Skimming Behaviour and Spreading Potential of Stenus Species and Dianous Coerulescens (Coleoptera: Staphylinidae)

Total Page:16

File Type:pdf, Size:1020Kb

Skimming Behaviour and Spreading Potential of Stenus Species and Dianous Coerulescens (Coleoptera: Staphylinidae) Naturwissenschaften (2012) 99:937–947 DOI 10.1007/s00114-012-0975-4 ORIGINAL PAPER Skimming behaviour and spreading potential of Stenus species and Dianous coerulescens (Coleoptera: Staphylinidae) Carolin Lang & Karlheinz Seifert & Konrad Dettner Received: 22 June 2012 /Revised: 25 September 2012 /Accepted: 3 October 2012 /Published online: 21 October 2012 # Springer-Verlag Berlin Heidelberg 2012 Abstract Rove beetles of the genus Stenus Latreille and the evolutionary aspects of the Steninae’s pygidial gland secretion genus Dianous Leach possess pygidial glands containing a are discussed. multifunctional secretion of piperidine and pyridine-derived alkaloids as well as several terpenes. One important character Keywords Stenus . Skimming behaviour . Skimming of this secretion is the spreading potential of its different velocity . Spreading potential . Spreading pressure . compounds, stenusine, norstenusine, 3-(2-methyl-1-butenyl)- Evolution pyridine, cicindeloine, α-pinene, 1,8-cineole and 6-methyl- 5-heptene-2-one. The individual secretion composition ena- bles the beetles to skim rapidly and far over the water Introduction surface, even when just a small amount of secretion is emitted. Ethological investigations of several Stenus species In 1774, Franklin (in Gaines 1966) observed first the phe- revealed that the skimming ability, skimming velocity and nomenon of spreading as he put a teaspoon of oil on the the skimming behaviour differ between the Stenus species. water surface of a pond. The ability of the oil to spread on These differences can be linked to varied habitat claims and the water surface forming a thin layer he called “spreading”. secretion saving mechanisms. By means of tensiometer With help of the applied amount of oil and the oil-covered measurements using the pendant drop method, the spreading area of the pond, he estimated that the layer must be pressure of all secretion constituents as well as some naturally monomolecular. identical beetle secretions on the water surface could be estab- Nowadays, spreading is defined generally as the expan- lished. The compound 3-(2-methyl-1-butenyl)pyridine ex- sion of a fluid or solid phase on a fluid surface establishing a celled stenusine believed to date to be mainly responsible for monolayer (Dörfler 1994). However, the phenomenon of skimming relating to its surface activity. The naturally identi- spreading can not only be found in physical chemistry cal secretions are not subject to synergistic effects of the single science of surfaces but also in the great outdoors. Small compounds concerning the spreading potential. Furthermore, staphylinid beetles of the genera Stenus and Dianous use spreading as an effective and extraordinary way of locomo- tion on water surfaces. Communicated by: Sven Thatje Rove beetles of the genera Stenus Latreille and Dianous Leach are small, slender and black insects that predominant- Electronic supplementary material The online version of this article (doi:10.1007/s00114-012-0975-4) contains supplementary material, ly inhabit wet biotopes, e.g. marshes, banks of pools and which is available to authorized users. rivers (Horion 1963; Dettner 1987). The genus Stenus is one of the species-rich genera within the animal kingdom. Till C. Lang (*) : K. Dettner Department of Animal Ecology II, University of Bayreuth, this day, 2,377 species and eight fossil species are known 95440 Bayreuth, Germany worldwide (Puthz 2008). e-mail: [email protected] The direct neighbourhood of open waters in the habitat of most Stenus and Dianous species harbours danger for the K. Seifert Department of Organic Chemistry, University of Bayreuth, beetles. While hunting for springtails, it is possible that the 95440 Bayreuth, Germany hydrophobic beetles accidently fall into water. The unusual 938 Naturwissenschaften (2012) 99:937–947 behaviour of spreading has evolved in these insects as a Jenkins (1960) investigated the spreading behaviour of mechanism to save themselves from drowning and to escape Stenus and Dianous beetles. The spreading action of these predators like water striders (Linsenmair 1963; Schildknecht two genera he named “skimming”.Besides,heobservedthe et al. 1975). For the first time, Piffard (1901) discovered that negative phototactic navigation of Stenus and Dianous on the some species of Stenus beetles are able to move over the water surface towards the dark bank of a pool. The beetles water surface in a rapid and extraordinary manner. At this, waste no time to achieve the save waterside. Schildknecht et the beetle glides on the water with high velocity without al. (1975) found that a secretion of the pygidial glands in the using its legs. A few years later, Billard and Bruyant (1905) anal region is responsible for the skimming action (Fig. 2). observed this locomotion in Stenus tarsalis Ljungh and The secretion is emitted by the everted glands as soon as the Stenus cicindeloides Schaller. They report an emission of beetle contacts the water surface and spreads on the water chemicals that interact with the water surface like a surfac- surface immediately. tant and propel the beetle fast forward comparable to a “soap The gland compounds form a monomolecular film whose boat” (Fig. 1). This locomotion is driven by the marangoni front pushes the beetle forward (Dettner 1991). By this kind propulsion (Scriven and Sternling 1960). Marangoni flows of locomotion, e.g. Stenus comma can achieve a velocity of are those forced by surface tension gradients. Surfactants 0.75 ms−1, and if the secretion is continuous, a distance up like soap and the emitted substances of the beetles are to 15 m can be covered (Linsenmair and Jander 1963). Apart molecules that find it energetically favourable to reside at from Stenus and Dianous beetles, the extraordinary move- the free surface and act to decrease the local surface tension ment is just shown by the water cricket Velia caprai Tam- (Bush and Hu 2006). anini, which uses its rostrum and as well spreading active salvia for skimming (Linsenmair and Jander 1963). No other animal is known to have this unique kind of locomotion. The driving force for skimming is the spreading potential of the gland compounds. Thereby, it is essential that the gland compounds are barely soluble in water; otherwise, it is not possible to form a monolayer. Additionally, the spread- ing agent has to exhibit a lower surface tension than the layer-carrying substance which is water in case of Stenus and Dianous (Adamson and Gast 1997). Schildknecht (1976) discovered that the Stenus secretion consists of several different compounds. Stenusine (1)is Fig. 1 Skimming procedure of Stenus comma. a Fallen on the water Fig. 2 Pygidial gland system of Stenus comma. Left side the pair of surface, the beetle is carried by the surface tension due to the hydro- pygidial glands is arranged in the abdominal tip. Right side schematic phobicity of its tarsi. b The beetle bends its abdomen and emits a small diagram of the paired pygidial glands in detail. r1 big reservoir, s1 amount of its gland secretion on the water surface. c Lying flat on the secretory cells associated to r1, r2 small reservoir, s2 secretory cells water surface due to reduction of surface tension, the beetle is pro- associated to s2, rm retractor muscle of eversible membrane parts, a1 pelled fast forward by the spreading agents in its secretion. Middle and and a2 apodemes on which retractor muscles insert, em eversible hind legs are held close to the body. The skimming direction can be membrane parts forming basal pouches; from Szujecki 1961, Whitman changed by bending the abdomen et al. 1990 and Schierling unpublished, modified Naturwissenschaften (2012) 99:937–947 939 mainly responsible for skimming because it is featured by known secretion compounds (1–7) are synthetically available, the highest spreading pressure and therefore lowers the it is first possible to measure the spreading potentials of all surface tension of water the most compared with 1,8-cineole known compounds. Over and above, we mixed artificially (6) and 6-methyl-5-heptene-2-one (7) (Schildknecht et al. natural identical secretions of some Stenus species to prove 1976). Besides, 1 forms the main component of the secre- their surface activity. tion of most Stenus species. In the course of time, many more gland compounds were identified characterizing the gland content (Fig. 3). The alkaloids 1 (Schildknecht et al. Materials and methods 1975) and norstenusine (2) (Kohler 1979), the pyridine compound 3-(2-methyl-1-butenyl)pyridine (3)(Lusebrink Collection, determination and keeping of the beetles et al. 2009) and the epoxypiperideine cicindeloine (4) (Müller et al. 2012) are stored in the big reservoirs, The Stenus beetles were collected in summer 2011 at a moun- whereas the terpenoids α-pinene (5)(Neumann1993), tain stream in the Black Forest,Germany,nearBaiersbronn 6 and 7 (Schildknecht 1970) are provided in the small (48°51′00″N; 8°31′41″E; collected species: D. coerulescens, reservoirs (Fig. 2). Stenus stigmula) and at a lakeside near Creußen, Germany The spreading pressures of the compounds can be mea- (49°52′17″N; 11°36′40″E; collected species: see all species sured experimentally for instance at an interfacial tensiom- except of D. coerulescens and S. stigmula listed in Table 1). eter (Schildknecht et al. 1976). After the measurement of the The small lake features a large marshy accretion zone with surface tension σ of the compounds against air and the plant debris. After collection, the beetles were identified by interfacial tension γ against water, the spreading pressure using the key of Lohse (1964), the additions of Lohse (1989) P can be calculated according to the following equation and additionally the new identification key of Puthz (2001, defined by Wolf (1957) 2008). After determination, the beetles were kept in Petri dishes on moist gypsum mixed with activated charcoal to prevent ¼ σ À σ þ ð Þ P water substance gsubstance= water 1 mould formation and to provide enough moisture.
Recommended publications
  • First Record of the Genus Ilyomyces for North America, Parasitizing Stenus Clavicornis
    Bulletin of Insectology 66 (2): 269-272, 2013 ISSN 1721-8861 First record of the genus Ilyomyces for North America, parasitizing Stenus clavicornis Danny HAELEWATERS Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, USA Abstract The ectoparasitic fungus Ilyomyces cf. mairei (Ascomycota Laboulbeniales) is reported for the first time outside Europe on the rove beetle Stenus clavicornis (Coleoptera Staphylinidae). This record is the first for the genus Ilyomyces in North America. De- scription, illustrations, and discussion in relation to the different species in the genus are given. Key words: ectoparasites, François Picard, Ilyomyces, rove beetles, Stenus. Introduction 1939) described Acallomyces lavagnei F. Picard (Picard, 1913), which he later reassigned to a new genus Ilyomy- Fungal diversity is under-documented, with diversity ces while adding a second species, Ilyomyces mairei F. estimates often based only on relationships with plants. Picard (Picard, 1917). For a long time both species were Meanwhile, the estimated number of fungi associated only known from France, until Santamaría (1992) re- with insects ranges from 10,000 to 50,000, most of ported I. mairei from Spain. Weir (1995) added two which still need be described from the unexplored moist more species to the genus: Ilyomyces dianoi A. Weir and tropical regions (Weir and Hammond, 1997). Despite Ilyomyces victoriae A. Weir, parasitic on Steninae from the biological and ecological importance the relation- Sulawesi, Indonesia. This paper presents the first record ship might have for studies of co-evolution of host and of Ilyomyces for the New World. parasite and in applications in biological control, insect- parasites have received little attention, unfortunately.
    [Show full text]
  • Green-Tree Retention and Controlled Burning in Restoration and Conservation of Beetle Diversity in Boreal Forests
    Dissertationes Forestales 21 Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests Esko Hyvärinen Faculty of Forestry University of Joensuu Academic dissertation To be presented, with the permission of the Faculty of Forestry of the University of Joensuu, for public criticism in auditorium C2 of the University of Joensuu, Yliopistonkatu 4, Joensuu, on 9th June 2006, at 12 o’clock noon. 2 Title: Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests Author: Esko Hyvärinen Dissertationes Forestales 21 Supervisors: Prof. Jari Kouki, Faculty of Forestry, University of Joensuu, Finland Docent Petri Martikainen, Faculty of Forestry, University of Joensuu, Finland Pre-examiners: Docent Jyrki Muona, Finnish Museum of Natural History, Zoological Museum, University of Helsinki, Helsinki, Finland Docent Tomas Roslin, Department of Biological and Environmental Sciences, Division of Population Biology, University of Helsinki, Helsinki, Finland Opponent: Prof. Bengt Gunnar Jonsson, Department of Natural Sciences, Mid Sweden University, Sundsvall, Sweden ISSN 1795-7389 ISBN-13: 978-951-651-130-9 (PDF) ISBN-10: 951-651-130-9 (PDF) Paper copy printed: Joensuun yliopistopaino, 2006 Publishers: The Finnish Society of Forest Science Finnish Forest Research Institute Faculty of Agriculture and Forestry of the University of Helsinki Faculty of Forestry of the University of Joensuu Editorial Office: The Finnish Society of Forest Science Unioninkatu 40A, 00170 Helsinki, Finland http://www.metla.fi/dissertationes 3 Hyvärinen, Esko 2006. Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests. University of Joensuu, Faculty of Forestry. ABSTRACT The main aim of this thesis was to demonstrate the effects of green-tree retention and controlled burning on beetles (Coleoptera) in order to provide information applicable to the restoration and conservation of beetle species diversity in boreal forests.
    [Show full text]
  • Additions, Deletions and Corrections to the Staphylinidae in the Irish Coleoptera Annotated List, with a Revised Check-List of Irish Species
    Bulletin of the Irish Biogeographical Society Number 41 (2017) ADDITIONS, DELETIONS AND CORRECTIONS TO THE STAPHYLINIDAE IN THE IRISH COLEOPTERA ANNOTATED LIST, WITH A REVISED CHECK-LIST OF IRISH SPECIES Jervis A. Good1 and Roy Anderson2 1Glinny, Riverstick, Co. Cork, Republic of Ireland. e-mail: <[email protected]> 21 Belvoirview Park, Belfast BT8 7BL, Northern Ireland. e-mail: <[email protected]> Abstract Since the 1997 Irish Coleoptera – a revised and annotated list, 59 species of Staphylinidae have been added to the Irish list, 11 species confirmed, a number have been deleted or require to be deleted, and the status of some species and names require correction. Notes are provided on the deletion, correction or status of 63 species, and a revised check-list of 710 species is provided with a generic index. Species listed, or not listed, as Irish in the Catalogue of Palaearctic Coleoptera (2nd edition), in comparison with this list, are discussed. The Irish status of Gabrius sexualis Smetana, 1954 is questioned, although it is retained on the list awaiting further investgation. Key words: Staphylinidae, check-list, Irish Coleoptera, Gabrius sexualis. Introduction The Staphylinidae (rove-beetles) comprise the largest family of beetles in Ireland (with 621 species originally recorded by Anderson, Nash and O’Connor (1997)) and in the world (with 55,440 species cited by Grebennikov and Newton (2009)). Since the publication in 1997 of Irish Coleoptera - a revised and annotated list by Anderson, Nash and O’Connor, there have been a large number of additions (59 species), confirmation of the presence of several species based on doubtful old records, a number of deletions and corrections, and significant nomenclatural and taxonomic changes to the list of Irish Staphylinidae.
    [Show full text]
  • New Species and Records of Stenus (Nestus) of the Canaliculatus Group, with the Erection of a New Species Group (Insecta: Coleoptera: Staphylinidae: Steninae)
    European Journal of Taxonomy 13: 1-62 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2012.13 www.europeanjournaloftaxonomy.eu 2012 · Alexandr B. Ryvkin This work is licensed under a Creative Commons Attribution 3.0 License. Monograph New species and records of Stenus (Nestus) of the canaliculatus group, with the erection of a new species group (Insecta: Coleoptera: Staphylinidae: Steninae) Alexandr B. RYVKIN Laboratory of Soil Zoology & General Entomology, Severtsov Institute of Problems of Ecology & Evolution, Russian Academy of Sciences, Leninskiy Prospect, 33, Moscow, 119071 Russia. Bureinskiy Nature Reserve, Zelyonaya 3, Chegdomyn, Khabarovsk Territory, 682030 Russia. Leninskiy Prospekt, 79, 15, Moscow, 119261 Russia. Email: [email protected] Abstract. The canaliculatus species group of Stenus (Nestus) is redefi ned. Four new Palaearctic species of the group are described and illustrated: S. (N.) alopex sp. nov. from the Putorana Highland and Taymyr Peninsula, Russia; S. (N.) canalis sp. nov. from SE Siberia and the Russian Far East; S. (N.) canosus sp. nov. from the Narat Mt Ridge, Chinese Tien Shan; S. (N.) delitor sp. nov. from C & SE Siberia. New distributional data as well as brief analyses of old records for fourteen species described earlier are provided from both Palaearctic and Nearctic material. S. (N.) milleporus Casey, 1884 (= sectilifer Casey, 1884) is revalidated as a species propria. S. (N.) sphaerops Casey, 1884 is redescribed; its aedeagus is fi gured for the fi rst time; the aedeagus of S. (N.) caseyi Puthz, 1972 as well as aedeagi of eight previously described Palaearctic species are illustrated anew. A key for the identifi cation of all the known Palaearctic species of the group is given.
    [Show full text]
  • Coleoptera, Staphylinidae)
    Die chemische Ökologie von Kurzflügelkäfern der Gattungen Dianous und Stenus (Coleoptera, Staphylinidae) Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) der Fakultät für Biologie, Chemie und Geowissenschaften der Universität Bayreuth vorgelegt von ANDREAS SCHIERLING aus Wunsiedel Bayreuth, im März 2013 Die vorliegende Arbeit wurde im Zeitraum von Januar 2010 bis März 2013 am Lehrstuhl für Tierökologie II der Universität Bayreuth unter Betreuung von Herrn Prof. Dr. Konrad Dettner angefertigt. Vollständiger Abdruck der von der Fakultät für Biologie, Chemie und Geowissenschaften der Universität Bayreuth genehmigten Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. Nat.). Dissertation eingereicht am: 05.03.2013 Zulassung durch die Prüfungskommission: 07.03.2013 Wissenschaftliches Kolloquium: 30.07.2013 Amtierender Dekan: Prof. Dr. Beate Lohnert Prüfungsausschuss: Prof. Dr. K. Dettner (Erstgutachter) Prof. Dr. K. H. Hofmann (Zweitgutachter) Prof. Dr. Ch. Laforsch (Vorsitz) Prof. Dr. K. Seifert PD Dr. St. Geimer Inhalt INHALTSVERZEICHNIS TEIL I - SYNOPSIS 1. Einführung .............................................................................................................................. 1 1.1 Chemische Verteidigung bei Arthropoden .............................................................. 1 1.2 Chemische Abwehr der Staphylinidae .................................................................... 2 1.3 Chemische Ökologie der Steninae .........................................................................
    [Show full text]
  • Discovery of Steninae from Ningxia, Northwest China (Coleoptera, Staphylinidae)
    A peer-reviewed open-access journal ZooKeys 272:Discovery 1–20 (2013) of Steninae from Ningxia, Northwest China (Coleoptera, Staphylinidae) 1 doi: 10.3897/zookeys.272.4389 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research Discovery of Steninae from Ningxia, Northwest China (Coleoptera, Staphylinidae) Liang Tang1,†, Li-Zhen Li2,‡ 1 Department of Biology, Shanghai Normal University, 100 Guilin Road, 1st Educational Building 323 Room, Shanghai, 200234 P. R. China † urn:lsid:zoobank.org:author:F45FE527-E59A-4702-A87E-B45BC33ED4C7 ‡ urn:lsid:zoobank.org:author:BBACC7AE-9B70-4536-ABBE-54183D2ABD45 Corresponding author: Liang Tang ([email protected]) Academic editor: V. Assing | Received 24 November 2012 | Accepted 6 February 2013 | Published 22 February 2013 urn:lsid:zoobank.org:pub:8833D386-A173-4E88-90E4-576E1018A946 Citation: Tang L, Li L-Z (2013) Discovery of Steninae from Ningxia, Northwest China (Coleoptera, Staphylinidae). ZooKeys 272: 1–20. doi: 10.3897/zookeys.272.4389 Abstract A study on the Steninae of Ningxia Autonomous Region is presented. Sixteen species are recognized, in- cluding new province records for 11 species and four new species: Stenus biwenxuani sp. n., S. liupanshanus sp. n., Dianous yinziweii sp. n., D. ningxiaensis sp. n. Habitus photos of the new species, illustrations of diagnostic characters of all species and a key to species of the Steninae recorded from Ningxia are provided. Keywords Coleoptera, Staphylinidae, Steninae, China, Ningxia, identification key, new species Introduction Steninae, comprising two genera Stenus Latreille, 1797 and Dianous Leach, 1819, is a speciose subfamily of Staphylinidae. So far, 296 Stenus species and 103 Dianous species have been recorded from China.
    [Show full text]
  • Viscous Marangoni Propulsion
    J. Fluid Mech. (2012), vol. 705, pp. 120–133. c Cambridge University Press 2011 120 doi:10.1017/jfm.2011.484 Viscous Marangoni propulsion Eric Lauga† and Anthony M. J. Davis Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0411, USA (Received 3 May 2011; revised 15 October 2011; accepted 1 November 2011; first published online 19 December 2011) Marangoni propulsion is a form of locomotion wherein an asymmetric release of surfactant by a body located at the surface of a liquid leads to its directed motion. We present in this paper a mathematical model for Marangoni propulsion in the viscous regime. We consider the case of a thin rigid circular disk placed at the surface of a viscous fluid and whose perimeter has a prescribed concentration of an insoluble surfactant, to which the rest of its surface is impenetrable. Assuming a linearized equation of state between surface tension and surfactant concentration, we derive analytically the surfactant, velocity and pressure fields in the asymptotic limit of low capillary, Peclet´ and Reynolds numbers. We then exploit these results to calculate the Marangoni propulsion speed of the disk. Neglecting the stress contribution from Marangoni flows is seen to over-predict the propulsion speed by 50 %. Key words: capillary flows, low-Reynolds-number flows, propulsion 1. Introduction The study of animal locomotion, as carried out by zoologists and organismal biologists (Gray 1968; Alexander 2002b), has long been a source of new problems in fluid dynamics, either because fluid flows pose biological constraints which deserve to be quantified (Vogel 1996) or because biological situations lead to interesting and new fluid physics (Lighthill 1975; Childress 1981).
    [Show full text]
  • Frank and Thomas 1984 Qev20n1 7 23 CC Released.Pdf
    This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA. COCOON-SPINNING AND THE DEFENSIVE FUNCTION OF THE MEDIAN GLAND IN LARVAE OF ALEOCHARINAE (COLEOPTERA, STAPHYLINIDAE): A REVIEW J. H. Frank Florida Medical Entomology Laboratory 200 9th Street S.E. Vero Beach, Fl 32962 U.S.A. M. C. Thomas 4327 NW 30th Terrace Gainesville, Fl 32605 U.S.A. Quaestiones Entomologicae 20:7-23 1984 ABSTRACT Ability of a Leptusa prepupa to spin a silken cocoon was reported by Albert Fauvel in 1862. A median gland of abdominal segment VIII of a Leptusa larva was described in 1914 by Paul Brass who speculated that it might have a locomotory function, but more probably a defensive function. Knowledge was expanded in 1918 by Nils Alarik Kemner who found the gland in larvae of 12 aleocharine genera and contended it has a defensive function. He also suggested that cocoon-spinning may be a subfamilial characteristic of Aleocharinae and that the Malpighian tubules are the source of silk. Kemner's work has been largely overlooked and later authors attributed other functions to the gland. However, the literature yet contains no proof that Kemner was wrong even though some larvae lack the gland and even though circumstantial evidence points to another (perhaps peritrophic membrane) origin of the silk with clear evidence in some species that the Malpighian tubules are the source of a nitrogenous cement.
    [Show full text]
  • Species Diversity, Chorology, and Biogeography of the Steninae
    Dtsch. Entomol. Z. 63 (1) 2016, 17–44 | DOI 10.3897/dez.63.5885 museum für naturkunde Species diversity, chorology, and biogeography of the Steninae MacLeay, 1825 of Iran, with comparative notes on Scopaeus Erichson, 1839 (Coleoptera, Staphylinidae) Sayeh Serri1, Johannes Frisch1 1 Insect Taxonomy Research Department, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization, Tehran, 19395-1454, Iran 2 Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstrasse 43, D-10115 Berlin, Germany http://zoobank.org/70C12A81-00A7-46A3-8AF0-9FC20EB39AA6 Corresponding author: Sayeh Serri ([email protected]; [email protected]) Abstract Received 8 August 2015 Accepted 26 November 2015 The species diversity, chorology, and biogeography of the Steninae MacLeay, 1825 (Co- Published 25 January 2016 leoptera: Staphylinidae) in Iran is described. A total of 68 species of Stenus Latreille, 1797 and one species of Dianous Leach, 1819 is recorded for this Middle Eastern coun- Academic editor: try. Dianous coerulescens korgei Puthz, 2002, Stenus bicornis Puthz, 1972, S. butrinten- Dominique Zimmermann sis Smetana, 1959, S. cicindeloides Schaller, 1783, S. comma comma Le Conte, 1863, and S. hospes Erichson, 1840 are recorded for the Iranian fauna for the first time. Records of S. cordatoides Puthz, 1972, S. guttula P. Müller 1821, S. melanarius melanarius Ste- Key Words phens, 1833, S. planifrons planifrons Rey, 1884, S. pusillus Stephens, 1833, and S. umbri- cus Baudi di Selve, 1870 for Iran are, however, implausible or proved erroneous. Based Staphylinidae on literature records and recent collecting data since 2004, the distribution of the stenine Steninae species in Iran is mapped, and their biogeographical relationships are discussed.
    [Show full text]
  • Species Index
    505 NOMINA INSECTA NEARCTICA SPECIES INDEX abdominalis Fabricius Oxyporus (Staphylinidae) Tachyporus abdominalis Haldeman Stenura (Cerambycidae) Leptura a abdominalis Hopkins Hypothenemus (Scolytidae) Hypothenemus columbi aabaaba Erwin Brachinus (Carabidae) Brachinus abdominalis Kirby Thanasimus (Cleridae) Thanasimus undatulus abadona Skinner Epicauta (Meloidae) Epicauta abdominalis LeConte Atelestus (Melyridae) Endeodes basalis abbreviata Casey Asidopsis (Tenebrionidae) Asidopsis abdominalis LeConte Coniontis (Tenebrionidae) Coniontis abbreviata Casey Cinyra (Buprestidae) Spectralia gracilipes abdominalis LeConte Feronia (Carabidae) Cyclotrachelus incisa abbreviata Casey Pinacodera (Carabidae) Cymindis abdominalis LeConte Malthinus (Cantharidae) Belotus abbreviata Gentner Glyptina (Chrysomelidae) Glyptina abdominalis LeConte Tanaops (Melyridae) Tanaops abbreviata Germar Leptura (Cerambycidae) Strangalepta abdominalis Olivier Altica (Chrysomelidae) Kuschelina vians abbreviata Herman Pseudopsis (Staphylinidae) Pseudopsis abdominalis Say Coccinella (Coccinellidae) Olla v-nigrum abbreviata Melsheimer Disonycha (Chrysomelidae) Disonycha abdominalis Say Cryptocephalus (Chrysomelidae) Pachybrachis discoidea abdominalis Schaeffer Silis (Cantharidae) Silis abbreviatus Bates Dicaelus (Carabidae) Dicaelus laevipennis abdominalis Voss Eugnamptus (Attelabidae) Eugnamptus angustatus abbreviatus Blanchard Cardiophorus (Elateridae) Cardiophorus abdominalis White Tricorynus (Anobiidae) Tricorynus abbreviatus Casey Oropus (Staphylinidae) Oropus abducens
    [Show full text]
  • Genetic Variability of Two Ecomorphological Forms
    A peer-reviewed open-access journal ZooKeys 626:Genetic 67–86 (2016)variability of two ecomorphological forms of Stenus Latreille, 1797 in Iran... 67 doi: 10.3897/zookeys.626.8155 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Genetic variability of two ecomorphological forms of Stenus Latreille, 1797 in Iran, with notes on the infrageneric classification of the genus (Coleoptera, Staphylinidae, Steninae) Sayeh Serri1, Johannes Frisch2, Thomas von Rintelen2 1 Insect Taxonomy Research Department, Iranian Research Institute of Plant Protection, Agricultural Rese- arch, Education and Extension Organization, Tehran, 19395-1454, Iran 2 Museum für Naturkunde Berlin, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstrasse 43, D-10115 Berlin, Germany Corresponding author: Sayeh Serri ([email protected]; [email protected]) Academic editor: A. Brunke | Received 17 February 2016 | Accepted 18 September 2016 | Published 20 October 2016 http://zoobank.org/A141DF2D-F1AC-406C-A342-E78E144803E0 Citation: Serri S, Frisch J, von Rintelen T (2016) Genetic variability of two ecomorphological forms of Stenus Latreille, 1797 in Iran, with notes on the infrageneric classification of the genus (Coleoptera, Staphylinidae, Steninae). ZooKeys 626: 67–86. doi: 10.3897/zookeys.626.8155 Abstract In this study, the genetic diversity of Iranian populations of two widespread Stenus species representing two ecomorphological forms, the “open living species” S. erythrocnemus Eppelsheim, 1884 and the “stra- tobiont” S. callidus Baudi di Selve, 1848, is presented using data from a fragment of the mitochondrial COI gene. We evaluate the mitochondrial cytochrome oxidase I haplotypes and the intraspecific genetic distance of these two species. Our results reveal a very low diversity of COI sequences in S.
    [Show full text]
  • GROUND BEETLES and ROVE BEETLES ASSOCIATED with TEMPORARY PONDS in ENGLAND DEREK LOTT (D. A. Lott, Leicestershire Museums, Arts
    40 DEREK LOTT GROUND BEETLES AND ROVE BEETLES ASSOCIATED WITH TEMPORARY PONDS IN ENGLAND DEREK LOTT (D. A. Lott, Leicestershire Museums, Arts & Records Service, Holly Hayes, 216 Birstall Rd, Birstall, Leicester LE4 4DG, U.K.) [E-mail: [email protected]] Introduction To date, research on the ecology and conservation of wetland invertebrates has concentrated overwhelmingly on fully aquatic organisms. Many of these spend part of their life-cycle in adjacent terrestrial habitats, either as pupae (water beetles) or as adults (mayflies, dragonflies, stoneflies, caddisflies and Diptera or true-flies). However, wetland specialist species also occur among several families of terrestrial insects (Williams & Feltmate 1992) that complete their whole life-cycle in the riparian zone or on emergent vegetation. Eyre & Lott (1996) listed 441 terrestrial invertebrate species which characteristically occur in riparian habitats along British rivers. Most of these species belong to two families of predatory beetles: the ground beetles (Carabidae) and the rove beetles (Staphylinidae). The prevalence of these two families in beetle assemblages is repeated in a wider range of temperate wetland types (Krogerus 1948; Obrtel 1972; Kohler 1996), where, usually, rove beetles are the most species-rich terrestrial family. Both groups have carnivorous larvae and adults, feeding on a wide range of other insects and small invertebrates (Bauer 1974, 1991) or scavenging on dead insects and cast skins washed up at the water's edge (Hering & Plachter 1997). However, some rove beetles (e.g. Bledius species) feed on algae (Herman 1986). Many species of carabid and staphylinid beetles that live in wetland habitats are recognised to have significance for nature conservation (Shirt 1987; Hyman 1992, 1994).
    [Show full text]