Dense Stellar Systems and Massive Black Holes : Sources Of

Total Page:16

File Type:pdf, Size:1020Kb

Dense Stellar Systems and Massive Black Holes : Sources Of Dense Stellar Systems and Massive Black Holes: Sources of Gravitational Radiation and Tidal Disruptions Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium habilitatus (Dr. rer. nat. habil) in der Wissenschaftsdisziplin “Astronomie” eingereicht als kumulative Dissertation an der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Potsdam von Dr. Pau Amaro Seoane Potsdam, September 4, 2015 Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) Published online at the Institutional Repository of the University of Potsdam: URN urn:nbn:de:kobv:517-opus4-95439 http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95439 CONTENTS i introduction 7 1 motivation 9 2 relaxation in galactic nuclei 13 3 stellar dynamics and the cosmic growth of smbhs 29 4 featured articles 43 ii articles 47 5 populating the gc with compact objects 49 6 tidal disruptions in fragmenting discs 61 7 a rapid evolving region 83 8 tidal disruptions of separated binaries 95 9 strong mass segregation: event rate of emris and cusp re-growth 109 10 spin matters: emri event rates 131 11 butterflys and emris 157 12 kicking imbhs off gcs: imris 171 13 imris, tdes and the formation of ultra-compact dwarf galax- ies 195 iii discussion 227 iv acknowledgements 237 1 3 Contents GLOSSARY Acronym Meaning 1 M⊙ 1 Solar Mass = 1.99 × 1030 kg 1 pc 1 parsec ≈ 3.09 × 1016 m 1 Myr/Gyr One million/billion years AGN Active Galactic Nucleus BH Black Hole CO Compact Object (a white dwarf or a neutron star), or a stellar-mass black hole. In general, a collapsed star with a mass 2 [1.4, 10] M⊙ in this work EMRI Extreme Mass Ratio Inspiral GC Galactic Centre GPU Graphics Processing Unit GW/GWs Gravitational Wave/s HB Giant stars in the horizontal branch IMBH Intermediate-Mass Black Hole (M 2 [102, 105] M⊙) IMRI Intermediate Mass Ratio Inspiral MBH Massive Black Hole (M ≈ 106 M⊙) MW Milky Way NB6 Direct-summation N−body6 NS Neutron Star PN post-Newtonian RG Red giant SMBH Super Massive Black Hole (M > 106 M⊙) SNR Signal-To-Noise Ratio SPH Smoothed Particle Hydronamics TDE Tidal Disruption Event UCD Ultra-Compact Dwarf Galaxy 4 Abstract: Massive, dark objects, very likely supermassive black holes (SMBH), are found in the majority of galaxies. The observed tight correlations between their masses and the surrounding stellar system indicate an enigmatic coevolution. Why does the mass of − an object, whose typical size is ∼ 10 7 parsec (pc, for a mass of 106 M⊙) correlates with the stellar properties of the entire galaxy, which can be some 103 pc in size? Are these objects black holes, as predicted by Einstein’s theory of general relativity or do we need alternatives? The answer lies in the event horizon, the single and unique characteristic that defines SMBHs. To probe it, we have at our disposal stars. Nuclear star clusters harboring a massive, dark object with a mass of up to ∼ 107 M⊙ are good testbeds to probe the event horizon of the potential SMBH with stars. The advantage is clear: Stellar dynamics around a massive object is a relatively simple multi-particle problem, and we have data: In our own galaxy we have observations of stars and clouds that are on very close orbits to our SMBH. In other galaxies we have detected about 50 stellar tidal disruption candidates, and this number should rapidly increase with the upcoming transient surveys. One of the most important sources of gravitational waves (GWs) for a space-based detector are extreme-mass-ratio binaries (EMRIs) in the stage where the dynamics are driven by GW emission. These systems are composed of a stellar-mass compact object (a white dwarf, a neutron star, or a stellar-mass black hole) that inspirals into a massive black hole located at a galactic centre. The masses of 2 interest for the small compact object are in the range m = 1 − 10 M⊙, and for the massive black hole in the range M = 105 − 107 M⊙. Then, the mass-ratio for these − − systems is in the interval m = m/M ∼ 10 7 − 10 3. The GW signals emitted by EMRIs are long lasting (months to years) and contain many GW cycles, of the order of 105 during the last year before the small compact object plunges into the massive black hole. Many of these cycles are spent in the neighbourhood of the massive black hole horizon, meaning GWs encode a map of the strong-field region of the massive black hole, the fabric of space and time. These extraordinary features of EMRIs allow for a revolutionary research program, which could lead to understanding different aspects of stellar dynamics in galactic centres, tests of the geometry of BHs, and tests of General Relativity and alternative theories of gravity. In this habilitation I present my main results in this line of research. Part I INTRODUCTION 1 M O T I VAT I O N The centre-most part of a galaxy, its nucleus consists of a cluster of a few 107 to a few 108 stars surrounding the DCO, assumed from now onward to be a MBH, with a size of a few pc. The nucleus is naturally expected to play a major role in the interaction between the DCO and the host galaxy, as we mentioned before. In the − nucleus, stellar densities in excess of 106 pc 3 and relative velocities of order a few 100 − to a few 1000 km s 1 are reached. In these exceptional conditions, unlike anywhere else in the bulk of the galaxy, collisional effects come into play. These include 2- body relaxation, i.e., mutual gravitational deflections, and genuine contact collisions between stars. This means that, if a star happens to pass very close to the MBH, some part of it or all of it may be torn apart because of the so-called tidal gravity of the central object. The difference in gravitational forces on points diametrically separated on the star alter its shape, from its initial approximately spherical architecture to an ellipsoidal one and, in the end, the star is disrupted. These processes may contribute significantly to the mass of the MBH. Tidal disrup- tions trigger phases of bright accretion that may reveal the presence of a MBH in an otherwise quiescent, possibly very distant, galaxy. In Figure 1 we give an intuitive image of a tidal disruption of an extended star, where distortions due to gravitational-lens have not been taken into consideration. In Figure 2, on the left we show a Chandra X-ray image of J1242-11 with a scale of 40 arcsec on a side. This figure pinpoints one of the most extreme variability events ever detected in a galaxy. One plausible explanation for the extreme brightness of the ROSAT source could be accretion of stars on to a super-massive black hole. On the right we have its optical companion piece, obtained with the 1.5 m Danish telescope at ESO/La Silla. The right circle indicates the position of the Chandra source in the centre of the brighter galaxy. These processes may contribute significantly to the mass of the MBH [30, 53]. Tidal disruptions trigger phases of bright accretion that may reveal the presence of a MBH in an otherwise quiescent, possibly very distant, galaxy [29, 34]. On the other hand, stars can be swallowed whole if they are kicked directly through the horizon of the MBH (so-called direct plunges) or gradually inspiral due to the emis- sion of GWs The latter process, known as an “ Extreme Mass Ratio Inspiral” (EMRI) is one of the main objects of interest for eLISA [Evolved Laser Interferometer Space Antenna 3]. A compact object, such as a star so dense that it will not be disrupted 9 motivation Figure 1: Schematic representation of the tidal disruption process. In the first panel on the left, an extended star approaches the central MBH. As soon as the star feels the overwhelming tidal forces acting on it, the initial spherical architec- ture becomes spheroidal and the star stars to be torn apart. On the third panel the star is totally ripped and about 50% of it accreted on to the MBH. Credits: ESA and Stefanie Komossa. Illustration credit M. Weiss. 10 motivation Figure 2: Optical and X-ray images of RX J1242-11. Credits: (left) ESO/MPE/S.Komossa and (right) NASA/CXC/MPE, [37]. by the tidal forces of the MBH, (say, a neutron star, a white dwarf or a small stellar black hole), is able to approach very close to the central MBH. When the compact ob- ject comes very close to the MBH, a large amount of orbital energy is radiated away, causing the semi-major axis shrink. This phenomenon will be repeated thousand of times as the object inspirals until is swallowed by the central MBH. The “doomed” object spends many orbits around the MBH before it is swallowed. When doing so, it radiates energy which can be conceptualised as a snapshot con- taining detailed information about space-time and all the physical parameters which characterise the binary, the MBH and the small stellar black hole: their masses, spins, inclination and their sky position. The emitted GWs encode a map of the space-time. If we can record and decode it, then we will be able to test the theory that massive dark objects are indeed Kerr black holes as the theory of general relativity predicts, and not exotic objects such as boson stars. This would be the ultimate test of general relativity. The detection of such an EMRI will allow us to do very exciting science: EMRIs will give us measurements of the masses and spins of BHs to an accuracy which is beyond that of any other astrophysical technique.
Recommended publications
  • 1 Trajectory Design for the Transiting Exoplanet
    TRAJECTORY DESIGN FOR THE TRANSITING EXOPLANET SURVEY SATELLITE Donald J. Dichmann(1), Joel J.K. Parker(2), Trevor W. Williams(3), Chad R. Mendelsohn(4) (1,2,3,4)Code 595.0, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt MD 20771. 301-286-6621. [email protected] Abstract: The Transiting Exoplanet Survey Satellite (TESS) is a National Aeronautics and Space Administration (NASA) mission, scheduled to be launched in 2017. TESS will travel in a highly eccentric orbit around Earth, with initial perigee radius near 17 Earth radii (Re) and apogee radius near 59 Re. The orbit period is near 2:1 resonance with the Moon, with apogee nearly 90 degrees out-of-phase with the Moon, in a configuration that has been shown to be operationally stable. TESS will execute phasing loops followed by a lunar flyby, with a final maneuver to achieve 2:1 resonance with the Moon. The goals of a resonant orbit with long-term stability, short eclipses and limited oscillations of perigee present significant challenges to the trajectory design. To rapidly assess launch opportunities, we adapted the Schematics Window Methodology (SWM76) launch window analysis tool to assess the TESS mission constraints. To understand the long-term dynamics of such a resonant orbit in the Earth-Moon system we employed Dynamical Systems Theory in the Circular Restricted 3-Body Problem (CR3BP). For precise trajectory analysis we use a high-fidelity model and multiple shooting in the General Mission Analysis Tool (GMAT) to optimize the maneuver delta-V and meet mission constraints. Finally we describe how the techniques we have developed can be applied to missions with similar requirements.
    [Show full text]
  • Secular Chaos and Its Application to Mercury, Hot Jupiters, and The
    Secular chaos and its application to Mercury, hot SPECIAL FEATURE Jupiters, and the organization of planetary systems Yoram Lithwicka,b,1 and Yanqin Wuc aDepartment of Physics and Astronomy and bCenter for Interdisciplinary Exploration and Research in Astrophysics, Northwestern University, Evanston, IL 60208; and cDepartment of Astronomy and Astrophysics, University of Toronto, Toronto, ON, Canada M5S 3H4 Edited by Adam S. Burrows, Princeton University, Princeton, NJ, and accepted by the Editorial Board October 31, 2013 (received for review May 2, 2013) In the inner solar system, the planets’ orbits evolve chaotically, by including the most important MMRs (11).] It is the cause, for driven primarily by secular chaos. Mercury has a particularly cha- example, of Earth’s eccentricity-driven Milankovitch cycle. How- otic orbit and is in danger of being lost within a few billion years. ever, on timescales ≳107 years, the evolution is chaotic (e.g., Fig. Just as secular chaos is reorganizing the solar system today, so it 1), in sharp contrast to the prediction of linear secular theory. has likely helped organize it in the past. We suggest that extra- That appears to be puzzling, given the small eccentricities and solar planetary systems are also organized to a large extent by inclinations in the solar system. secular chaos. A hot Jupiter could be the end state of a secularly However, despite its importance, there has been little theo- chaotic planetary system reminiscent of the solar system. How- retical understanding of how secular chaos works. Conversely, ever, in the case of the hot Jupiter, the innermost planet was chaos driven by MMRs is much better understood.
    [Show full text]
  • Year XIX, Supplement Ethnographic Study And/Or a Theoretical Survey of a Their Position in the Article Should Be Clearly Indicated
    III. TITLES OF ARTICLES DRU[TVO ANTROPOLOGOV SLOVENIJE The journal of the Slovene Anthropological Society Titles (in English and Slovene) must be short, informa- SLOVENE ANTHROPOLOGICAL SOCIETY Anthropological Notebooks welcomes the submis- tive, and understandable. The title should be followed sion of papers from the field of anthropology and by the name of the author(s), their position, institutional related disciplines. Submissions are considered for affiliation, and if possible, by e-mail address. publication on the understanding that the paper is not currently under consideration for publication IV. ABSTRACT AND KEYWORDS elsewhere. It is the responsibility of the author to The abstract must give concise information about the obtain permission for using any previously published objective, the method used, the results obtained, and material. Please submit your manuscript as an e-mail the conclusions. Authors are asked to enclose in English attachment on [email protected] and enclose your contact information: name, position, and Slovene an abstract of 100 – 200 words followed institutional affiliation, address, phone number, and by three to five keywords. They must reflect the field of e-mail address. research covered in the article. English abstract should be placed at the beginning of an article and the Slovene one after the references at the end. V. NOTES A N T H R O P O L O G I C A L INSTRUCTIONS Notes should also be double-spaced and used sparingly. They must be numbered consecutively throughout the text and assembled at the end of the article just before references. VI. QUOTATIONS Short quotations (less than 30 words) should be placed in single quotation marks with double marks for quotations within quotations.
    [Show full text]
  • Estabilidade De Veículos Espaciais Em Ressonância
    sid.inpe.br/mtc-m21c/2018/03.12.13.05-TDI ESTABILIDADE DE VEÍCULOS ESPACIAIS EM RESSONÂNCIA Rubens Antonio Condeles Júnior Tese de Doutorado do Curso de Pós-Graduação em Engenharia e Tecnologia Espaciais/Mecânica Espacial e Controle, orientada pelos Drs. Antonio Fernando Bertachini de Almeida Prado, e Tadashi Yokoyama, aprovada em 06 de abril de 2018. URL do documento original: <http://urlib.net/8JMKD3MGP3W34R/3QMPS3E> INPE São José dos Campos 2018 PUBLICADO POR: Instituto Nacional de Pesquisas Espaciais - INPE Gabinete do Diretor (GBDIR) Serviço de Informação e Documentação (SESID) Caixa Postal 515 - CEP 12.245-970 São José dos Campos - SP - Brasil Tel.:(012) 3208-6923/6921 E-mail: [email protected] COMISSÃO DO CONSELHO DE EDITORAÇÃO E PRESERVAÇÃO DA PRODUÇÃO INTELECTUAL DO INPE (DE/DIR-544): Presidente: Maria do Carmo de Andrade Nono - Conselho de Pós-Graduação (CPG) Membros: Dr. Plínio Carlos Alvalá - Centro de Ciência do Sistema Terrestre (COCST) Dr. André de Castro Milone - Coordenação-Geral de Ciências Espaciais e Atmosféricas (CGCEA) Dra. Carina de Barros Melo - Coordenação de Laboratórios Associados (COCTE) Dr. Evandro Marconi Rocco - Coordenação-Geral de Engenharia e Tecnologia Espacial (CGETE) Dr. Hermann Johann Heinrich Kux - Coordenação-Geral de Observação da Terra (CGOBT) Dr. Marley Cavalcante de Lima Moscati - Centro de Previsão de Tempo e Estudos Climáticos (CGCPT) Silvia Castro Marcelino - Serviço de Informação e Documentação (SESID) BIBLIOTECA DIGITAL: Dr. Gerald Jean Francis Banon Clayton Martins Pereira - Serviço de Informação
    [Show full text]
  • 1 Resonant Kuiper Belt Objects
    Resonant Kuiper Belt Objects - a Review Renu Malhotra Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ, USA Email: [email protected] Abstract Our understanding of the history of the solar system has undergone a revolution in recent years, owing to new theoretical insights into the origin of Pluto and the discovery of the Kuiper belt and its rich dynamical structure. The emerging picture of dramatic orbital migration of the planets driven by interaction with the primordial Kuiper belt is thought to have produced the final solar system architecture that we live in today. This paper gives a brief summary of this new view of our solar system's history, and reviews the astronomical evidence in the resonant populations of the Kuiper belt. Introduction Lying at the edge of the visible solar system, observational confirmation of the existence of the Kuiper belt came approximately a quarter-century ago with the discovery of the distant minor planet (15760) Albion (formerly 1992 QB1, Jewitt & Luu 1993). With the clarity of hindsight, we now recognize that Pluto was the first discovered member of the Kuiper belt. The current census of the Kuiper belt includes more than 2000 minor planets at heliocentric distances between ~30 au and ~50 au. Their orbital distribution reveals a rich dynamical structure shaped by the gravitational perturbations of the giant planets, particularly Neptune. Theoretical analysis of these structures has revealed a remarkable dynamic history of the solar system. The story is as follows (see Fernandez & Ip 1984, Malhotra 1993, Malhotra 1995, Fernandez & Ip 1996, and many subsequent works).
    [Show full text]
  • The Long-Term Dynamical Evolution of Planetary Systems
    The Long-Term Dynamical Evolution of Planetary Systems Melvyn B. Davies Lund University Fred C. Adams University of Michigan Philip Armitage University of Colorado, Boulder John Chambers Carnegie Institution of Washington Eric Ford The Pennsylvania State University, University of Florida Alessandro Morbidelli University of Nice Sean N. Raymond University of Bordeaux Dimitri Veras University of Cambridge This chapter concerns the long-term dynamical evolution of planetary systems from both theoretical and observational perspectives. We begin by discussing the planet-planet interactions that take place within our own Solar System. We then describe such interactions in more tightly-packed planetary systems. As planet-planet interactions build up, some systems become dynamically unstable, leading to strong encounters and ultimately either ejections or collisions of planets. After discussing the basic physical processes involved, we consider how these interactions apply to extrasolar planetary systems and explore the constraints provided by observed systems. The presence of a residual planetesimal disc can lead to planetary migration and hence cause instabilities induced by resonance crossing; however, such discs can also stabilise planetary systems. The crowded birth environment of a planetary system can have a significant impact: close encounters and binary companions can act to destabilise systems, or sculpt their properties. In the case of binaries, the Kozai mechanism can place planets on extremely eccentric orbits which may later circularise to produce hot Jupiters. 1. INTRODUCTION views the application of theoretical models to observations of the solar system and extrasolar planetary systems. Currently observed planetary systems have typically Planetary systems evolve due to the exchange of angu- evolved between the time when the last gas in the protoplan- lar momentum and / or energy among multiple planets, be- etary disc was dispersed, and today.
    [Show full text]
  • Orbital Resonances and Chaos in the Solar System
    Solar system Formation and Evolution ASP Conference Series, Vol. 149, 1998 D. Lazzaro et al., eds. ORBITAL RESONANCES AND CHAOS IN THE SOLAR SYSTEM Renu Malhotra Lunar and Planetary Institute 3600 Bay Area Blvd, Houston, TX 77058, USA E-mail: [email protected] Abstract. Long term solar system dynamics is a tale of orbital resonance phe- nomena. Orbital resonances can be the source of both instability and long term stability. This lecture provides an overview, with simple models that elucidate our understanding of orbital resonance phenomena. 1. INTRODUCTION The phenomenon of resonance is a familiar one to everybody from childhood. A very young child is delighted in a playground swing when an older companion drives the swing at its natural frequency and rapidly increases the swing amplitude; the older child accomplishes the same on her own without outside assistance by driving the swing at a frequency twice that of its natural frequency. Resonance phenomena in the Solar system are essentially similar – the driving of a dynamical system by a periodic force at a frequency which is a rational multiple of the natural frequency. In fact, there are many mathematical similarities with the playground analogy, including the fact of nonlinearity of the oscillations, which plays a fundamental role in the long term evolution of orbits in the planetary system. But there is also an important difference: in the playground, the child adjusts her driving frequency to remain in tune – hence in resonance – with the natural frequency which changes with the amplitude of the swing. Such self-tuning is sometimes realized in the Solar system; but it is more often and more generally the case that resonances come-and-go.
    [Show full text]
  • Arxiv:1308.3674V2 [Astro-Ph.HE]
    Draft version November 13, 2018 A Preprint typeset using LTEX style emulateapj v. 5/2/11 BLACK HOLE TRIPLE DYNAMICS: BREAKDOWN OF THE ORBIT AVERAGE APPROXIMATION AND IMPLICATIONS FOR GRAVITATIONAL WAVE DETECTIONS Fabio Antoninia, Norman Murraya & Seppo Mikkolab aCanadian Institute for Theoretical Astrophysics, University of Toronto, 60 George St., Toronto, Ontario M5S 3H8, Canada bTuorla Observatory, University of Turku, Vais¨ al¨ antie¨ 20, Piikkio¨ FI-21500, Finland E-mail: [email protected] Draft version November 13, 2018 Abstract Coalescing black hole (BH) binaries forming via dynamical interactions in the dense core of globu- lar clusters (GCs) are expected to be one the brightest and most numerous sources of gravitational wave (GW) radiation, detectable by the upcoming generation of ground based laser interferometers. Favorable conditions for merger are initiated by the Kozai resonance in which the gravitational in- teraction with a third distant object, typically another BH, induces quasi-periodic variations of the inner BH binary eccentricity. In this paper we perform high precision 3-body simulations of the long term evolution of hierarchical BH triples and investigate the conditions that lead to the merging of the BH binary and the way it might become an observable source of GW radiation. We find that the secular orbit average treatment, adopted in previous works, does not reliably describe the dynamics of these systems if the binary is orbited by the outer BH on a highly inclined orbit with a periapsis distance less than 10 times the inner binary semi-major axis. During the high eccentricity phase of a Kozai cycle the∼ torque due to the outer BH can drive the binary to extremely large eccentricities in a fraction of the binary’s orbital period.
    [Show full text]
  • Three-Body Capture of Irregular Satellites: Application to Jupiter
    Icarus 208 (2010) 824–836 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Three-body capture of irregular satellites: Application to Jupiter Catherine M. Philpott a,*, Douglas P. Hamilton a, Craig B. Agnor b a Department of Astronomy, University of Maryland, College Park, MD 20742-2421, USA b Astronomy Unit, School of Mathematical Sciences, Queen Mary University of London, London E14NS, UK article info abstract Article history: We investigate a new theory of the origin of the irregular satellites of the giant planets: capture of one Received 19 October 2009 member of a 100-km binary asteroid after tidal disruption. The energy loss from disruption is sufficient Revised 24 March 2010 for capture, but it cannot deliver the bodies directly to the observed orbits of the irregular satellites. Accepted 26 March 2010 Instead, the long-lived capture orbits subsequently evolve inward due to interactions with a tenuous cir- Available online 7 April 2010 cumplanetary gas disk. We focus on the capture by Jupiter, which, due to its large mass, provides a stringent test of our model. Keywords: We investigate the possible fates of disrupted bodies, the differences between prograde and retrograde Irregular satellites captures, and the effects of Callisto on captured objects. We make an impulse approximation and discuss Jupiter, Satellites Planetary dynamics how it allows us to generalize capture results from equal-mass binaries to binaries with arbitrary mass Satellites, Dynamics ratios. Jupiter We find that at Jupiter, binaries offer an increase of a factor of 10 in the capture rate of 100-km objects as compared to single bodies, for objects separated by tens of radii that approach the planet on relatively low-energy trajectories.
    [Show full text]
  • The Minor Planet Bulletin 37 (2010) 45 Classification for 244 Sita
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 37, NUMBER 2, A.D. 2010 APRIL-JUNE 41. LIGHTCURVE AND PHASE CURVE OF 1130 SKULD Robinson (2009) from his data taken in 2002. There is no evidence of any change of (V-R) color with asteroid rotation. Robert K. Buchheim Altimira Observatory As a result of the relatively short period of this lightcurve, every 18 Altimira, Coto de Caza, CA 92679 (USA) night provided at least one minimum and maximum of the [email protected] lightcurve. The phase curve was determined by polling both the maximum and minimum points of each night’s lightcurve. Since (Received: 29 December) The lightcurve period of asteroid 1130 Skuld is confirmed to be P = 4.807 ± 0.002 h. Its phase curve is well-matched by a slope parameter G = 0.25 ±0.01 The 2009 October-November apparition of asteroid 1130 Skuld presented an excellent opportunity to measure its phase curve to very small solar phase angles. I devoted 13 nights over a two- month period to gathering photometric data on the object, over which time the solar phase angle ranged from α = 0.3 deg to α = 17.6 deg. All observations used Altimira Observatory’s 0.28-m Schmidt-Cassegrain telescope (SCT) working at f/6.3, SBIG ST- 8XE NABG CCD camera, and photometric V- and R-band filters. Exposure durations were 3 or 4 minutes with the SNR > 100 in all images, which were reduced with flat and dark frames.
    [Show full text]
  • How Does the Lidov–Kozai Mechanism Protect Quadrantids Meteoroid Stream from Close Encounters with Jupiter?
    EPSC Abstracts Vol. 14, EPSC2020-551, 2020 https://doi.org/10.5194/epsc2020-551 Europlanet Science Congress 2020 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. How does the Lidov–Kozai mechanism protect Quadrantids meteoroid stream from close encounters with Jupiter? Georgy E. Sambarov1, Tatyana Yu. Galushina2, and Olga M. Syusina1,2 1Tomsk State University, Research Institute of Applied Mathematics and Mechanics, Russian Federation ([email protected]) 2Tomsk State University, Russian Federation ([email protected]) The dynamical evolution of simulated meteoroid stream of the Quadrantids ejected from the parent body of the asteroid (196256) 2003 EH1 expects possible scenario for resonant motion. We found a peculiar behavior for this stream. Here, we show that the orbits of some ejected particles are strongly affected by the Lidov–Kozai mechanism that protects them from close encounters with Jupiter. Lack of close encounters with Jupiter leads to a rather smooth growth in the parameter MEGNO (Mean Exponential Growth factor of Nearby Orbits) and the behavior imply the stable motion of simulation particles of the Quadrantids meteoroid stream. A rather smooth path with nearly constant semi-major axis is obtained due to lack of close encounters with Jupiter. The coupled oscillation of the three orbital parameters, e, i, and ω, for stable ejected particles is observed. However, close encounters with Jupiter are not treated by the Kozai formalism and can transfer particles away from the Kozai trajectories for unstable ejected particles over time. Other ejected particles have chaotic motion from simulations of the orbit of meteoroids are not affected by the Lidov – Kozai mechanism.
    [Show full text]
  • Reflectance Spectrum of (1154) Astronomia
    REFLECTANCE SPECTRUM OF (1154) ASTRONOMIA MIREL BIRLAN1,2, DAN ALIN NEDELCU2,1 1Institut de Mecanique´ Celeste´ et des Calculs des Eph´ em´ erides,´ CNRS UMR8028, Observatoire de Paris, PSL Research University 77 av Denfert-Rochereau, 75014 Paris Cedex, France Email: [email protected] 2Astronomical Institute, Romanian Academy 5-Cut¸itul de Argint, 040557 Bucharest, Romania Abstract. First reflectance spectrum in the near-infrared region between 0.9 and 2.5 µm of asteroid (11154) Astronomia is presented. Taxonomic and comparative plane- tology studies show similarities with carbonaceous and enstatitic chondrite meteorites. Spectral data together with thermal albedo conclude to a surface rich in CM, CM-like regolith. Numerical integration of clones for this object shows no marked chaoticity. Key words: Solar System – asteroid – spectroscopy – comparative planetology . 1. INTRODUCTION Asteroid (1154) Astronomia is a large asteroid located in the outer part of the Main Belt of Asteroids (Figure 1). It as discovered by K. Reinmuth en 1927 (Klare, 2003). This asteroid was observed by ECAS survey of color index (Zellner, Tholen, and Tedesco, 1985), and its thermal albedo was also derived from IRAS data (Tedesco and Veeder, 1992). Taxonomic studies concludes to a C0 taxon in Barucci’s taxon- omy (Barucci et al., 1987). This taxon is confirmed also with recalibrate IRAS albedo (Birlan, Fulchignoni, and Barucci, 1996). Based on ECAS data only, Tholen (1989) classify this object within FXU: taxonomic classes. Spectral data in the visible region were obtained by the S3OS2 survey (Lazzaro et al., 2004) and their taxonomic analysis placed the asteroid into the X-taxon. The NEOWISE survey (Mainzer et al., 2011) data analysis derived a fairly low value of the geometric albedo of 0.034±0.006.
    [Show full text]