Hypothesizing About Palm Weevil and Palm Rhinoceros Beetle Larvae As

Total Page:16

File Type:pdf, Size:1020Kb

Hypothesizing About Palm Weevil and Palm Rhinoceros Beetle Larvae As Principes,3T(l), I993, pp. 42-47 Hypothesizing About Palm Weevil and Palm Rhinoceros Beetle Larvae as Traditional Cuisine, Tropical Waste Recycling, and Pest and Disease Control on Coconut and Other Palms-Can They Be Integrated? GENI R. DnFouenr Dept. of Entomology, 237 Russell Laboratories, I630 Linden Drive, Madison, WI 53706 In their book on Cameroon cuisine, Gri- appearance, these worms are a delicious maldi and Bikia (1985) describe their rec- treat to many people, and they are regu- ipe for "coconut larvae" as a "favorite larly sold at Paramaribo." Stedman later dish offered only to good friends" (see rec- related (p. ll5) that: "We here found ipe, page 44). The flavor of "palmworms" concealed near the trunk of an old tree a (fat, Iegless larvae of the weevil genus case-bottle filled with excellent butter, Rhynchophorzs) has been appreciated which the rangers told me they made by throughout the tropical world for centu- melting and clarifying the fat of the palm- ries. There are a number of species, but tree worms: this fully answers all the pur- the major ones from the standpoint of wide poses of European butter, and I found it distribution and use as food are Rhyn- in fact even more delicious to my taste." chophorus palmarum in the W'estern Indigenous populations throughout the Hemisphere, R. phoenicis in Africa, and tropics have prized palmworms no less than R. ferrugineus in Asia. have Europeans, and in the case of R. Newcomers to the Caribbean region were palmarurn, Chagnon (1968:30-32) in particularly effusive about palmworms. Venezuela,/Brazil, Clastres (L97 2:16O-61) Bancroft (I769:239), in his "Natural His- in Paraguay, and Beckerman (1977) and tory of Guiana," wrote that the larvae are Dufour (1987) in Colombia have reported "esteemed a delicate morsel, not only by primitive cultivation systems for the lar- the aboriginal Natives, but by many of the vae. Chagnon reports: "The Yanomamo White Inhabitants, particularly the French, come very close to practising 'animal who roast them before the fire, and mix domestication' in their techniques of them with crumbs of bread, salt, and pep- exploiting this food. They deliberately cut per." Smeathman (I781:167-69), who the palm tree down in order to provide was working in West Africa at the time fodder for the insect. When they cut the and had taken a particular fancy to the tree, they also eat the heart of the palm, taste of the termite, Macrotermes belli- a very delicious, crunchy vegetable that coszs, said of the termites, "they are some- slightly resembles the taste of celery hearts. thing sweeter, but not so fat and cloying One palm we cut yielded an edible heart as the fpalmworm] which is served up at of about 50 pounds. After the pith has all the luxurious tables of West Indian been allowed to decay for several months, epicures, particularly of the French, as the it contains numerous large, fat, white grubs. greatest dainty of the Western world." The pith is dug out of the tree with sticks, And Stedman (1796:22-23) in Suriname, broken open by hand, and the grubs remarked that, "However disgusting to extracted. A fair-sized palm tree will r 9931 DEFOLIART: PALM BEETLE LARVAE yield three or four pounds of grubs, some reported a live weight of 3-16 grams for of them as large as a mouse. The grubs the grubs and a maximum acquisition rate are wrapped in small packages of leaves of 2,000 g/hotr. and placed in the hot coals to roast." Cha- With this gustatory background, let us gnon was told by a missionary that the look at another dimension of palm weevils, grubs taste very much like bacon. restricting ourselves temporarily to the The Guayaki of Paraguay, according to 'Western Hemisphere. Rhynchophorus Clastres, consider the palm larvae as "more palmarum is one of the most serious pests than a food gathered by chance in the of coconut and oil palms in Latin America forest; rather, it is the product of a sort and the Caribbean, mining the trunks of of cultivation. The Indians knock down the the trees and transmitting the nematode, palm tree, leaving a stump about 3 feet Rhadinaphelenchus cocophilus, which is high. They then generally cut the fallen the causal agent of red-ring disease (RRD) trunk into sections l0 or 12 feet long, (Morin et al. I986, and others). The weevil preparing the wood for the insects. infests many other species of palms, both Each man is the owner of his larvae bed. wild and cultivated, as well as sugarcane This private property is almost always and several root and fruit crops (Hagley respected and no one touches the larvae 1965, and others). Hill (1983) describes of another. Later, the harvest is divided the damage from the weevils as follows: and eaten collectively. Thus the Guayaki "The larvae burrow in the crown of the distribute a relatively abundant supply of palm, feeding on the young tissues, and food. It is of great interest to see that sometimes destroy the growing point, when the Guayaki, despite their being nomads, the palm will die. The leaves turn chlorotic establish a fixed source of food to be gath- and die, and the trunk becomes tunnelled ered much later. In doing so, they are and weakened, and may break in a storm." obliged to return to the cultivation area Schuiling and van Dinther (I98I) pro- after many months of travelling. This vide a good entry to the extensive litera- cultivation of guchu therefore exerts a pro- ture on RRD. The coconut palm may die found influence upon the wandering habits within 3-4 months after the appearance of the Guayaki in that it gives an order to of external symptoms which include yel- their travels." lowing of leaves and premature nutfall. In Colombia, Beckerman (I977) Internally the stem tissue is discolored and reported that the Bari Indians use only necrotic. There is evidence that only the lessenia palm as a "grub farm." The trees adult weevils are involved in the trans- are cut down and the logs left lying in the mission of the RRD nematode. forest. "In two or three months the whole Hill (I983) lists recommended insecti- trunk is infested with the edible larvae. cides and several cultural control methods Several hundred grams of larvae can be that are applied against R. palmarum, extracted from a single trunk. ." Dufour including elimination of breeding sites by (1987) reported that "The Tatuyo felled restricting physical injury to palms, control palms to harvest the fruits, and often of Oryctes beetles, destruction of infested returned at a later date to harvest the palms, and trapping of adult weevils. Morin larvae which subsequently developed in the et al. ( I 986) describe procedures that have pith. Palms were also cut specifically with been successfully used in Para and Bahia, the expectation that they would be invaded Brazil, since 1975. As adults are attracted by weevils and the larvae ready to harvest for feeding and reproduction to the odor in two or three months. Thus, the larvae of fermentation emanating from wounds in were both a by-product of the harvesting healthy palms or from the decay of dead of palm fruits and 'cultivated.'" Dufour or diseased palms, all injured or decaying PRINCIPES lVoL. 37 Cameroon cuisine - larves de Preparation: Larvae washed and cut in half are palmier mixed with all the condiments cited. The coconuts are chosen at half-hard stage, so that the inside, (From: Za Cuisine Camerounaise, by Jean Grimaldi completely globular, can be taken out of the husk and Alexandrine Bikia, p. 136. Thanks to Dr. Jane without being broken. The most pointed end of the Homan, UW International Agricultural Programs, for nut is cut in a way that forms a cap. The nuts are providing a copy, and to Diane Landry for a trans- emptied of their milk, then refilled with the larvae lation from the French.) and condiments and closed by attaching the caps The larvae of certain coleoptera harvested from firmly. some banana the oil palm and from the palm of genus Raphia are The nuts are stood straight up by of water eaten in Cameroon. These larvae, called "Fos" in leaves in a pot containing water. The amount course of cooking, it Ewondo, are white (oil palm) or yellow (raphia palm). should be such that, during the is rather long. They are sometimes reared. Before any preparation, cannot penetrate the nuts. The cooking the larvae are washed in a lot of water and pierced After cooking, the nuts are cut into slices. offered to good friends in the abdomen with a sharp piece of bamboo between This favorite dish is only each washing to let a white, fatty liquid escape. In and is served with manioc sticks. all regions they are prepared either by stewing, frying in oil with salt and pepper, adding to squash seed Bamoun preparation paste, or putting on brochettes grilled over coals. Among the Bamoun, the larvae are strung uP and left to dry hanging under the trellis that is found Coconut larvae recipe above the foyer. After they are well-smoked, they washed, into the Larvae coming from oil palms or raphia palms, can be incorporated, after being salt, pepper, onion, coconut. squash seed paste. trees are removed and traps are con- and early elimination of palms showing dis- structed along the edge of a plantation tinct growth disorders by felling and trans- from cut pieces of thinning, wild palms or porting the trunks to the oil factory where uninfested parts of damaged or diseased they were sawed into blocks and steam trees.
Recommended publications
  • Metamasius Hemipterus (Coleoptera: Curculionidae)
    EPPO, 2009 Mini data sheet on Metamasius hemipterus Metamasius hemipterus was added to the EPPO A1 List in 2009. A full datasheet will be prepared, in the meantime you can view here the data which was previously available from the EPPO Alert List (added to the EPPO Alert List in 2006 – deleted in 2009). Metamasius hemipterus (Coleoptera: Curculionidae) Why In 2006, larvae of Metamasius hemipterus (Coleoptera: Curculionidae) were intercepted by the Dutch NPPO on a consignment of plants for planting of Phoenix from Costa Rica. Considering the risk which may be presented by M. hemipterus especially for ornamental palm species, the NPPO of the Netherlands suggested that it should be added to the EPPO Alert List. Where EPPO region: Absent. It was intercepted by the Netherlands on a consignment of Phoenix plants from Costa Rica. There is also a record of this pest on imported banana material in the UK (Whitehead, 1991). Africa: Cameroon, Congo, Equatorial Guinea, Gabon, Nigeria. Asia: according to the CABI Crop Protection Compendium, M. hemipterus has a very limited distribution in Indonesia and the Philippines and is subject to phytosanitary measures. North America: Mexico, USA (Florida). Central America and Caribbean: Antigua and Barbuda, Barbados, Belize, Costa Rica, Cuba, Dominica, Dominican Republic, El Salvador, Grenada, Guadeloupe, Guatemala, Haiti, Honduras, Jamaica, Martinique, Montserrat, Nicaragua, Panama, Puerto Rico, Saint Lucia, St Kitts-Nevis, St Vincent and the Grenadines, Trinidad and Tobago, Virgin Islands (US). South America:
    [Show full text]
  • Biología Del Curculiónido Ferruginoso De Las Palmeras Rhynchophorus
    Bol. San. Veg. Plagas, 24: 737-748, 1998 Biología del curculiónido ferruginoso de las palmeras Rhynchophorus ferrugineus (Olivier) en laboratorio y campo: ciclo en cautividad, peculiaridades biológicas en su zona de introducción en España y métodos biológicos de detección y posible control (Coleoptera: Curculionidae: Rhynchophorinae) J. ESTEBAN-DURÁN, J. L. YELA, F. BEITIA-CRESPO y A. JIMÉNEZ-ÁLVAREZ Se estudian, en condiciones de laboratorio y sobre caña de azúcar, diferentes pará- metros del ciclo biológico de Rhynchophorus ferrugineus (Olivier) (Coleóptera: Curcu- lionidae), especie recientemente introducida en España. En concreto, se ha estudiado la longevidad de los adultos, el potencial biótico o fecundidad, la fertilidad y mortalidad en fase de huevo, la duración de los desarrollos larvario y pupal y sus mortalidades asociadas, la duración total del ciclo biológico (o período de desarrollo total) y el rendi- miento de la cría (en condiciones de cría en masa y cría individual). Se ha examinado, en el área de la introducción (Almuñecar, Granada), el rango de especies de palmeras hospedantes, y se han analizado algunos de los resultados producidos por la red de trampas equipadas con sustancias atrayentes (feromona + cairomona) situada en el área de Almuñecar y aledaños. Los resultados indican cierta ligera reducción, en cuanto a los valores medios, de la longevidad de los adultos y del potencial biótico o fecundi- dad, y cierto alargamiento en la duración de las diferentes fases de desarrollo (y en el ciclo total) respecto a los datos aportados por la bibliografía. La principal planta hospe- dante en Almuñecar es Phoenix canariensis (Palmaceae). Los adultos de R.
    [Show full text]
  • Yam Beetle (Heteroligus Meles) and Palm Weevil
    9782 Adesina Adeolu Jonathan/ Elixir Food Science 49 (2012) 9782-9786 Available online at www.elixirpublishers.com (Elixir International Journal) Food Science Elixir Food Science 49 (2012) 9782-9786 Proximate and anti-nutritional composition of two common edible insects: yam beetle ( Heteroligus meles ) and palm weevil ( Rhynchophorus phoenicis ) Adesina Adeolu Jonathan Department of Chemistry, Ekiti State University, PMB 5363, Ado Ekiti. Nigeria. ARTICLE INFO ABSTRACT Article history: Determination of the proximate and anti-nutritional composition of two common edible Received: 12 June 2012; insects: yam beetle ( Heteroligus meles ) and palm weevil ( Rhynchophorus phoenicis ) was Received in revised form: carried out and the results showed that they both contained an appreciable levels of protein 23 July 2012; (38.10 and 50.01% respectvely), with moisture, ash, fibre, lipid, carbohydrate and gross Accepted: 30 July 2012; energy levels being:(1.01, 5.78, 3.00, 32.01, 20.10% and 521.41Kcal/kg) and (1.16, 4.92, 2.56, 21.12, 20.23% and 480.02Kcal/kg) respectively. The results of the anti-nutritional Keywords analysis revealed that oxalate (total and soluble) were (29.00 and 19.32mg/100g) and (21.72 Heteroligus meles, and 14.01mg/100g) for yam beetles and palm weevils respectively. These results were fairly Rhynchophorus phoenicis, high compared to other anti-nutritional components of the studied insects but generally fall Proximate and anti-nutrients within nutritionally accepted values. The lower values of phytic acid, HCN and tannins Compositions. (0.311, 2.651 and 0.42mg/100g) and (0.276, 2.531 and 0.481 mg/100g) respectively for yam beetle and palm weevils.
    [Show full text]
  • Tropical Insect Chemical Ecology - Edi A
    TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT – Vol.VII - Tropical Insect Chemical Ecology - Edi A. Malo TROPICAL INSECT CHEMICAL ECOLOGY Edi A. Malo Departamento de Entomología Tropical, El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto Km. 2.5, Tapachula, Chiapas, C.P. 30700. México. Keywords: Insects, Semiochemicals, Pheromones, Kairomones, Monitoring, Mass Trapping, Mating Disrupting. Contents 1. Introduction 2. Semiochemicals 2.1. Use of Semiochemicals 3. Pheromones 3.1. Lepidoptera Pheromones 3.2. Coleoptera Pheromones 3.3. Diptera Pheromones 3.4. Pheromones of Insects of Medical Importance 4. Kairomones 4.1. Coleoptera Kairomones 4.2. Diptera Kairomones 5. Synthesis 6. Concluding Remarks Acknowledgments Glossary Bibliography Biographical Sketch Summary In this chapter we describe the current state of tropical insect chemical ecology in Latin America with the aim of stimulating the use of this important tool for future generations of technicians and professionals workers in insect pest management. Sex pheromones of tropical insectsUNESCO that have been identified to– date EOLSS are mainly used for detection and population monitoring. Another strategy termed mating disruption, has been used in the control of the tomato pinworm, Keiferia lycopersicella, and the Guatemalan potato moth, Tecia solanivora. Research into other semiochemicals such as kairomones in tropical insects SAMPLErevealed evidence of their presence CHAPTERS in coleopterans. However, additional studies are necessary in order to confirm these laboratory results. In fruit flies, the isolation of potential attractants (kairomone) from Spondias mombin for Anastrepha obliqua was reported recently. The use of semiochemicals to control insect pests is advantageous in that it is safe for humans and the environment. The extensive use of these kinds of technologies could be very important in reducing the use of pesticides with the consequent reduction in the level of contamination caused by these products around the world.
    [Show full text]
  • CARIBBEAN FOOD CROPS SOCIETY 46 Forty Sixth Annual Meeting 2010
    CARIBBEAN FOOD CROPS SOCIETY 46 Forty Sixth Annual Meeting 2010 Boca Chica, Dominican Republic Vol. XLVI - Number 2 T-STAR Invasive Species Symposium PROCEEDINGS OF THE 46th ANNUAL MEETING Caribbean Food Crops Society 46th Annual Meeting July 11-17, 2010 Hotel Oasis Hamaca Boca Chica, Dominican Republic "Protected agriculture: a technological option for competitiveness of the Caribbean" "Agricultura bajo ambiente protegido: una opciôn tecnolôgica para la competitividad en el Caribe" "Agriculture sous ambiance protégée: une option technologique pour la compétitivité de las Caraïbe" United States Department of Agriculture, T-STAR Sponsored Invasive Species Symposium Toward a Collective Safeguarding System for the Greater Caribbean Region: Assessing Accomplishments since the first Symposium in Grenada (2003) and Coping with Current Threats to the Region Special Symposium Edition Edited by Edward A. Evans, Waldemar Klassen and Carlton G. Davis Published by the Caribbean Food Crops Society © Caribbean Food Crops Society, 2010 ISSN 95-07-0410 Copies of this publication may be received from: Secretariat, CFCS c/o University of the Virgin Islands USVI Cooperative Extension Service Route 02, Box 10,000 Kingshill, St. Croix US Virgin Islands 00850 Or from CFCS Treasurer P.O. Box 506 Isabella, Puerto Rico 00663 Mention of company and trade names does not imply endorsement by the Caribbean Food Crops Society. The Caribbean Food Crops Society is not responsible for statements and opinions advanced in its meeting or printed in its proceedings; they represent the views of the individuals to whom they are credited and are not binding on the Society as a whole. ι Proceedings of the Caribbean Food Crops Society.
    [Show full text]
  • Mass Trapping and Biological Control of Rhynchophorus Palmarum L. A
    ISSN 1983-0572 Publicação do Projeto Entomologistas do Brasil www.ebras.bio.br Mass Trapping and Biological Control of Rhynchophorus palmarum L.: A hypothesis based on morphological evidences Flávio Costa Miguens¹, Jorge André Sacramento de Magalhães¹, Livia Melo de Amorim¹, Viviane Rossi Goebel¹, Nicola Le Coustour², Marie Lummerzheim², José Inácio Lacerda Moura³ & Rosane Motta Costa¹ 1. Universidade Estadual do Norte Fluminense Darci Ribeiro. Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Campos dos Goytacazes, Rio de Janeiro, Brasil, e-mail: [email protected] (Autor para correspondência), [email protected], [email protected], [email protected], [email protected]. 2. Ecole Superiereure d’ Agriculture Purpan, e-mail: lummerzheim@ purpan.fr, [email protected]. 3. Estação Experimental Lemos Maia CEPEC CEPLAC, e-mail: [email protected]. AL _____________________________________ EntomoBrasilis 4 (2): 49-55 (2011) ER Abstract. Palm weevils have been reported as a pest and red ring nematode vectors for several palms of the Arecaceae family. Rhynchophorus palmarum L (Coleoptera: Curculionidae) is a pest for coconut crop and other palms. It is vector of Bursaphelenchus cocophilus (Cobb) Baujard (Nematoda) etiological agent of Red Ring disease and other nematodes. Current methods recommended use of enemies and parasites in integrated pest management of Rhynchophorinae. In addition, mass trap reduce environmental damage. The objectives of our study on coconut plantations were: (1) to determine the efficiency of low expensive kariomones traps and (2) low expensive kariomones and pheromones traps using adult males; and (3) to examine R. palmarum using light and scanning electron microscopy searching for ectoparasites which can be proposed in integrated pest management.
    [Show full text]
  • Four New Palm Species Records for Rhynchophorus Palmarum (Coleoptera: Curculionidae) in California
    Four new palm species records for Rhynchophorus palmarum (Coleoptera: Curculionidae) in California Mark S. Hoddle1,*, Gregory Johansen2, Erich Kast2, Angel M. Lopez2, and Magen M. Shaw2 Rhynchophorus palmarum (L.) (Coleoptera: Curculionidae) is a de- this pest is a very strong flier, its rate of spread throughout the urban structive pest of palms (Arecaceae) that is native to parts of Mexico, environment appears to be slow (Hoddle et al. 2020; 2021). One pos- Central, and South America, and the Caribbean. Larval feeding dam- sible reason for slow spread is the high abundance and diversity of age to the meristematic region of the palm may result in palm death ornamental palm species, especially the highly preferred host, P. ca- (Milosavljević et al. 2019). In the native range, R. palmarum vectors a nariensis, growing in residential, recreational (e.g., parks), commercial plant pathogenic nematode, Bursaphelenchus cocophilus (Cobb) (Aph- (e.g., shopping malls), and riparian wilderness areas (e.g., natural area elenchida: Parasitaphelenchidae), the causative agent of a lethal palm preserves that have wilding P. canariensis). disorder, red ring disease (Griffith 1987; Gerber & Giblin-Davis 1990). Balboa Park in San Diego County is a 486 ha (4.9 km2) urban park Rhynchophorus palmarum was first detected in San Diego County, Cali- that is renowned for its garden spaces (https://en.wikipedia.org/wiki/ fornia, USA, in 2011. Populations established in San Ysidro, southern Balboa_Park_(San_Diego)#Gardens) in which 43 palm species in 24 San Diego County, sometime around 2015. Founding populations in genera encompassing 2,353 individuals are a defining landscape fea- San Ysidro likely originated from Tijuana, Baja California, Mexico, about ture.
    [Show full text]
  • Giant Palm Weevils of the Genus Rhynchophorus (Coleoptera: Curculionidae) and Their Threat to Florida Palms
    DACS-P-01719 Pest Alert created 18-February-2010 Florida Department of Agriculture and Consumer Services, Division of Plant Industry Adam H. Putnam, Commissioner of Agriculture Giant Palm Weevils of the Genus Rhynchophorus (Coleoptera: Curculionidae) and Their Threat to Florida Palms Michael C. Thomas, Taxonomic Entomologist, Florida Department of Agriculture and Consumer Services, Division of Plant Industry INTRODUCTION: The giant palm weevils of the genus Rhynchophorus Herbst are among the worst palm pests in the world. One species, Rhynchophorus cruentatus (Fabricius), is native to Florida and the southeastern US. Two other species, Rhynchophorus ferrugineus (Olivier) and Rhynchophorus palmarum (L.), are found in the New World and are considered to be threats to palms in Florida. Of particular concern is R. ferrugineus, known as the red palm weevil. It is a pest of coconut and other palms in its native range. Over the past three decades, its range has expanded into the Middle East, North Africa and Mediterranean Europe. It attacks many palm species, but is especially devastating on date palms. It recently became established in Curaçao in the Caribbean, placing it ever closer to Florida. In each case, it is suspected that the weevils travelled with imported palms. In January 2010, the federal government prohibited the importation into the United States of live palms belonging to 17 genera. IDENTIFICATION: Identification of adult palm weevils is straightforward as they are the largest weevils in NorthAmerica, ranging from about 1 to 1.8 inches (25mm to 45mm) in length. The individual species are rather similar, but the three species under consideration can be distinguished by the following key: 1.
    [Show full text]
  • Seminole State Forest Soils Map
    EXHIBIT I Management Procedures for Archaeological and Historical Sites and Properties on State-Owned or Controlled Lands Management Procedures for Archaeological and Historical Sites and Properties on State-Owned or Controlled Properties (revised February 2007) These procedures apply to state agencies, local governments, and non-profits that manage state- owned properties. A. General Discussion Historic resources are both archaeological sites and historic structures. Per Chapter 267, Florida Statutes, ‘Historic property’ or ‘historic resource’ means any prehistoric district, site, building, object, or other real or personal property of historical, architectural, or archaeological value, and folklife resources. These properties or resources may include, but are not limited to, monuments, memorials, Indian habitations, ceremonial sites, abandoned settlements, sunken or abandoned ships, engineering works, treasure trove, artifacts, or other objects with intrinsic historical or archaeological value, or any part thereof, relating to the history, government, and culture of the state.” B. Agency Responsibilities Per State Policy relative to historic properties, state agencies of the executive branch must allow the Division of Historical Resources (Division) the opportunity to comment on any undertakings, whether these undertakings directly involve the state agency, i.e., land management responsibilities, or the state agency has indirect jurisdiction, i.e. permitting authority, grants, etc. No state funds should be expended on the undertaking until the Division has the opportunity to review and comment on the project, permit, grant, etc. State agencies shall preserve the historic resources which are owned or controlled by the agency. Regarding proposed demolition or substantial alterations of historic properties, consultation with the Division must occur, and alternatives to demolition must be considered.
    [Show full text]
  • Panzer), 1798 (Coleoptera, Curculionidae, Rhynchophorinae
    JOURNAL OF NATURAL HISTORY, 2004, 38, 2863–2882 Synonymy of Rhynchophorus ferrugineus (Olivier), 1790 and R. vulneratus (Panzer), 1798 (Coleoptera, Curculionidae, Rhynchophorinae) R. H. HALLETT{, B. J. CRESPI{ and J. H. BORDEN§ {Department of Environmental Biology, University of Guelph, Guelph, ON, Canada N1G 2W1; e-mail: [email protected] {Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada V5A 1S6 §Centre for Pest Management, Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada V5A 1S6 (Accepted 10 October 2003) Morphological, molecular-genetic and breeding data were collected to investigate the species status of the Asian palm weevils, Rhynchophorus ferrugineus (Olivier) and R. vulneratus (Panzer) (Coleoptera: Curculionidae). These weevils are distinguished by characteristic colouring of the pronota and elytra, but naturally occurring colour intermorphs were observed. Contrary to the literature, quantitative measurements of the concavity of subgenal sutures and of pronotal shape indicated no differences between the two species. Larvae did not differ significantly in labral characteristics. Random amplified polymorphic DNA (RAPD) banding patterns were identical for nine of 14 primers, indicating that these weevils are very closely related. Sequences of the cytochrome oxidase gene for 201 base pairs read were identical for R. ferrugineus and R. vulneratus, but the congener R. bilineatus differed from them by 10%, suggesting divergence of these lineages about 5 million years ago. Hybrid F1s were obtained from all heterospecific crosses, and one surviving hybrid F1 female produced viable eggs. Previous studies have revealed no pheromonal differences. On the basis of this evidence, R. ferrugineus and R. vulneratus should be considered colour morphs of the same species and be synonymized under the name Rhynchophorus ferrugineus (Olivier), with the common name Asian palm weevil.
    [Show full text]
  • Insect Morphology and Systematics (Ento-131) - Notes
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/276175248 Insect Morphology and Systematics (Ento-131) - Notes Book · April 2010 CITATIONS READS 0 14,110 1 author: Cherukuri Sreenivasa Rao National Institute of Plant Health Management (NIPHM), Hyderabad, India 36 PUBLICATIONS 22 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Agricultural College, Jagtial View project ICAR-All India Network Project on Pesticide Residues View project All content following this page was uploaded by Cherukuri Sreenivasa Rao on 12 May 2015. The user has requested enhancement of the downloaded file. Insect Morphology and Systematics ENTO-131 (2+1) Revised Syllabus Dr. Cherukuri Sreenivasa Rao Associate Professor & Head, Department of Entomology, Agricultural College, JAGTIAL EntoEnto----131131131131 Insect Morphology & Systematics Prepared by Dr. Cherukuri Sreenivasa Rao M.Sc.(Ag.), Ph.D.(IARI) Associate Professor & Head Department of Entomology Agricultural College Jagtial-505529 Karminagar District 1 Page 2010 Insect Morphology and Systematics ENTO-131 (2+1) Revised Syllabus Dr. Cherukuri Sreenivasa Rao Associate Professor & Head, Department of Entomology, Agricultural College, JAGTIAL ENTO 131 INSECT MORPHOLOGY AND SYSTEMATICS Total Number of Theory Classes : 32 (32 Hours) Total Number of Practical Classes : 16 (40 Hours) Plan of course outline: Course Number : ENTO-131 Course Title : Insect Morphology and Systematics Credit Hours : 3(2+1) (Theory+Practicals) Course In-Charge : Dr. Cherukuri Sreenivasa Rao Associate Professor & Head Department of Entomology Agricultural College, JAGTIAL-505529 Karimanagar District, Andhra Pradesh Academic level of learners at entry : 10+2 Standard (Intermediate Level) Academic Calendar in which course offered : I Year B.Sc.(Ag.), I Semester Course Objectives: Theory: By the end of the course, the students will be able to understand the morphology of the insects, and taxonomic characters of important insects.
    [Show full text]
  • Metamasius Hemipterus
    Metamasius hemipterus Scientific Name Metamasius hemipterus (Linnaeus, 1758) Synonyms: Calandra sacchari Gyllenhal, 1838 Curculio hemipterus Linnaeus, 1758 Curculio rufofasciatus De Geer, 1775 Curculio variegatus Fabricius, 1787 Sphenophorus ambiguus Gyllenhal, 1838 Sphenophorus decoratus Gyllenhal, 1838 Sphenophorus hemipterus (Linnaeus, 1758) Sphenophorus inscripta Gyllenhal, 1838 Sphenophorus sacchari Gyllenhal, 1838 Sphenophorous nigerrimus Gyllenhal, 1838 Taxonomic note Metamasius hemipterus includes three subspecies: M. hemipterus carbonarius, M. hemipterus hemipterus, and M. hemipterus sericeus (Vaurie, 1966). Differences are found in the color pattern of the elytra, pronotum, or venter but not in form (Vaurie, 1966). Some of the information contained in this datasheet may refer specifically to the subspecies M. h. sericeus, which is currently found in the United States (Florida). Common Name West Indian cane weevil, rotten cane stalk borer, rotten sugarcane weevil, silky cane weevil, weevil borer, West Indian sugarcane borer Type of Pest Weevil Taxonomic Position Class: Insecta, Order: Coleoptera, Family: Dryophthoridae Reason for Inclusion in Manual Additional Pests of Concern for 2013 (as Metamasius spp.); Previously listed on the CAPS AHP Master Pest List Pest Description 1 Eggs: The egg is yellowish cream, approximately 1.7 mm (approx. /16 in) long, ovoid and semitransparent (CABI, 2012). 1 3 Larvae: The larva is white and robust with a width of 3.2 to 4.5 mm (approx. /8 to /16 in). Thoracic and abdominal sclerites are yellow in color while the head is brown with 9 11 paler stripes on the dorsal side. Body length is 15 to 17 mm (approx. /16 to /16 in). Last updated: September 13, 2013 1 Three dorsal folds are present on the abdominal segments while the 9th abdominal segment is either smoothly rounded or transverse.
    [Show full text]