 1.1 Biosolids ................................................................................................................................................................ 1-1 Section 2 Data on Actual Costs to Wastewater and Biosolids Management Programs from PFAS 2.1 Introduction ......................................................................................................................................................... 2-1 2.2 NEBRA Survey ..................................................................................................................................................... 2-1 2.2.1 Background ............................................................................................................................................. 2-1 2.2.2 Results ...................................................................................................................................................... 2-2 2.3 Expanded Utility Survey ................................................................................................................................. 2-2 2.3.1 Background ............................................................................................................................................. 2-2 2.3.2 Results .....................................................................................................................................................
    [Show full text]
  • 2019 Annual Waste Prevention & Recycling Report
    s 2019 ANNUAL WASTE PREVENTION & RECYCLING REPORT i Submitted to Seattle City Council (SCC) October 2020 [Page deliberately left blank] ii CONTENTS GLOSSARY .............................................................................................................................................................. v EXECUTIVE SUMMARY ........................................................................................................................................... 1 Purpose ...................................................................................................................................................................... 1 Key Results................................................................................................................................................................. 1 Next Steps .................................................................................................................................................................. 2 INTRODUCTION ..................................................................................................................................................... 3 Seattle’s Recycling Rate Goals ................................................................................................................................... 3 Moving Upstream ...................................................................................................................................................... 3 Annual Waste Prevention & Recycling Report..........................................................................................................
    [Show full text]
  • (Daily) Cover Material Requirements. FROM
    April 30, 2004 SUBJECT: Clarification of 40 CFR 258.21, (Daily) Cover Material Requirements. FROM: Robert Springer, Director /s/ Office of Solid Waste TO: Jeff Scott, Director Waste Management Division USEPA Region IX You recently raised some questions about the daily cover material requirements at municipal landfills which operate on a continuous basis, specifically, regarding landfills that do not shut down at the end of each day. The federal regulations at 40 CFR '258.21 require that the owner/operator place daily cover on the disposed solid waste at the end of each operating day or at more frequent intervals if necessary. We received extensive comments on the proposed frequency for the daily cover requirement. Many rural communities argued for a weekly cover requirement. Others suggested that we design the daily cover requirements based on the length of time the waste is exposed (e.g., 6 to 24 hours). In the final rule, we retained the proposed language regarding cover placement at the end of each operating day. [The final rule can be found at 56 Fed. Reg. 50978, 51050-51 (Oct. 9, 1991) and the later clarification at 62 Fed. Reg. 40709-10 (July 29, 1997).] You have mentioned an issue where large commercial landfills operate continuously over a number of days. These large commercial landfills argue that they operate “around the clock” and therefore their “operating day” is something beyond a 24-hour period. It is our view, however, that the Federal regulations at 40 CFR '258.21 did not contemplate an “operating day” longer than 24 hours.
    [Show full text]
  • Multiple Actions Taken to Address Electronic Waste, but EPA Needs to Provide Clear National Direction
    OFFICE OF INSPECTOR GENERAL Catalyst for Improving the Environment Evaluation Report Multiple Actions Taken to Address Electronic Waste, But EPA Needs to Provide Clear National Direction Report No. 2004-P-00028 September 1, 2004 Report Contributors: Steve Hanna Laura Tam Anne Bavuso Abbreviations CRT Cathode Ray Tube EPA U.S. Environmental Protection Agency E-waste Electronic waste LCD Liquid crystal display NEPSI National Electronics Product Stewardship Initiative NGO Non-governmental organization OECD Organization for Economic Cooperation and Development OIG Office of Inspector General OSW Office of Solid Waste RCC Resource Conservation Challenge RCRA Resource Conservation and Recovery Act Cover photo: Computer equipment at a landfill (courtesy Snohomish County, Washington). UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460 OFFICE OF INSPECTOR GENERAL September 1, 2004 MEMORANDUM SUBJECT: Multiple Actions Taken to Address Electronic Waste, But EPA Needs to Provide Clear National Direction Report No. 2004-P-00028 FROM: Carolyn Copper /s/ Director for Program Evaluation Hazardous Waste Issues TO: Thomas P. Dunne Acting Assistant Administrator Office of Solid Waste and Emergency Response This is the final report on our evaluation of the effectiveness of EPA’s electronic waste programs and regulations conducted by the Office of Inspector General (OIG) of the U.S. Environmental Protection Agency (EPA). This report contains findings that describe the problems the OIG identified and corrective actions the OIG recommends. This report represents the opinion of the OIG and the findings contained in this report do not necessarily represent the final EPA position. Final determination on matters in the report will be made by EPA managers in accordance with established resolution procedures.
    [Show full text]
  • IMPACT of ELECTRONIC WASTE LEADING to ENVIRONMENTAL POLLUTION Y.Sitaramaiah1, M.Kusuma Kumari2*, 1Department of Geology, 2Department of Sociology, Govt
    National Seminar on Impact of Toxic Metals, Minerals and Solvents leading to Environmental Pollution Journal of Chemical and Pharmaceutical Sciences ISSN: 0974-2115 IMPACT OF ELECTRONIC WASTE LEADING TO ENVIRONMENTAL POLLUTION Y.Sitaramaiah1, M.Kusuma Kumari2*, 1Department of Geology, 2Department of Sociology, Govt. College for women, Guntur, AP. *Corresponding author: Email: [email protected] ABSTRACT Electronic waste or e-waste is one of the rapidly growing problems of the world. E-waste comprises of a multitude of components, some containing toxic substances that can have an adverse impact on human health and the environment if not handled properly. In India, e-waste management assumes greater significance not only due to the generation of its own e-waste but also because of the dumping of e-waste from developed countries. This is coupled with India's lack of appropriate infrastructure and procedures for its disposal and recycling. The production of electrical and electronic equipment (EEE) is one of the fastest growing global manufacturing activities. Rapid economic growth, coupled with urbanization and a growing demand for consumer goods, has increased both the consumption and the production of EEE. The Indian information technology (IT) industry has been one of the major drivers of change in the economy in the last decade and has contributed significantly to the digital revolution being experienced by the world. New electronic gadgets and appliances have infiltrated every aspect of our daily lives, providing our society with more comfort, health and security and with easy information acquisition and exchange. The knowledge society however is creating its own toxic footprints.
    [Show full text]
  • The Science of Alternative Daily Cover Welcome
    Blue Ridge Services Understanding ADC: The Science of Alternative Daily Cover Presented: July 31, 2012 1(c) 2012 Neal Bolton Welcome • Sarah is our organizer • We’ll do Q&A during the webinar …and at the end ©2012 Neal Bolton 2 Alternative Daily Cover www.blueridgeservices.com 1 Blue Ridge Services Presented by: Neal Bolton, P.E. Neal is a Civil Engineer with over 34 years experience in landfills and heavy construction, including several years as a heavy equipment operator. He has conducted hundreds of evaluations on the process of using Alternative Daily Cover at landfills across the U.S. and abroad. He has provided training on this topic for the EIA, SWANA, CalRecycle, KDHE, and several thousand public/private landfill operators and managers. Contact Neal at: [email protected] ©2012 Neal Bolton 3 Alternative Daily Cover Today • We’ll be §258.21 Cover material requirements. talking Except as provided in paragraph (b) of this section, the owners or operators of all MSWLF units must about cover disposed solid waste with six inches of earthen Alternatives material at the end of each operating day, or at more frequent intervals if necessary, to control disease to Daily vectors, fires, odors, blowing litter, and scavenging. Cover Soil Alternative materials of an alternative thickness (other than at least six inches of earthen material) may be approved by the Director of an approved State if the owner or operator demonstrates that the • You alternative material and thickness control disease Know…ADC vectors, fires, odors, blowing litter, and scavenging without presenting a threat to human health and the environment.
    [Show full text]
  • Solid Waste Alternatives Advisory Committee
    Date: November 28, 2017 To: Solid Waste Alternatives Advisory Committee (SWAAC) From: Tim Collier, Chair – Solid Waste Fee and Tax Exemption Policy Evaluation Subcommittee Subject: Subcommittee Fee and Tax Policy Recommendations This memorandum outlines the recommendations of the Solid Waste Fee and Tax Exemption Policy Evaluation Subcommittee (the “subcommittee”) that was tasked with evaluating Metro’s current solid waste fee and tax exemption policies and making recommendations on whether Metro should consider any changes to those policies. These recommendations were developed after discussions at five subcommittee meetings as detailed in the meeting summary documents provided as Attachments A through E. Subcommittee Purpose The purpose of the subcommittee was to determine if Metro’s current solid waste fee and tax exemption policies are achieving the public benefits, goals, and objectives of the solid waste system. Subcommittee Membership On March 8, 2017, the Solid Waste Alternatives Advisory Committee (SWAAC) appointed the subcommittee consisting of 13 members representing industry, government, advocacy groups, and the general public. The subcommittee included the following members: • Tim Collier, Chair (non-voting) – Metro • Terrell Garrett - Greenway Recycling • Mark Hope – Tire Disposal and Recycling • Reba Crocker – City of Milwaukie • Dave Claugus – Pioneer Recycling Services • Vern Brown – Environmentally Conscious Recycling • Matt Cusma – Schnitzer Steel • Audrey O’Brien – DEQ • Bill Carr – Waste Management • Janice Thompson
    [Show full text]
  • Ship Recycling : Analysis of the Shipbreaking Countries in Asia Rolando D
    World Maritime University The Maritime Commons: Digital Repository of the World Maritime University World Maritime University Dissertations Dissertations 2000 Ship recycling : analysis of the shipbreaking countries in Asia Rolando D. Legaspi World Maritime University Follow this and additional works at: http://commons.wmu.se/all_dissertations Part of the Economics Commons Recommended Citation Legaspi, Rolando D., "Ship recycling : analysis of the shipbreaking countries in Asia" (2000). World Maritime University Dissertations. 384. http://commons.wmu.se/all_dissertations/384 This Dissertation is brought to you courtesy of Maritime Commons. Open Access items may be downloaded for non-commercial, fair use academic purposes. No items may be hosted on another server or web site without express written permission from the World Maritime University. For more information, please contact [email protected]. WORLD MARITIME UNIVERSITY Malmö, Sweden SHIP RECYCLING: ANALYSIS OF THE PROBLEMS IT REPRESENT TO SHIPBREAKING COUNTRIES IN ASIA By ROLANDO D. LEGASPI Philippines A dissertation submitted to the World Maritime University in partial fulfilment of the requirements for the award of the degree of MASTER OF SCIENCE In MARITIME SAFETY AND ENVIRONMENTAL PROTECTION (Engineering) 2000 ã Copyright RDL, 2000 DECLARATION I certify that all the material in this dissertation that is not my own work has been identified, and that no material is included for which a degree has previously been conferred to me. The contents of this dissertation reflect my own personal views, and are not necessarily endorsed by the university. Signature: . Date: . Supervisor: Mr. Tor WERGELAND Associate Professor, Shipping and Port Management World Maritime University Assessor: Mr. Richard HODGSON Associate Professor, Maritime Safety and Environmental Protection World Maritime University Co-Assessor: Mr.
    [Show full text]
  • Preliminary Assessment Waste Management
    Executive Summary 1 The purpose of this report is to make a preliminary assessment of green jobs potentials in the waste management sector in Lebanon, including solid waste management, hazardous waste management and wastewater treatment. This report provides an overview of waste management in Lebanon, considers potentials for greening the sector, and estimates current and future green jobs in waste management. The current state of the waste management sector in Lebanon is far from ideal. Collection activities are fairly advanced when it comes to municipal solid waste, but insufficient for wastewater, and totally lacking for hazardous waste. Currently only two-thirds of the total generated solid waste undergoes some form of treatment, while the remainder is discarded in open dumpsites or directly into nature. Moreover, wastewater treatment is insufficient and Lebanon currently lacks any effective strategy or system for dealing with most hazardous waste. Incrementally, the sector is nonetheless changing. In recent years green activities such as sorting, composting and recycling have become more common, advanced medical waste treatment is being developed, and several international organisations, NGOs and private enterprises have launched initiatives to green the sector and reduce its environmental impact. Also large-scale governmental initiatives to close down and rehabilitate dumpsites and construct new waste management facilities and wastewater treatment plants are currently being planned or implemented, which will have a considerable impact in greening the waste management sector in Lebanon. In this report, green jobs in waste management are defined as jobs providing decent work that seek to decrease waste loads and the use of virgin resources through reuse, recycling and recovery, and reduce the environmental impact of the waste sector by containing or treating substances that are harmful to the natural environment and public health.
    [Show full text]
  • Electrical/Electronic Waste and Children's Health DRAFT
    E-waste and children's health TRAINING FOR HEALTH CARE PROVIDERS [Date …Place …Event…Sponsor…Organizer] Electrical/Electronic Waste and Children’s Health DRAFT Children's Health and the Environment WHO Training Package for the Health Sector World Health Organization www.who.int/ceh E-waste and children's health LEARNING OBJECTIVES Know the definition of e-waste, where it originates and how it moves around the world. Learn about potential toxic hazards associated with end of life management of e-waste (e-waste disposal, material recovery, open burning and formal/informal recycling), what they are, and the risks they may pose to children and young workers. Identify the exposure scenarios – how, where and when are children at risk? Be able to suspect diseases that may be related to acute and chronic exposures to chemicals present in e-waste or generated during recycling. Learn about international initiatives and proposed local interventions to prevent children's toxic exposures. E-waste and children's health OVERVIEW Origin, processes and circumstances of environmental risks related to e-waste Children: settings and routes of exposure Identification of most common hazardous chemicals potentially released Evidence of exposure and effects Prevention of exposure and poisoning E-waste and children's health E-WASTE DEFINITIONS Multiple definitions, examples:_ OECD EUROPEAN COMMISSION “waste electrical and electronic “any appliance using an equipment (WEEE) including all electric power supply that has components, sub-assemblies and reached its end-of-life” consumables, which are part of the product at the time of discarding” (UNEP 2007) (Commission Directive 2002/96/EC) Canelones Department - Uruguay, Picture by Dra.
    [Show full text]
  • The Global E-Waste Monitor 2020 Quantities, Flows, and the Circular Economy Potential
    The Global E-waste Monitor 2020 Quantities, flows, and the circular economy potential Authors: Vanessa Forti, Cornelis Peter Baldé, Ruediger Kuehr, Garam Bel Contributions by: S. Adrian, M. Brune Drisse, Y. Cheng, L. Devia, O. Deubzer, F. Goldizen, J. Gorman, S. Herat, S. Honda, G. Iattoni, W. Jingwei, L. Jinhui, D.S. Khetriwal, J. Linnell, F. Magalini, I.C. Nnororm, P. Onianwa, D. Ott, A. Ramola, U. Silva, R. Stillhart, D. Tillekeratne, V. Van Straalen, M. Wagner, T. Yamamoto, X. Zeng Supporting Contributors: 2 The Global E-waste Monitor 2020 Quantities, flows, and the circular economy potential Authors: Vanessa Forti, Cornelis Peter Baldé, Ruediger Kuehr, Garam Bel Contributions by: S. Adrian, M. Brune Drisse, Y. Cheng, L. Devia, O. Deubzer, F. Goldizen, J. Gorman, S. Herat, S. Honda, G. Iattoni, W. Jingwei, L. Jinhui, D.S. Khetriwal, J. Linnell, F. Magalini, I.C. Nnororm, P. Onianwa, D. Ott, A. Ramola, U. Silva, R. Stillhart, D. Tillekeratne, V. Van Straalen, M. Wagner, T. Yamamoto, X. Zeng 3 Copyright and publication information 4 Contact information: Established in 1865, ITU is the intergovernmental body responsible for coordinating the For enquiries, please contact the corresponding author C.P. Baldé via [email protected]. shared global use of the radio spectrum, promoting international cooperation in assigning satellite orbits, improving communication infrastructure in the developing world, and Please cite this publication as: establishing the worldwide standards that foster seamless interconnection of a vast range of Forti V., Baldé C.P., Kuehr R., Bel G. The Global E-waste Monitor 2020: Quantities, communications systems. From broadband networks to cutting-edge wireless technologies, flows and the circular economy potential.
    [Show full text]