Peroxisomal Lactate Dehydrogenase Is Generated by Translational Readthrough in Mammals

Total Page:16

File Type:pdf, Size:1020Kb

Peroxisomal Lactate Dehydrogenase Is Generated by Translational Readthrough in Mammals 1 Peroxisomal lactate dehydrogenase is generated 2 by translational readthrough in mammals 3 4 Fabian Schueren1†, Thomas Lingner2†, Rosemol George1†, Julia Hofhuis1, 5 Corinna Dickel1, Jutta Gärtner1*, Sven Thoms1* 6 7 1Department of Pediatrics and Adolescent Medicine, University Medical Center, 8 Georg-August-University Göttingen, Germany 9 2Department of Bioinformatics, Institute for Microbiology and Genetics, 10 Georg-August-University Göttingen, Germany 11 † Co-first author 12 13 * Correpondence: [email protected] (J.G.); [email protected] 14 (S.T.) 15 16 Competing interest statement: The authors declare no competing interest. 17 18 ABSTRACT 19 Translational readthrough gives rise to low abundance proteins with C-terminal 20 extensions beyond the stop codon. To identify functional translational readthrough, we 21 estimated the readthrough propensity (RTP) of all stop codon contexts of the human 22 genome by a new regression model in silico, identified a nucleotide consensus motif for 23 high RTP by using this model, and analyzed all readthrough extensions in silico with a 24 new predictor for peroxisomal targeting signal type 1 (PTS1). Lactate dehydrogenase B 25 (LDHB) showed the highest combined RTP and PTS1 probability. Experimentally we 26 show that at least 1.6% of the total cellular LDHB getting targeted to the peroxisome by 27 a conserved hidden PTS1. The readthrough-extended lactate dehydrogenase subunit 28 LDHBx can also co-import LDHA, the other LDH subunit into peroxisomes. Peroxisomal 29 LDH is conserved in mammals and likely contributes to redox equivalent regeneration in 30 peroxisomes. 31 1 32 33 INTRODUCTION 34 Translation of genetic information encoded in mRNAs into proteins is carried out by ribosomes. 35 When a stop codon enters the ribosomal A site release factors bind the stop codon, hydrolyze 36 the peptidyl-tRNA bond and trigger the release of the polypeptide from the ribosome. If instead 37 of release factor 1 (eRF1) a near-cognate aminoacyl-tRNA pairs with the stop codon in the 38 ribosomal A site, the stop signal is suppressed. Such decoding of a stop codon as a sense 39 codon is known as translational readthrough. As a consequence, translation ensues to the next 40 stop codon resulting in the synthesis of C-terminally extended proteins (Baranov et al., 2002; 41 Firth and Brierley, 2012; Namy et al., 2004). Mutant tRNAs are classical stop codon 42 suppressors, but also in normal physiology termination occurs with less than 100% efficiency. 43 A number of cis-elements on the mRNA, typically 3’ of the stop together with trans-acting factors 44 are known to influence stop codon readthrough (Firth et al., 2011). A case of translational 45 readthrough dependent on RNA cis-elements has recently been found and termed programmed 46 translational readthrough (PTR) (Eswarappa et al., 2014). But it is also known that the stop 47 codon itself and the nucleotides before and after the stop codon affect readthrough. The three 48 stop codons differ in their tendency to be suppressed. In human UAA is least and UGA is most 49 likely to allow readthrough (Baranov et al., 2002; Beier and Grimm, 2001). Studies also show 50 that the nucleotide immediately downstream of the stop codon is biased and can strongly 51 influence readthrough (McCaughan et al., 1995). We here define translational readthrough that 52 is entirely dependent on the stop codon and the nucleotides in its immediate vicinity as basal 53 translational readthrough (BTR). Thus BTR is independent of cis-acting elements and also 54 differs from pharmacologically induced readthrough. Induction of readthrough, most prominently 55 by aminoglycoside antibiotics is an attractive strategy in the treatment of the large number of 56 genetic disorders caused by premature stop codons (Bidou et al., 2012; Keeling et al., 2014). 57 In viruses, readthrough optimizes the coding capacity of compact genomes (Firth and Brierley, 58 2012). In the yeast S. cerevisiae, the eukaryotic release factor eRF3 can form prion-like 59 polymers which introduces a level of epigenetic regulation not found in other eukaryotes (Tuite 60 and Cox, 2003). In fungi, translational readthrough extends cytosolic glycolytic enzymes by a 61 cryptic peroxisomal targeting signal (Freitag et al., 2012). In Drosophila, readthrough is known to 62 affect between 200 and 300 proteins (Dunn et al., 2013; Jungreis et al., 2011), and in mammals 63 readthrough has been described for more than 50 individual transcripts (Chittum et al., 1998; 64 Dunn et al., 2013; Eswarappa et al., 2014; Geller and Rich, 1980; Loughran et al., 2014; 65 Yamaguchi et al., 2012). Ribosome profiling and phylogenetic approaches provide powerful 2 66 methods for the systematic identification of readthrough in mammals (Dunn et al., 2013; 67 Eswarappa et al., 2014; Jungreis et al., 2011; Loughran et al., 2014). 68 We wanted to uncover a physiological role of translational readthrough in humans by identifying 69 C-terminal extensions with targeting signals that would create a functional difference between 70 the normal and the readthrough-extended form. To achieve this aim, we concentrated on 71 proteins deriving from BTR. Based on experimental data, we assigned regression coefficients to 72 all possible nucleotides in the stop codon context and, using those regression coefficients, 73 estimated the readthrough propensity (RTP) of all stop codons in the human genome or 74 transcriptome. We were able to formally derive a new nucleotide consensus for high RTP from 75 the regression coefficients of our model. Then we screened all predicted C-terminal extensions 76 for peroxisomal targeting signals because peroxisomes import most of their matrix proteins 77 through a short targeting signal (PTS1) at the very C-terminus (Smith and Aitchison, 2013). We 78 here show that LDHB combines a very high translational readthrough with a hidden, yet 79 functional and evolutionarily conserved PTS1. This peroxisomal isoform of LDH, containing the 80 readthrough-extended LDHBx subunit, is likely to be involved in the regeneration of redox 81 equivalents for peroxisomal β-oxidation. 82 83 84 RESULTS 85 Genome-wide in silico analysis of basal translational readthrough 86 To develop a computational assessment of the RTP of all human stop codon contexts (SCCs) 87 that would allow the identification of genes with high BTR, we focused on SCCs comprising 15 88 nucleotides including and surrounding the stop codon (nucleotides -6 to +9, stop codon at 89 positions 1 to 3). To be able to calculate a linear regression between the SCCs and their 90 experimental BTR values, we formalized SCCs using a binary vector that represented the stop 91 context in a multi-dimensional vector space (Figure 1A and Figure 1 – figure supplement 1). The 92 three stop codons were condensed into one position, so that the binary vector required 51 93 dimensions, for the four possible nucleotides in the six positions before and after the stop codon, 94 and for the three stop codons (12*4+3). The vector was combined with experimentally 95 accessible BTR frequencies. For the first approximation model (LIN) we used 66 sequences 96 derived from human nonsense mutations (Floquet et al., 2012). The nucleotide sequences of 97 these stop contexts show no bias with respect to RTP, because the contexts and the stop 98 codons evolved independently, therefore the context nucleotides are random in relation to the 99 stop codon. We calculated a linear regression model for these SCCs and used only the 100 experimental BTR values that had been measured in the absence of aminoglycosides. The 3 101 model assigns regression coefficients to all possible nucleotides in the stop context (Figure 1 – 102 figure supplement 1). 103 For a first round of whole-genome RTP prediction, we extracted the SCCs for each transcript 104 from the Ensembl database and calculated RTP by adding up the regression coefficients of all 105 relevant positions. An outline of this algorithm is shown in Figure 1A and in more detail in Figure 106 1 – figure supplement 1. A sortable list of LIN RTP values for all human transcripts is contained 107 in Dataset 1 (Schueren et al., 2014). 108 To expand the data basis of the RTP algorithm and to obtain evidence that the algorithm indeed 109 predicts BTR values, we selected candidate transcripts with high, intermediate, and low RTP 110 and tested them by a dual reporter assay (Figure 1B and Table 1). For experimental analysis, 111 SCCs spanning 10 nucleotides upstream and downstream of the stop codon were expressed 112 with a 5’/N-terminal yellow fluorescent protein (Venus) and a 3’/C-terminal humanized Renilla 113 luciferase (hRluc) tag. Stop suppression leads to the expression of hRluc, Venus served as an 114 internal expression control. Readthrough is expressed as luciferase activity per Venus 115 fluorescence. This approach excludes introns and exon junction complexes and, due to the 116 relatively short stretch of variable nucleotides between the reporters, also does not allow for 117 extensive RNA structures that could modulate readthrough. In consequence, this form of the 118 dual reporter assay focusses on the assessment of BTR without influence by specific cis- 119 elements. The additional candidates tested showed BTR between 0.10 (±0.006) and 2.91 120 (±0.15) % relative to the 100% readthrough control expressing the Venus-hRluc fusion protein 121 without intervening stop codon region (Figure 1C and Table 1). Induction of readthrough by the 122 aminoglycoside antibiotic geneticin (G418) was between 3.25 (±0.41) and 40.38 (±5.33) -fold 123 (Figure 1C). The Geneticin could only increase the luciferase-per-Venus signal when a stop 124 codon separated Venus and luciferase, indicating that our dual reporter assay faithfully reports 125 readthrough. The finding that experimental readthrough could be increased by treatment with 126 aminoglycosides also excludes alternative mechanisms such as RNA editing or splicing that 127 could be considered to explain the relative increase of the luciferase over the Venus signal.
Recommended publications
  • (12) Patent Application Publication (10) Pub. No.: US 2015/0337275 A1 Pearlman Et Al
    US 20150337275A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0337275 A1 Pearlman et al. (43) Pub. Date: Nov. 26, 2015 (54) BOCONVERSION PROCESS FOR Publication Classification PRODUCING NYLON-7, NYLON-7.7 AND POLYESTERS (51) Int. C. CI2N 9/10 (2006.01) (71) Applicant: INVISTATECHNOLOGIES S.a.r.l., CI2P 7/40 (2006.01) St. Gallen (CH) CI2PI3/00 (2006.01) CI2PI3/04 (2006.01) (72) Inventors: Paul S. Pearlman, Thornton, PA (US); CI2P 13/02 (2006.01) Changlin Chen, Cleveland (GB); CI2N 9/16 (2006.01) Adriana L. Botes, Cleveland (GB); Alex CI2N 9/02 (2006.01) Van Eck Conradie, Cleveland (GB); CI2N 9/00 (2006.01) Benjamin D. Herzog, Wichita, KS (US) CI2P 7/44 (2006.01) CI2P I 7/10 (2006.01) (73) Assignee: INVISTATECHNOLOGIES S.a.r.l., (52) U.S. C. St. Gallen (CH) CPC. CI2N 9/13 (2013.01); C12P 7/44 (2013.01); CI2P 7/40 (2013.01); CI2P 13/005 (2013.01); (21) Appl. No.: 14/367,484 CI2P 17/10 (2013.01); CI2P 13/02 (2013.01); CI2N 9/16 (2013.01); CI2N 9/0008 (2013.01); (22) PCT Fled: Dec. 21, 2012 CI2N 9/93 (2013.01); CI2P I3/04 (2013.01); PCT NO.: PCT/US2012/071.472 CI2P 13/001 (2013.01); C12Y 102/0105 (86) (2013.01) S371 (c)(1), (2) Date: Jun. 20, 2014 (57) ABSTRACT Embodiments of the present invention relate to methods for Related U.S. Application Data the biosynthesis of di- or trifunctional C7 alkanes in the (60) Provisional application No.
    [Show full text]
  • ACOX3 Antibody
    Product Datasheet ACOX3 antibody Catalog No: #22136 Orders: [email protected] Description Support: [email protected] Product Name ACOX3 antibody Host Species Rabbit Clonality Polyclonal Purification Purified by antigen-affinity chromatography. Applications WB IHC Species Reactivity Hu Immunogen Type Recombinant protein Immunogen Description Recombinant protein fragment contain a sequence corresponding to a region within amino acids 408 and 613 of ACOX3 Target Name ACOX3 Accession No. Swiss-Prot:O15254Gene ID:8310 Concentration 1mg/ml Formulation Supplied in 0.1M Tris-buffered saline with 20% Glycerol (pH7.0). 0.01% Thimerosal was added as a preservative. Storage Store at -20°C for long term preservation (recommended). Store at 4°C for short term use. Application Details Predicted MW: 70kd Western blotting: 1:500-1:3000 Immunohistochemistry: 1:100-1:500 Images Sample (30 ug of whole cell lysate) A: A549 7.5% SDS PAGE Primary antibody diluted at 1: 1000 Address: 8400 Baltimore Ave., Suite 302, College Park, MD 20740, USA http://www.sabbiotech.com 1 Immunohistochemical analysis of paraffin-embedded H441 xenograft, using ACOX3 antibody at 1: 500 dilution. Background Acyl-Coenzyme A oxidase 3 also know as pristanoyl -CoA oxidase (ACOX3)is involved in the desaturation of 2-methyl branched fatty acids in peroxisomes. Unlike the rat homolog, the human gene is expressed in very low amounts in liver such that its mRNA was undetectable by routine Northern-blot analysis or its product by immunoblotting or by enzyme activity measurements. However the human cDNA encoding a 700 amino acid protein with a peroxisomal targeting C-terminal tripeptide S-K-L was isolated and is thought to be expressed under special conditions such as specific developmental stages or in a tissue specific manner in tissues that have not yet been examined.
    [Show full text]
  • Tumor Suppressive Microrna-375 Regulates Lactate Dehydrogenase B in Maxillary Sinus Squamous Cell Carcinoma
    INTERNATIONAL JOURNAL OF ONCOLOGY 40: 185-193, 2012 Tumor suppressive microRNA-375 regulates lactate dehydrogenase B in maxillary sinus squamous cell carcinoma TAKASHI KINoshita1,2, NIjIRo Nohata1,2, HIRoFUMI YoSHINo3, ToYoYUKI HANAzAwA2, NAoKo KIKKAwA2, LISA FUjIMURA4, TAKeSHI CHIYoMARU3, KAzUMoRI KAwAKAMI3, HIDeKI eNoKIDA3, Masayuki NAKAGAwA3, Yoshitaka oKAMoTo2 and NAoHIKo SeKI1 Departments of 1Functional Genomics, 2otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana Chuo-ku, Chiba 260-8670; 3Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520; 4Biomedical Research Center, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba 260-8670, japan Received july 6, 2011; Accepted August 23, 2011 DoI: 10.3892/ijo.2011.1196 Abstract. The expression of microRNA-375 (miR-375) is head and neck tumors, with an annual incidence of 0.5-1.0 per significantly reduced in cancer tissues of maxillary sinus squa- 100,000 people (1,2). Since the clinical symptoms of patients mous cell carcinoma (MSSCC). The aim of this study was to with MSSCC are very insidious, tumors are often diagnosed at investigate the functional significance ofmiR-375 and a possible advanced stages. Despite advances in multimodality therapy regulatory role in the MSSCC networks. Restoration of miR-375 including surgery, radiotherapy and chemotherapy, the 5-year significantly inhibited cancer cell proliferation and invasion survival rate for MSSCC has remained ~50%. Although regional in IMC-3 cells, suggesting that miR-375 functions as a tumor lymph node metastasis and distant metastasis are uncommon suppressor in MSSCC. Genome-wide gene expression data and (20%), the high rate of locoregional recurrence (60%) contributes luciferase reporter assays indicated that lactate dehydro genase B to poor survival (3).
    [Show full text]
  • ACOX3 Human Shrna Plasmid Kit (Locus ID 8310) Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TL314988 ACOX3 Human shRNA Plasmid Kit (Locus ID 8310) Product data: Product Type: shRNA Plasmids Product Name: ACOX3 Human shRNA Plasmid Kit (Locus ID 8310) Locus ID: 8310 Vector: pGFP-C-shLenti (TR30023) Format: Lentiviral plasmids Components: ACOX3 - Human, 4 unique 29mer shRNA constructs in lentiviral GFP vector(Gene ID = 8310). 5µg purified plasmid DNA per construct Non-effective 29-mer scrambled shRNA cassette in pGFP-C-shLenti Vector, TR30021, included for free. RefSeq: NM_001101667, NM_003501, NM_003501.1, NM_003501.2, NM_001101667.1, BC017053, NM_003501.3, NM_001101667.2 Summary: Acyl-Coenzyme A oxidase 3 also know as pristanoyl -CoA oxidase (ACOX3)is involved in the desaturation of 2-methyl branched fatty acids in peroxisomes. Unlike the rat homolog, the human gene is expressed in very low amounts in liver such that its mRNA was undetectable by routine Northern-blot analysis or its product by immunoblotting or by enzyme activity measurements. However the human cDNA encoding a 700 amino acid protein with a peroxisomal targeting C-terminal tripeptide S-K-L was isolated and is thought to be expressed under special conditions such as specific developmental stages or in a tissue specific manner in tissues that have not yet been examined. [provided by RefSeq, Jul 2008] shRNA Design: These shRNA constructs were designed against multiple splice variants at this gene locus. To be certain that your variant of interest is targeted, please contact [email protected].
    [Show full text]
  • ACOX3 (H-1): Sc-390624
    SAN TA C RUZ BI OTEC HNOL OG Y, INC . ACOX3 (H-1): sc-390624 BACKGROUND APPLICATIONS ACOX3 (acyl-Coenzyme A oxidase 3), also known as BRCOX or PRCOX, is a ACOX3 (H-1) is recommended for detection of ACOX3 of mouse, rat and 700 amino acid protein that localizes to peroxisomes and belongs to the acyl- human origin by Western Blotting (starting dilution 1:100, dilution range CoA oxidase family. Using FAD as a cofactor, ACOX3 catalyzes the desatura - 1:100-1:1000), immunoprecipitation [1-2 µg per 100-500 µg of total protein tion of 2-methyl branched fatty acids in peroxisomes, thereby playing an impor - (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution tant role in peroxisomal fatty acid β-oxidation. Human ACOX3 shares 75% range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution sequence identity with its rat counterpart, suggesting a conserved role range 1:30-1:3000). between species. Multiple isoforms of ACOX3 exist due to alternative splic - Suitable for use as control antibody for ACOX3 siRNA (h): sc-89236, ACOX3 ing events. The gene encoding ACOX3 maps to human chromosome 4, which siRNA (m): sc-140819, ACOX3 shRNA Plasmid (h): sc-89236-SH, ACOX3 encodes nearly 6% of the human genome and has the largest gene deserts shRNA Plasmid (m): sc-140819-SH, ACOX3 shRNA (h) Lentiviral Particles: (regions of the genome with no protein encoding genes) of all of the human sc-89236-V and ACOX3 shRNA (m) Lentiviral Particles: sc-140819-V. chromosomes. Defects in some of the genes located on chromosome 4 are associated with Huntington’s disease, Ellis-van Creveld syndrome, methyl - Molecular Weight of ACOX3: 78 kDa.
    [Show full text]
  • Adipose Tissue NAPE-PLD Controls Fat Mass Development by Altering the Browning Process and Gut Microbiota
    ARTICLE Received 11 Jul 2014 | Accepted 4 Feb 2015 | Published 11 Mar 2015 DOI: 10.1038/ncomms7495 OPEN Adipose tissue NAPE-PLD controls fat mass development by altering the browning process and gut microbiota Lucie Geurts1, Amandine Everard1,*, Matthias Van Hul1,*, Ahmed Essaghir2, Thibaut Duparc1, Se´bastien Matamoros1, Hubert Plovier1, Julien Castel3, Raphael G.P. Denis3, Marie Bergiers1, Ce´line Druart1, Mireille Alhouayek4, Nathalie M. Delzenne1, Giulio G. Muccioli4, Jean-Baptiste Demoulin2, Serge Luquet3 & Patrice D. Cani1 Obesity is a pandemic disease associated with many metabolic alterations and involves several organs and systems. The endocannabinoid system (ECS) appears to be a key regulator of energy homeostasis and metabolism. Here we show that specific deletion of the ECS synthesizing enzyme, NAPE-PLD, in adipocytes induces obesity, glucose intolerance, adipose tissue inflammation and altered lipid metabolism. We report that Napepld-deleted mice present an altered browning programme and are less responsive to cold-induced browning, highlighting the essential role of NAPE-PLD in regulating energy homeostasis and metabolism in the physiological state. Our results indicate that these alterations are mediated by a shift in gut microbiota composition that can partially transfer the phenotype to germ-free mice. Together, our findings uncover a role of adipose tissue NAPE-PLD on whole-body metabolism and provide support for targeting NAPE-PLD-derived bioactive lipids to treat obesity and related metabolic disorders. 1 Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Universite´ catholique de Louvain, Avenue E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium. 2 de Duve Institute, Universite´ catholique de Louvain, Avenue Hippocrate, 74 B1.74.05, 1200 Brussels, Belgium.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • The Metabolic Serine Hydrolases and Their Functions in Mammalian Physiology and Disease Jonathan Z
    REVIEW pubs.acs.org/CR The Metabolic Serine Hydrolases and Their Functions in Mammalian Physiology and Disease Jonathan Z. Long* and Benjamin F. Cravatt* The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States CONTENTS 2.4. Other Phospholipases 6034 1. Introduction 6023 2.4.1. LIPG (Endothelial Lipase) 6034 2. Small-Molecule Hydrolases 6023 2.4.2. PLA1A (Phosphatidylserine-Specific 2.1. Intracellular Neutral Lipases 6023 PLA1) 6035 2.1.1. LIPE (Hormone-Sensitive Lipase) 6024 2.4.3. LIPH and LIPI (Phosphatidic Acid-Specific 2.1.2. PNPLA2 (Adipose Triglyceride Lipase) 6024 PLA1R and β) 6035 2.1.3. MGLL (Monoacylglycerol Lipase) 6025 2.4.4. PLB1 (Phospholipase B) 6035 2.1.4. DAGLA and DAGLB (Diacylglycerol Lipase 2.4.5. DDHD1 and DDHD2 (DDHD Domain R and β) 6026 Containing 1 and 2) 6035 2.1.5. CES3 (Carboxylesterase 3) 6026 2.4.6. ABHD4 (Alpha/Beta Hydrolase Domain 2.1.6. AADACL1 (Arylacetamide Deacetylase-like 1) 6026 Containing 4) 6036 2.1.7. ABHD6 (Alpha/Beta Hydrolase Domain 2.5. Small-Molecule Amidases 6036 Containing 6) 6027 2.5.1. FAAH and FAAH2 (Fatty Acid Amide 2.1.8. ABHD12 (Alpha/Beta Hydrolase Domain Hydrolase and FAAH2) 6036 Containing 12) 6027 2.5.2. AFMID (Arylformamidase) 6037 2.2. Extracellular Neutral Lipases 6027 2.6. Acyl-CoA Hydrolases 6037 2.2.1. PNLIP (Pancreatic Lipase) 6028 2.6.1. FASN (Fatty Acid Synthase) 6037 2.2.2. PNLIPRP1 and PNLIPR2 (Pancreatic 2.6.2.
    [Show full text]
  • Novel and Highly Recurrent Chromosomal Alterations in Se´Zary Syndrome
    Research Article Novel and Highly Recurrent Chromosomal Alterations in Se´zary Syndrome Maarten H. Vermeer,1 Remco van Doorn,1 Remco Dijkman,1 Xin Mao,3 Sean Whittaker,3 Pieter C. van Voorst Vader,4 Marie-Jeanne P. Gerritsen,5 Marie-Louise Geerts,6 Sylke Gellrich,7 Ola So¨derberg,8 Karl-Johan Leuchowius,8 Ulf Landegren,8 Jacoba J. Out-Luiting,1 Jeroen Knijnenburg,2 Marije IJszenga,2 Karoly Szuhai,2 Rein Willemze,1 and Cornelis P. Tensen1 Departments of 1Dermatology and 2Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands; 3Department of Dermatology, St Thomas’ Hospital, King’s College, London, United Kingdom; 4Department of Dermatology, University Medical Center Groningen, Groningen, the Netherlands; 5Department of Dermatology, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands; 6Department of Dermatology, Gent University Hospital, Gent, Belgium; 7Department of Dermatology, Charite, Berlin, Germany; and 8Department of Genetics and Pathology, Rudbeck Laboratory, University of Uppsala, Uppsala, Sweden Abstract Introduction This study was designed to identify highly recurrent genetic Se´zary syndrome (Sz) is an aggressive type of cutaneous T-cell alterations typical of Se´zary syndrome (Sz), an aggressive lymphoma/leukemia of skin-homing, CD4+ memory T cells and is cutaneous T-cell lymphoma/leukemia, possibly revealing characterized by erythroderma, generalized lymphadenopathy, and pathogenetic mechanisms and novel therapeutic targets. the presence of neoplastic T cells (Se´zary cells) in the skin, lymph High-resolution array-based comparative genomic hybridiza- nodes, and peripheral blood (1). Sz has a poor prognosis, with a tion was done on malignant T cells from 20 patients. disease-specific 5-year survival of f24% (1).
    [Show full text]
  • Downloaded from (2007)
    ARTICLE https://doi.org/10.1038/s41467-020-14796-x OPEN Alterations in promoter interaction landscape and transcriptional network underlying metabolic adaptation to diet ✉ Yufeng Qin1, Sara A. Grimm2, John D. Roberts1, Kaliopi Chrysovergis1 & Paul A. Wade 1 Metabolic adaptation to nutritional state requires alterations in gene expression in key tis- sues. Here, we investigated chromatin interaction dynamics, as well as alterations in cis- 1234567890():,; regulatory loci and transcriptional network in a mouse model system. Chronic consumption of a diet high in saturated fat, when compared to a diet high in carbohydrate, led to dramatic reprogramming of the liver transcriptional network. Long-range interaction of promoters with distal regulatory loci, monitored by promoter capture Hi-C, was regulated by metabolic status in distinct fashion depending on diet. Adaptation to a lipid-rich diet, mediated largely by nuclear receptors including Hnf4α, relied on activation of preformed enhancer/promoter loops. Adaptation to carbohydrate-rich diet led to activation of preformed loops and to de novo formation of new promoter/enhancer interactions. These results suggest that adapta- tion to nutritional changes and metabolic stress occurs through both de novo and pre-existing chromatin interactions which respond differently to metabolic signals. 1 Eukaryotic Transcriptional Regulation Group, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA. 2 Integrative Bioinformatics
    [Show full text]
  • Identification of Differentially Expressed Genes in Human Bladder Cancer Through Genome-Wide Gene Expression Profiling
    521-531 24/7/06 18:28 Page 521 ONCOLOGY REPORTS 16: 521-531, 2006 521 Identification of differentially expressed genes in human bladder cancer through genome-wide gene expression profiling KAZUMORI KAWAKAMI1,3, HIDEKI ENOKIDA1, TOKUSHI TACHIWADA1, TAKENARI GOTANDA1, KENGO TSUNEYOSHI1, HIROYUKI KUBO1, KENRYU NISHIYAMA1, MASAKI TAKIGUCHI2, MASAYUKI NAKAGAWA1 and NAOHIKO SEKI3 1Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520; Departments of 2Biochemistry and Genetics, and 3Functional Genomics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan Received February 15, 2006; Accepted April 27, 2006 Abstract. Large-scale gene expression profiling is an effective CKS2 gene not only as a potential biomarker for diagnosing, strategy for understanding the progression of bladder cancer but also for staging human BC. This is the first report (BC). The aim of this study was to identify genes that are demonstrating that CKS2 expression is strongly correlated expressed differently in the course of BC progression and to with the progression of human BC. establish new biomarkers for BC. Specimens from 21 patients with pathologically confirmed superficial (n=10) or Introduction invasive (n=11) BC and 4 normal bladder samples were studied; samples from 14 of the 21 BC samples were subjected Bladder cancer (BC) is among the 5 most common to microarray analysis. The validity of the microarray results malignancies worldwide, and the 2nd most common tumor of was verified by real-time RT-PCR. Of the 136 up-regulated the genitourinary tract and the 2nd most common cause of genes we detected, 21 were present in all 14 BCs examined death in patients with cancer of the urinary tract (1-7).
    [Show full text]
  • Suppression of Fatty Acid Oxidation by Thioesterase Superfamily Member
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.21.440732; this version posted April 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Suppression of Fatty Acid Oxidation by Thioesterase Superfamily Member 2 in Skeletal Muscle Promotes Hepatic Steatosis and Insulin Resistance Norihiro Imai1, Hayley T. Nicholls1, Michele Alves-Bezerra1, Yingxia Li1, Anna A. Ivanova2, Eric A. Ortlund2, and David E. Cohen1 1Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, NY 10021 USA 2Department of Biochemistry, Emory University, Atlanta, GA 30322 USA Current addresses: Norihiro Imai - Department of Gastroenterology and Hepatology, Nagoya University School of Medicine, Aichi 4668560 Japan Michele Alves-Bezerra - Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030 USA bioRxiv preprint doi: https://doi.org/10.1101/2021.04.21.440732; this version posted April 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Figure number: 8 Supplemental figure number: 10 Supplemental table number: 2 References: 48 Keywords: Hepatic steatosis, obesity, acyl-CoA thioesterase, fatty acid oxidation, insulin resistance Conflict of interest: The authors have declared that no conflict of interest exists. Author contributions: N.I.: designed research studies, conducted experiments, acquired data, analyzed data and wrote manuscript. H.T.N.: conducted experiments and analyzed data, M.A.B.: designed research studies and conducted experiments, Y.L.: acquired data, A.A.I.: conducted experiments and analyzed data, E.A.O.: analyzed data, D.E.C.: designed research studies, analyzed data and wrote manuscript.
    [Show full text]