Door County Fact Sheet Page 2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Lake Michigan Natural Division Characteristics
The Lake Michigan Natural Division Characteristics Lake Michigan is a dynamic deepwater oligotrophic ecosystem that supports a diverse mix of native and non-native species. Although the watershed, wetlands, and tributaries that drain into the open waters are comprised of a wide variety of habitat types critical to supporting its diverse biological community this section will focus on the open water component of this system. Watershed, wetland, and tributaries issues will be addressed in the Northeastern Morainal Natural Division section. Species diversity, as well as their abundance and distribution, are influenced by a combination of biotic and abiotic factors that define a variety of open water habitat types. Key abiotic factors are depth, temperature, currents, and substrate. Biotic activities, such as increased water clarity associated with zebra mussel filtering activity, also are critical components. Nearshore areas support a diverse fish fauna in which yellow perch, rockbass and smallmouth bass are the more commonly found species in Illinois waters. Largemouth bass, rockbass, and yellow perch are commonly found within boat harbors. A predator-prey complex consisting of five salmonid species and primarily alewives populate the pelagic zone while bloater chubs, sculpin species, and burbot populate the deepwater benthic zone. Challenges Invasive species, substrate loss, and changes in current flow patterns are factors that affect open water habitat. Construction of revetments, groins, and landfills has significantly altered the Illinois shoreline resulting in an immeasurable loss of spawning and nursery habitat. Sea lampreys and alewives were significant factors leading to the demise of lake trout and other native species by the early 1960s. -
Status of Pacific Island Coral Reef Fisheries by Tim Adams1, Paul Dalzell1 and Richard Farman2
Status of Pacific Island coral reef fisheries by Tim Adams1, Paul Dalzell1 and Richard Farman2 1. SPC Coastal Fisheries Programme 2. Service de la mer, Province Sud, Nouméa, New Caledonia (paper presented at 8th International Coral Reef Symposium, Panama, 1996) Abstract It is difficult to determine the status of fisheries on Pacific Islands coral reefs. The region is economically undeveloped, sparsely populated and its coral reefs are scattered over a vast area. Resultant constraints on monitoring and investigation mean that quantitative information is rare. The few available quantitative indicators are summarised here alongside opinions based on extensive practical experience. Most anecdotal reports about exploitation of Pacific Island marine life that reach the global press concern adverse aspects of fisheries and this, in context with the definite crises being experienced in other global fisheries, particularly southeast Asian reef-fisheries, has led to a general feeling of pessimism about the broad impact of fishing on Pacific Island reefs. However, the available evidence suggests that Pacific Island reef fisheries as a whole do not exert an excessive pressure on reefs and that (high) local protein nutritional demands can be sustained at least for the immediate future. However, it is urgent that this apparent overall sustainability be consolidated through state-recognised management arrangements; it is necessary that some specific overfishing problems be addressed; and it is particularly important that the adverse influence of terrestrial activities and run-off on the carrying capacity of coral reefs fisheries be mitigated. Introduction Fisheries on Pacific Island coral reefs, despite the increasing pace of outside influence, are still overwhelmingly subsistence fisheries. -
AN OVERVIEW of the GEOLOGY of the GREAT LAKES BASIN by Theodore J
AN OVERVIEW OF THE GEOLOGY OF THE GREAT LAKES BASIN by Theodore J. Bornhorst 2016 This document may be cited as: Bornhorst, T. J., 2016, An overview of the geology of the Great Lakes basin: A. E. Seaman Mineral Museum, Web Publication 1, 8p. This is version 1 of A. E. Seaman Mineral Museum Web Publication 1 which was only internally reviewed for technical accuracy. The Great Lakes Basin The Great Lakes basin, as defined by watersheds that drain into the Great Lakes (Figure 1), includes about 85 % of North America’s and 20 % of the world’s surface fresh water, a total of about 5,500 cubic miles (23,000 cubic km) of water (1). The basin covers about 94,000 square miles (240,000 square km) including about 10 % of the U.S. population and 30 % of the Canadian population (1). Lake Michigan is the only Great Lake entirely within the United States. The State of Michigan lies at the heart of the Great Lakes basin. Together the Great Lakes are the single largest surface fresh water body on Earth and have an important physical and cultural role in North America. Figure 1: The Great Lakes states and Canadian Provinces and the Great Lakes watershed (brown) (after 1). 1 Precambrian Bedrock Geology The bedrock geology of the Great Lakes basin can be subdivided into rocks of Precambrian and Phanerozoic (Figure 2). The Precambrian of the Great Lakes basin is the result of three major episodes with each followed by a long period of erosion (2, 3). Figure 2: Generalized Precambrian bedrock geologic map of the Great Lakes basin. -
Radisson's Two Western Journeys
RADISSON'S TWO WESTERN JOU RN EYS When the French in the beginning of the seventeenth century took possession of the St. Lawrence Valley, the acquisition does not seem to have been considered an event of major importance. The population of the home coun try was not yet so dense as to demand new territory for expansion. For many years, moreover, there was doubt that agriculture would prove profitable In a climate so much more severe than that of France. The acquisition of Can ada was therefore considered of dubious value except by a few missionaries, and the royal government was very slow in granting any assistance for the safety or progress of the new colony. Soon, however, it was discovered that this American possession could supply one great need of the home coun try, and that was furs. Particularly was it rich in beaver, which was in great demand for beaver hats—the headgear demanded by fashion. The fur trade therefore became the mainstay of the colony and gained for it the few crumbs of favor that it received. For many years this trade was confined to the small tribes on the rivers that empty into the St. Lawrence from the north. Then came a larger supply of furs from the more populous Huron country and from the Ottawa on Manitoulln Island. Each spring when the Indians brought in their canoes filled with peltries, small fairs were held in Montreal and Three Rivers, where the natives exchanged their furs for the utensils, tools, orna ments, and dainties that the French merchants and habit ants had to offer. -
Our Ocean Backyard –– Santa Cruz Sentinel Columns by Gary Griggs, Director, Institute of Marine Sciences, UC Santa Cruz
Our Ocean Backyard –– Santa Cruz Sentinel columns by Gary Griggs, Director, Institute of Marine Sciences, UC Santa Cruz. #45 January 2, 2010 Why Monterey Submarine Canyon? Monterey Submarine Canyon forms a deep gash beneath the waters of Monterey Bay. At the risk of beating submarine canyons to death, I’m going to try to wrap up this discussion with some final thoughts on why we have one of the world’s largest submarine canyons in our backyard. Monterey Submarine Canyon has been known for over a century, and as with other offshore drainage systems, there has been considerable speculation over the years as to why we have this huge chasm cutting across the seafloor. Most submarine canyons align with river systems, but Elkhorn Slough hardly provides an adequate onshore source for such a massive feature. We do know that prior to 1910 the Salinas River discharged six miles north of its present mouth into Elkhorn Slough, closer to the head of Monterey Submarine Canyons. But even the Salinas River is not of the scale we would expect for an offshore feature as large as the Grand Canyon. Over 50 years ago, two geologists discovered the presence of a deep buried inland canyon beneath the Santa Cruz Mountains from oil company drill holes. This combined with other geological and geophysical observations strongly suggested that this canyon was eroded by an ancient river drainage system that played a critical role in the initial formation of the Monterey Submarine Canyon. This buried canyon, named Pajaro Gorge by some, was the route that the drainage from California’s vast Central Valley followed to the ocean for million of years. -
Wetland Loss in the Lower Galveston Bay Watershed
Galveston Bay Wetland Permit and Mitigation Assessment Lisa Gonzalez Dr. Erin Kinney Dr. John Jacob Marissa Llosa Transportation Stream & Wetland Mitigation Peer Exchange – June 5-6, 2018 Galveston Bay Watershed ~24,000 square miles ~Half of Texas’ population of 28M TXDOT Districts Beaumont Houston Population Growth 213 % 59 % 65 % * 119 % * 54 % 239 % 106 % 89 % % Change in Population 1990 to 2017 Data Source: U.S. Census, *Texas Demographic Center Population Projection Regional Habitat H-GAC Eco-Logical Map; Wetland Mitigation Opportunities white paper, 2014 Regional Land Cover Change; 1996-2010 • Growth in impervious (107K acres) & developed (254K acres) areas • Wetland net change -54K acres NLDC, NOAA C-CAP Coastal Bottomlands and Blue Elbow Mitigation Banks Mitigation Bank Mitigation Bank HUC8 ORMII Permits ORMII Permits Galveston Bay Mitigation Banks TCWP Ground-truth Wetland Mitigation Assessment • 17 sites: 4 permit mitigation sites not accessible, leaving 13 permits for site review (8 PRM, 5 MB). • Assessment criteria based on three-fold definition of a wetland (Tiner, 1989): – Hydrophytic vegetation (partially or completely submerged in water), – Evidence of hydrology, – Soil indicators consistent with wetland hydrology. • Conservative assessment: – Success: “reasonably wet” with recognizable wetland plants and hydric soils. – Failure: substandard compensatory mitigation site with a lack of any evidence for wetland mitigation TCWP Ground-truth Wetland Mitigation Assessment • Minimum 5% of the total mitigation site inventoried. • Plots (10 m x 10 m) representatively within the tract. • Plant species presence and percent cover assessed. • Cover of various biotic and abiotic surface materials collected in each plot. • Comprehensive list of species compiled. • Pictures of the site and the sample plot taken along with any notable site features. -
Wisconsin Great Lakes Chronicle 2019 CONTENTS
Wisconsin Great Lakes Chronicle 2019 CONTENTS Foreword . 1 Governor Tony Evers Regional Maritime Strategy . 2 Mike Friis Water Resources and LiDAR in Wisconsin . 4 Jim Giglierano Bay Beach Restoration . 6 Dan Ditscheit Fresh Coast Resource Center . 8 Christopher Schultz and Jacob Fincher Apostle Islands: Partnering for Accessibility . 10 Mark R. Peterson Managing Visitor Use in Coastal Protected Areas . 12 Lauren Leckwee Coastal Processes Manual . 14 Yi Liu 2019 Wisconsin Coastal Management Program Grants . 16 Acknowledgements . 20 On the Cover Peninsula State Park, Department of Tourism FOREWORD Governor Tony Evers Dear Readers: Welcome to the 2019 regional economy. This is among the many reasons into Lake Michigan and Lake Superior, my edition of Wisconsin why these waters are so important, and why it is administration, Lt. Gov. Mandela Barnes and I are Great Lakes Chronicle one of my top priorities as governor is to protect working hard to ensure our water resources can which highlights our natural resources and ensure our water is clean, continue supporting our economies, sustaining important efforts to safe, usable, and enjoyable for generations to come. our families, and helping our businesses thrive. conserve, protect, This year, I am also honored to be leading the I hope you enjoy this year’s edition of Wisconsin and restore our Great Great Lakes St. Lawrence Governors & Premiers Great Lakes Chronicle celebrating the good work Lakes and shorelines on initiatives to improve the quality of the and dedication of so many folks across our across our state. Great Lakes and enhance our regional economy. state. Although we are taking significant steps to From drinking water to trade to outdoor We recently adopted resolutions to reduce protect the Great Lakes, we know that there is recreation, the Great Lakes have played a critically drinking water contaminants and reaffirmed much work yet to do. -
Door County Lighthouse Map
Door County Lighthouse Map Canal Station Lighthouse (#3) Sherwood Point Lighthouse (#4) Compliments of the Plum Island Range Light (#6) www.DoorCounty.com Pilot Island Lighthouse (#9) Door County Lighthouses # 2 Eagle Bluff Lighthouse Location: Follow Hwy. 42 to the North end of The Door County Peninsula’s 300 miles of Fish Creek to the entrance of Peninsula State shoreline, much of it rocky, gave need for th Park. You must pay a park admission fee the lighthouses so that sailors of the 19 when you enter the park. Inquire about the th and early 20 centuries could safely directions to the lighthouse at the park’s front navigate the lake and bay waters around entrance. History: The lighthouse was the Door peninsula & surrounding islands. established in 1868 and automated in 1926. Restoration began in 1960 by the Door County # 1 Cana Island Lighthouse Historical Society. The lighthouse has been open for tours since 1964. Welcome: Tours are $4 for adults, $1 for students, and children 5 and under are free. Tour hours are daily from 10-4, late May through mid-October. Tours depart every 30 minutes. The park maintains a parking lot and restrooms adjacent to the grounds. Information: Phone (920) 839-2377 or online at www.EagleBluffLighthouse.org. Maintained and operated by the Door County Historical Society. Tower is only open to public during Lighthouse Walk weekend in May # 3 Canal Station / Pierhead Light Location: Take County Q at the North edge of Baileys Harbor to Cana Island Rd. two and Location: This fully operating US Coast a half miles (Note: Sharp Right Turn on Cana Guard station is located at the Lake Michigan Island Rd). -
Gulf of California - Sea of Cortez Modern Sailing Expeditions
Gulf of California - Sea of Cortez Modern Sailing Expeditions November 24 to December 4, 2019 Modern Sailing School & Club Cpt Blaine McClish (415) 331 – 8250 Trip Leader THE BOAT — Coho II, 44’ Spencer 1330 Coho II is MSC’s legendary offshore racer/cruiser. She has carried hundreds of MSC students and sailors under the Golden Gate Bridge and onto the Pacific Ocean. At 44.4 feet overall length and 24,000 pounds of displacement, Coho II is built for crossing oceans with speed, seakindly motion, and good performance in both big winds and light airs. • Fast and able bluewater cruiser • Fully equipped for the offshore sailing and cruising experience TRAVEL ARRANGEMENTS You are responsible for booking your own airfare. Direct flights from SFO to La Paz, and Los Cabos to SFO are available but are limited. Flights with layovers in San Diego or Los Angeles will cost less than direct flights. If you would like to use a travel agent to book your flights, we suggest Bob Entwisle at E&E Travel at (415) 819-5665. WHAT TO BRING Luggage Travel light. Your gear should fit in a medium duffel bag and small carry-on bag. Your carry-on should be less than 15 pounds. We recommend using a dry bag or backpack. Both bags should be collapsible for easy storage on the boat in small space. Do not bring bags with hard frames as they are difficult to stow. Gear We have found that people often only use about half of what they bring. A great way to bring only what you use is to lay all your items out and reduce it by 50%. -
Raised Marine Features, Radiocarbon Dates, and Sea Level Changes, Eastern Melville Peninsula, Arctic Canada’ L.A
ARCTIC VOL. 44, NO. 1 (MARCH 1991) R 63-73 Raised Marine Features, Radiocarbon Dates, and Sea Level Changes, Eastern Melville Peninsula, Arctic Canada’ L.A. DREDGE2 (Received 5 April 1990; accepted in revised form 9 October 1990) ABSTRACT. Radiocarbon dates from eastern Melville Peninsula indicatethat deglaciation of western Foxe Basin occurredabout 6900 years ago, although lateice persisted in an area northwest of Hall Lake and on the central plateau. Relative sea level was as high as 144 m above present at that time. ’ho new well-controlled sea level curves depict emergence as an exponential decay function. Marine limit elevations and nested curves indicate a major ice-loading centre in south-central Foxe Basin. Thesedata and archaeological dates suggest a secondary recent rebound centre in the northern part of the basin. Flights of raised beaches, prevalentin the area, are composed of angular limestone fragments and suggest that frost-riving occurs in shallow foreshore environments. The prominentwash line near the marine limit suggests that Foxe Basin had less sea ice cover prior to 6OOO years ago but that coastal processes have been similar to present since that time. Key words: Arctic, coasts, archaeology, radiocarbon dating, glacial history, emergence, sea level, geomorphology RESUMl?. Des datations au carbone radioactif dansla presqu’ile Melville orientale indiquent que la dbglaciation du Foxe bassin s’est produit vers 6900 ans, bien quela glace ait persist6 dans une zone situ& au nord-ouest du Lac etHall sur le plateau central.A cette bpoque, le niveau de la mer s’tlevait A 144 m au-dessus du niveau actuel. -
Mackinac County
MACKINAC COUNTY S o y C h r t o u Rock r u BETTY B DORGANS w C t d 8 Mile R D n 6 mlet h o i C d t H o y G r e e Island LANDING 4 CROSSING B u N a Y o d Rd R R R 4 e 8 Mile e y 4 1 k t R k d n 2 ix d t S 14 7 r i Advance n p n 17 d i m Unknow d o e a F u 5 C 123 t e T 7 x k d y O l a o s e i R i R 1 Ibo Rd 1 r r e r Sugar d C M o d Island R a e d R 4 p y f e D c E e S l e n N e i 4 C r a R E R o Y d R L 221 e v a i l 7 R h d A i w x d N i C n S a e w r d g d p e n s u d p 5 a c o r R a r t e B U d d T Island in t g G i e e a n r i g l R R n i o R a d e e R r Rd d o C C o e d d 9 Mile e c 4 r r g k P r h d a L M e n M t h R v B W R R e s e 2 r R C R O s n p N s l k n RACO ea l e u l 28 o ROSEDALE n i R C C d 1 y C l i ree a e le Rd e k a U d e v i 9 Mi e o S y r S a re e d i n g C R R Seney k t ek N e r h C Shingle Bay o U e i u C s R D r e U essea S Sugar B d e F s h k c n c i MCPHEES R L n o e f a a r s t P x h B y e d ut a k 3 So i r k i f u R e t o 0 n h a O t t 1 3 R r R d r r A h l R LANDING 3 M le 7 7 s i T o 1 E d 0 M n i 1 C w a S t U i w e a o s a kn ECKERMAN t R R r v k C o n I Twp r C B U i s Superior e e Island h d d e b Mile Rd r d d Mile Rd 10 e a S f 10 o e i r r q l n s k i W c h n d C u F 3 Columbus u T l McMillan Twp ens M g C g a h r t E a h r 5 Mo reek R n E T 9 H H q m REXFORD c e i u a DAFTER n R W r a l k 5 o M r v Twp Y m r h m L e e C p e i e Twp F s e STRONGS d i Dafter Twp H ty Road 462 East R t d e a Coun P n e e S n e r e v o v o s l d C i R m s n d T o Twp h R t Chippewa l p R C r e NEWBERRY U o e R a n A -
Mathematical Model of Groynes on Shingle Beaches
HR Wallingford Mathematical Model of Groynes on Shingle Beaches A H Brampton BSc PhD D G Goldberg BA Report SR 276 November 1991 Address:Hydraulics Research Ltd, wallingford,oxfordshire oxl0 gBA,United Kingdom. Telephone:0491 35381 Intemarional + 44 49135381 relex: g4gsszHRSwALG. Facstunile:049132233Intemarional + M 49132233 Registeredin EngtandNo. 1622174 This report describes an investigation carried out by HR Wallingford under contract CSA 1437, 'rMathematical- Model of Groynes on Shingle Beaches", funded by the Ministry of Agri-culture, Fisheries and Food. The departmental nominated. officer for this contract was Mr A J Allison. The company's nominated. project officer was Dr S W Huntington. This report is published on behalf of the Ministry of Agriculture, Fisheries and Food, but the opinions e>rpressed are not necessarily those of the Ministry. @ Crown Copyright 1991 Published by permission of the Controller of Her Majesty's Stationery Office Mathematical model of groSmes on shingle beaches A H Brampton BSc PhD D G Goldberg BA Report SR 276 November 1991 ABSTRACT This report describes the development of a mathematical model of a shingle beach with gro5mes. The development of the beach plan shape is calculated given infornation on its initial position and information on wave conditions just offshore. Different groyne profiles and spacings can be specified, so that alternative gro5me systems can be investigated. Ttre model includes a method for dealing with varying water levels as the result of tidal rise and fall. CONTENTS Page 1. INTRODUCTION I 2. SCOPEOF THE UODEL 3 2.t Model resolution and input conditions 3 2.2 Sediment transport mechanisms 6 2.3 Vertical distribution of sediment transport q 2.4 Wave transformation modelling L0 3.