Lecture 3: Heteroscedasticity

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 3: Heteroscedasticity Chapter 4 Lecture 3: Heteroscedasticity In many situations, the Gauss-Markov conditions will not be satisfied. These are: E[ǫ] = 0 i = 1,...,n ǫ X ⊥ 2 Var(ǫ)= σ In We consider the model Y = Xβ + ǫ. Suppose that, conditioned on X, ǫ has covariance matrix Var(ǫ X)= σ2Ψ | where Ψ depends on X. Recall that the OLS estimator βOLS of β is: t −1 t b t −1 t βOLS =(X X) X Y = β +(X X) X ǫ. Therefore, conditioned on X,b the covariance matrix of βOLS is: 2 t b−1 t −1 Var(βOLS X)= σ (X X) Ψ(X X) . | If Ψ = I, then the proof of the Gauss-Markov theorem, that the OLS estimator is BLUE breaks down; 6 b the OLS estimator is unbiased, but no longer best in the least squares sense. 4.1 Estimation when Ψ is known If Ψ is known, let P denote a non-singular n n matrix such that P tP =Ψ−1. Such a matrix exists × and P ΨP t = I. Consequently, E[Pǫ X] = 0 and Var(Pǫ X) = σ2I, which does not depend on X. | | It follows that the Gauss-Markov conditions are satisfied for Pǫ. The entire model may therefore be transformed: 41 PY = PXβ + Pǫ which may be written as: Y ∗ = X∗β + ǫ∗. This model satisfies the Gauss Markov conditions and the resulting estimator, which is BLUE, is: ∗t ∗ −1 ∗t t −1 −1 t −1 βGLS =(X X ) X Y =(X Ψ X) X Ψ Y. Here GLS stands for Generlisedb Least Squares. It has covariance: 2 ∗t ∗ −1 2 t −1 −1 Var(βGLS)= σ (X X ) = σ (X Ψ X) . If k = rank(X); that is X is n k where n>k (that is k = p + 1 where p is the number of regressor ×b variables), the variance estimator is: 1 1 σ2 = (Y ∗ X∗β )t(Y ∗ X∗β )= (Y Xβ )tΨ−1(Y Xβ ). n k − GLS − GLS n k − GLS − GLS − − b b b b 4.2b Heteroskedasticity Heteroskedasticity refers to the special case where Ψ is diagonal, but the elements are not all equal. The errors are mutually uncorrelated, but the variance may vary between observations. This is frequently encountered in cross-sectional models. For example, suppose yi denotes expenditure on food, while xi is disposable income. Higher income corresponds to higher expenditure on food; variation of food expenditure increases as income increases. A suitable model may be: 2 Var(ǫi xi)= σ exp α1xi . | { } Set 2 1 h = Var(ǫi Xi.) i σ2 | where Xi. denotes the row-vector of values for the regressor variables for observation i. We assume 2 2 that, for each i, Var(ǫi Xi.) = Var(ǫi X). Under this assumption, Ψ = diag(h ,...,h ). We also | | 1 n replace the Gauss-Markov assumption of zero expectation with E[ǫi X] = 0. The computation of the | BLUE estimator now follows: n −1 n 1 1 β = Xt X Xt Y . GLS h2 i. i. h2 i. i i=1 i ! i=1 i X X This is a Generalised Least Squaresb (GLS) estimator and is sometimes referred to as weighted least squares. Furthermore, the covariance structure is: n −1 1 Var(β )= σ2 Xt X GLS h2 i. i. i=1 i ! X b 42 and the unbiased estimate of σ2 is: n 2 1 1 2 σ = (Yi Xi.β ) . n k h2 − GLS i=1 i − X If in addition we make assumptionsb of normality, then as before,b an F -test can be used to test a number of linear restrictions. Let R be a j k matrix; we’re testing j linear restrictions on the parameters. × Consider H0 : Rβ = q versus the alternative H1 : Rβ = q. For example, we could test (simultaneously) 6 β1 + β2 + β4 = 1 and β5 = 0. This represents two restrictions (j = 2). Let ξ =(Rβ q)t(RVar(β)Rt)−1(Rβ q). − − 2 Under H0, thi statistic has an asumptoticb χ distributiond b withb j degrees of freedom. This test is usually referred to as the Wald Test. 4.3 Heteroskedasticity: Unknown Variances Following from the formula for the covariance matrix of β, a consistent estimator of the k k matrix × n 1 1b Σ= Xtdiag(σ2)X = σ2Xt X n i n i i. i. i=1 X is needed. It turns out that (proof omitted) under very general conditions, n 1 2 t S R X Xi. ≡ n i i. i=1 X is a considtent estimator for Σ, where Ri is the OLS residual. Therefore: n t −1 2 t t −1 Var(βOLS)=(X X) Ri Xi.Xi.(X X) i=1 X can be used as an estimate ofd theb true variance of the OLS estimator. Hence inference can be made about βOLS without specifying the type of heteroskedasticity. The diagonal elements of Var(βOLS) are usually referred to as heteroskedasticity-consistent standard b errors. d b 4.3.1 Multiplicative Heteroskedasticity A common form of heteroskedasticity employed in practise is that of multiplicative heteroskedasticity. It is assumed that the error variance is related to a number of exogenous variables, gathered in a j-vector zi for observation i. It is assumed that: 43 j 2 2 Var(ǫi Xi.)= σi = σ exp αkzik . | ( =1 ) Xk To compute the EGLS (Estimated Generalised Least Squares) estimator, we need consistent esti- mators of α1,...,αj. We assume that j 2 log Ri = const + zikαk + vi =1 Xk n where vi is, asymptotically, homoskedastic. One first obtains (Ri)i=1, the residuals from OLS. Next, 2 n regress (log Ri )i=1 against zi. and a constant. The estimators α of α are consistent. 2 From this, h = exp zi.α may be computed. i { } Now run OLS on the transformed model: b b b y X ǫ i = i. β + i hi hi hi This yields the EGLS estimator β of β. EGLS b b b The scalar σ2 can be estimated by: b n 2 1 (yi Xi.βEGLS) σ2 = − n k 2 i=1 hi − X b b and the estimated covariance matrix of βEGLS is given by:b n −1 b 1 β σ2 Xt X . Var( )= 2 i. i. i=1 hi ! X d b b 4.4 Testing for Heteroskedasticity b There are several tests available for heteroskedasticity Two different populations Suppose the sample variance of group A based on n1 observations is 2 2 s1 and the sample variance of group B based on n2 observations is s2. Suppose that the model is Y = X1β1 + ǫ for population 1 and Y = X2β2 + ǫ for population 2, where X1 is n1 k1 and X2 is × n2 k2, n1 > k1 and n2 > k2, rank(X1) = k1 and rank(X2) = k2. Then, under the null hypothesis × 2 2 H0 : σ1 = σ2, where σ1 and σ2 are the variances for the models for populations 1 and 2 respectively, 2 2 s1 Fn1−k1,n2−k2 . s2 ∼ Testing for Multiplicative Heteroskedasticity Following the construction, as a regression of 2 log Ri against const + α1zi1 + ... + αkzik, the test of H0 : α1 = ... = αk = 0 can be tested in the same way as for least squares regression. 44 The Breusch-Pagan Test The Breusch–Pagan test, developed in 1979 by Trevor Breusch and Adrian Pagan, is used to test for heteroskedasticity in a linear regression model. It was independently suggested with some extension by R. Dennis Cook and Sanford Weisberg in 1983. It tests whether the variance of the errors from a regression is dependent on the values of the regressor variables. In that case, heteroskedasticity is present. Suppose that we estimate the regression model Y = Xβ + ǫ and obtain from this fitted model a set of values for R the residuals. Ordinary least squares constrains these so that their mean is 0 and so, given the assumption that their variance does not depend on the regressor variables, an estimate of this variance can be obtained from the average of the squared values of the residuals. If the assumption is not held to be true, a simple model might be that the variance is linearly related to independent variables. Such a model can be examined by regressing the squared residuals on the independent variables, using an auxiliary regression equation of the form R2 =Ξγ + v t where γ = (γ0,γ1,...,γk) . This is the basis of the Breusch–Pagan test. It is a chi-squared test: the 2 test statistic is distributed nχk (k degrees of freedom). If the test statistic has a p-value below an appropriate threshold (e.g. p < 0.05) then the null hypothesis of homoskedasticity is rejected and heteroskedasticity assumed. 2 Procedure The Breusch–Pagan test is based on models of the type σi = h(zi.γ) where zi. = (1, zi1, . , zik) are the explanatory variables for observation i. The null hypothesis is equivalent to the restriction H0 : γ1 = ... = γk = 0. The steps are: Step 1: Apply OLS to the model Y = Xβ + ǫ. • Step 2: Perform the auxiliary regression: • 2 Ri = γ0 + γ1zi1 + ... + γkzik + ηi Q Step 3: Compute the coefficient of determination Ξ = 1 res . Under H0, asymptotically, • − Qtotal nΞ χ2. ∼ k 4.5 Example This section gives an example where the following model is appropriate: 2 t E ǫ xi, zi = g(z α) i | i 45 where zi is an l-vector of observations on exogeneous or predetermined variables which affect the variance and α is a k-vector of parameters. Consider journal prices (a data set found in AER).
Recommended publications
  • Hypothesis Testing and Likelihood Ratio Tests
    Hypottthesiiis tttestttiiing and llliiikellliiihood ratttiiio tttesttts Y We will adopt the following model for observed data. The distribution of Y = (Y1, ..., Yn) is parameter considered known except for some paramett er ç, which may be a vector ç = (ç1, ..., çk); ç“Ç, the paramettter space. The parameter space will usually be an open set. If Y is a continuous random variable, its probabiiillliiittty densiiittty functttiiion (pdf) will de denoted f(yy;ç) . If Y is y probability mass function y Y y discrete then f(yy;ç) represents the probabii ll ii tt y mass functt ii on (pmf); f(yy;ç) = Pç(YY=yy). A stttatttiiistttiiicalll hypottthesiiis is a statement about the value of ç. We are interested in testing the null hypothesis H0: ç“Ç0 versus the alternative hypothesis H1: ç“Ç1. Where Ç0 and Ç1 ¶ Ç. hypothesis test Naturally Ç0 § Ç1 = ∅, but we need not have Ç0 ∞ Ç1 = Ç. A hypott hesii s tt estt is a procedure critical region for deciding between H0 and H1 based on the sample data. It is equivalent to a crii tt ii call regii on: a critical region is a set C ¶ Rn y such that if y = (y1, ..., yn) “ C, H0 is rejected. Typically C is expressed in terms of the value of some tttesttt stttatttiiistttiiic, a function of the sample data. For µ example, we might have C = {(y , ..., y ): y – 0 ≥ 3.324}. The number 3.324 here is called a 1 n s/ n µ criiitttiiicalll valllue of the test statistic Y – 0 . S/ n If y“C but ç“Ç 0, we have committed a Type I error.
    [Show full text]
  • Data 8 Final Stats Review
    Data 8 Final Stats review I. Hypothesis Testing Purpose: To answer a question about a process or the world by testing two hypotheses, a null and an alternative. Usually the null hypothesis makes a statement that “the world/process works this way”, and the alternative hypothesis says “the world/process does not work that way”. Examples: Null: “The customer was not cheating-his chances of winning and losing were like random tosses of a fair coin-50% chance of winning, 50% of losing. Any variation from what we expect is due to chance variation.” Alternative: “The customer was cheating-his chances of winning were something other than 50%”. Pro tip: You must be very precise about chances in your hypotheses. Hypotheses such as “the customer cheated” or “Their chances of winning were normal” are vague and might be considered incorrect, because you don’t state the exact chances associated with the events. Pro tip: Null hypothesis should also explain differences in the data. For example, if your hypothesis stated that the coin was fair, then why did you get 70 heads out of 100 flips? Since it’s possible to get that many (though not expected), your null hypothesis should also contain a statement along the lines of “Any difference in outcome from what we expect is due to chance variation”. Steps: 1) Precisely state your null and alternative hypotheses. 2) Decide on a test statistic (think of it as a general formula) to help you either reject or fail to reject the null hypothesis. • If your data is categorical, a good test statistic might be the Total Variation Distance (TVD) between your sample and the distribution it was drawn from.
    [Show full text]
  • Use of Statistical Tables
    TUTORIAL | SCOPE USE OF STATISTICAL TABLES Lucy Radford, Jenny V Freeman and Stephen J Walters introduce three important statistical distributions: the standard Normal, t and Chi-squared distributions PREVIOUS TUTORIALS HAVE LOOKED at hypothesis testing1 and basic statistical tests.2–4 As part of the process of statistical hypothesis testing, a test statistic is calculated and compared to a hypothesised critical value and this is used to obtain a P- value. This P-value is then used to decide whether the study results are statistically significant or not. It will explain how statistical tables are used to link test statistics to P-values. This tutorial introduces tables for three important statistical distributions (the TABLE 1. Extract from two-tailed standard Normal, t and Chi-squared standard Normal table. Values distributions) and explains how to use tabulated are P-values corresponding them with the help of some simple to particular cut-offs and are for z examples. values calculated to two decimal places. STANDARD NORMAL DISTRIBUTION TABLE 1 The Normal distribution is widely used in statistics and has been discussed in z 0.00 0.01 0.02 0.03 0.050.04 0.05 0.06 0.07 0.08 0.09 detail previously.5 As the mean of a Normally distributed variable can take 0.00 1.0000 0.9920 0.9840 0.9761 0.9681 0.9601 0.9522 0.9442 0.9362 0.9283 any value (−∞ to ∞) and the standard 0.10 0.9203 0.9124 0.9045 0.8966 0.8887 0.8808 0.8729 0.8650 0.8572 0.8493 deviation any positive value (0 to ∞), 0.20 0.8415 0.8337 0.8259 0.8181 0.8103 0.8206 0.7949 0.7872 0.7795 0.7718 there are an infinite number of possible 0.30 0.7642 0.7566 0.7490 0.7414 0.7339 0.7263 0.7188 0.7114 0.7039 0.6965 Normal distributions.
    [Show full text]
  • 8.5 Testing a Claim About a Standard Deviation Or Variance
    8.5 Testing a Claim about a Standard Deviation or Variance Testing Claims about a Population Standard Deviation or a Population Variance ² Uses the chi-squared distribution from section 7-4 → Requirements: 1. The sample is a simple random sample 2. The population has a normal distribution (n −1)s 2 → Test Statistic for Testing a Claim about or ²: 2 = 2 where n = sample size s = sample standard deviation σ = population standard deviation s2 = sample variance σ2 = population variance → P-values and Critical Values: Use table A-4 with df = n – 1 for the number of degrees of freedom *Remember that table A-4 is based on cumulative areas from the right → Properties of the Chi-Square Distribution: 1. All values of 2 are nonnegative and the distribution is not symmetric 2. There is a different 2 distribution for each number of degrees of freedom 3. The critical values are found in table A-4 (based on cumulative areas from the right) --locate the row corresponding to the appropriate number of degrees of freedom (df = n – 1) --the significance level is used to determine the correct column --Right-tailed test: Because the area to the right of the critical value is 0.05, locate 0.05 at the top of table A-4 --Left-tailed test: With a left-tailed area of 0.05, the area to the right of the critical value is 0.95 so locate 0.95 at the top of table A-4 --Two-tailed test: Divide the significance level of 0.05 between the left and right tails, so the areas to the right of the two critical values are 0.975 and 0.025.
    [Show full text]
  • A Study of Non-Central Skew T Distributions and Their Applications in Data Analysis and Change Point Detection
    A STUDY OF NON-CENTRAL SKEW T DISTRIBUTIONS AND THEIR APPLICATIONS IN DATA ANALYSIS AND CHANGE POINT DETECTION Abeer M. Hasan A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2013 Committee: Arjun K. Gupta, Co-advisor Wei Ning, Advisor Mark Earley, Graduate Faculty Representative Junfeng Shang. Copyright c August 2013 Abeer M. Hasan All rights reserved iii ABSTRACT Arjun K. Gupta, Co-advisor Wei Ning, Advisor Over the past three decades there has been a growing interest in searching for distribution families that are suitable to analyze skewed data with excess kurtosis. The search started by numerous papers on the skew normal distribution. Multivariate t distributions started to catch attention shortly after the development of the multivariate skew normal distribution. Many researchers proposed alternative methods to generalize the univariate t distribution to the multivariate case. Recently, skew t distribution started to become popular in research. Skew t distributions provide more flexibility and better ability to accommodate long-tailed data than skew normal distributions. In this dissertation, a new non-central skew t distribution is studied and its theoretical properties are explored. Applications of the proposed non-central skew t distribution in data analysis and model comparisons are studied. An extension of our distribution to the multivariate case is presented and properties of the multivariate non-central skew t distri- bution are discussed. We also discuss the distribution of quadratic forms of the non-central skew t distribution. In the last chapter, the change point problem of the non-central skew t distribution is discussed under different settings.
    [Show full text]
  • Two-Sample T-Tests Assuming Equal Variance
    PASS Sample Size Software NCSS.com Chapter 422 Two-Sample T-Tests Assuming Equal Variance Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when the variances of the two groups (populations) are assumed to be equal. This is the traditional two-sample t-test (Fisher, 1925). The assumed difference between means can be specified by entering the means for the two groups and letting the software calculate the difference or by entering the difference directly. The design corresponding to this test procedure is sometimes referred to as a parallel-groups design. This design is used in situations such as the comparison of the income level of two regions, the nitrogen content of two lakes, or the effectiveness of two drugs. There are several statistical tests available for the comparison of the center of two populations. This procedure is specific to the two-sample t-test assuming equal variance. You can examine the sections below to identify whether the assumptions and test statistic you intend to use in your study match those of this procedure, or if one of the other PASS procedures may be more suited to your situation. Other PASS Procedures for Comparing Two Means or Medians Procedures in PASS are primarily built upon the testing methods, test statistic, and test assumptions that will be used when the analysis of the data is performed. You should check to identify that the test procedure described below in the Test Procedure section matches your intended procedure. If your assumptions or testing method are different, you may wish to use one of the other two-sample procedures available in PASS.
    [Show full text]
  • Chapter 7. Hypothesis Testing
    McFadden, Statistical Tools © 2000 Chapter 7-1, Page 155 ______________________________________________________________________________ CHAPTER 7. HYPOTHESIS TESTING 7.1. THE GENERAL PROBLEM It is often necessary to make a decision, on the basis of available data from an experiment (carried out by yourself or by Nature), on whether a particular proposition Ho (theory, model, hypothesis) is true, or the converse H1 is true. This decision problem is often encountered in scientific investigation. Economic examples of hypotheses are (a) The commodities market is efficient (i.e., opportunities for arbitrage are absent). (b) There is no discrimination on the basis of gender in the market for academic economists. (c) Household energy consumption is a necessity, with an income elasticity not exceeding one. (d) The survival curve for Japanese cars is less convex than that for Detroit cars. Notice that none of these economically interesting hypotheses are framed directly as precise statements about a probability law (e.g., a statement that the parameter in a family of probability densities for the observations from an experiment takes on a specific value). A challenging part of statistical analysis is to set out maintained hypotheses that will be accepted by the scientific community as true, and which in combination with the proposition under test give a probability law. Deciding the truth or falsity of a null hypothesis Ho presents several general issues: the cost of mistakes, the selection and/or design of the experiment, and the choice of the test. 7.2. THE COST OF MISTAKES Consider a two-by-two table that compares the truth with the result of the statistical decision.
    [Show full text]
  • Heteroscedastic Errors
    Heteroscedastic Errors ◮ Sometimes plots and/or tests show that the error variances 2 σi = Var(ǫi ) depend on i ◮ Several standard approaches to fixing the problem, depending on the nature of the dependence. ◮ Weighted Least Squares. ◮ Transformation of the response. ◮ Generalized Linear Models. Richard Lockhart STAT 350: Heteroscedastic Errors and GLIM Weighted Least Squares ◮ Suppose variances are known except for a constant factor. 2 2 ◮ That is, σi = σ /wi . ◮ Use weighted least squares. (See Chapter 10 in the text.) ◮ This usually arises realistically in the following situations: ◮ Yi is an average of ni measurements where you know ni . Then wi = ni . 2 ◮ Plots suggest that σi might be proportional to some power of 2 γ γ some covariate: σi = kxi . Then wi = xi− . Richard Lockhart STAT 350: Heteroscedastic Errors and GLIM Variances depending on (mean of) Y ◮ Two standard approaches are available: ◮ Older approach is transformation. ◮ Newer approach is use of generalized linear model; see STAT 402. Richard Lockhart STAT 350: Heteroscedastic Errors and GLIM Transformation ◮ Compute Yi∗ = g(Yi ) for some function g like logarithm or square root. ◮ Then regress Yi∗ on the covariates. ◮ This approach sometimes works for skewed response variables like income; ◮ after transformation we occasionally find the errors are more nearly normal, more homoscedastic and that the model is simpler. ◮ See page 130ff and check under transformations and Box-Cox in the index. Richard Lockhart STAT 350: Heteroscedastic Errors and GLIM Generalized Linear Models ◮ Transformation uses the model T E(g(Yi )) = xi β while generalized linear models use T g(E(Yi )) = xi β ◮ Generally latter approach offers more flexibility.
    [Show full text]
  • Power Comparisons of the Mann-Whitney U and Permutation Tests
    Power Comparisons of the Mann-Whitney U and Permutation Tests Abstract: Though the Mann-Whitney U-test and permutation tests are often used in cases where distribution assumptions for the two-sample t-test for equal means are not met, it is not widely understood how the powers of the two tests compare. Our goal was to discover under what circumstances the Mann-Whitney test has greater power than the permutation test. The tests’ powers were compared under various conditions simulated from the Weibull distribution. Under most conditions, the permutation test provided greater power, especially with equal sample sizes and with unequal standard deviations. However, the Mann-Whitney test performed better with highly skewed data. Background and Significance: In many psychological, biological, and clinical trial settings, distributional differences among testing groups render parametric tests requiring normality, such as the z test and t test, unreliable. In these situations, nonparametric tests become necessary. Blair and Higgins (1980) illustrate the empirical invalidity of claims made in the mid-20th century that t and F tests used to detect differences in population means are highly insensitive to violations of distributional assumptions, and that non-parametric alternatives possess lower power. Through power testing, Blair and Higgins demonstrate that the Mann-Whitney test has much higher power relative to the t-test, particularly under small sample conditions. This seems to be true even when Welch’s approximation and pooled variances are used to “account” for violated t-test assumptions (Glass et al. 1972). With the proliferation of powerful computers, computationally intensive alternatives to the Mann-Whitney test have become possible.
    [Show full text]
  • Chi-Square Tests
    Chi-Square Tests Nathaniel E. Helwig Associate Professor of Psychology and Statistics University of Minnesota October 17, 2020 Copyright c 2020 by Nathaniel E. Helwig Nathaniel E. Helwig (Minnesota) Chi-Square Tests c October 17, 2020 1 / 32 Table of Contents 1. Goodness of Fit 2. Tests of Association (for 2-way Tables) 3. Conditional Association Tests (for 3-way Tables) Nathaniel E. Helwig (Minnesota) Chi-Square Tests c October 17, 2020 2 / 32 Goodness of Fit Table of Contents 1. Goodness of Fit 2. Tests of Association (for 2-way Tables) 3. Conditional Association Tests (for 3-way Tables) Nathaniel E. Helwig (Minnesota) Chi-Square Tests c October 17, 2020 3 / 32 Goodness of Fit A Primer on Categorical Data Analysis In the previous chapter, we looked at inferential methods for a single proportion or for the difference between two proportions. In this chapter, we will extend these ideas to look more generally at contingency table analysis. All of these methods are a form of \categorical data analysis", which involves statistical inference for nominal (or categorial) variables. Nathaniel E. Helwig (Minnesota) Chi-Square Tests c October 17, 2020 4 / 32 Goodness of Fit Categorical Data with J > 2 Levels Suppose that X is a categorical (i.e., nominal) variable that has J possible realizations: X 2 f0;:::;J − 1g. Furthermore, suppose that P (X = j) = πj where πj is the probability that X is equal to j for j = 0;:::;J − 1. PJ−1 J−1 Assume that the probabilities satisfy j=0 πj = 1, so that fπjgj=0 defines a valid probability mass function for the random variable X.
    [Show full text]
  • Research Report Statistical Research Unit Goteborg University Sweden
    Research Report Statistical Research Unit Goteborg University Sweden Testing for multivariate heteroscedasticity Thomas Holgersson Ghazi Shukur Research Report 2003:1 ISSN 0349-8034 Mailing address: Fax Phone Home Page: Statistical Research Nat: 031-77312 74 Nat: 031-77310 00 http://www.stat.gu.se/stat Unit P.O. Box 660 Int: +4631 773 12 74 Int: +4631 773 1000 SE 405 30 G6teborg Sweden Testing for Multivariate Heteroscedasticity By H.E.T. Holgersson Ghazi Shukur Department of Statistics Jonkoping International GOteborg university Business school SE-405 30 GOteborg SE-55 111 Jonkoping Sweden Sweden Abstract: In this paper we propose a testing technique for multivariate heteroscedasticity, which is expressed as a test of linear restrictions in a multivariate regression model. Four test statistics with known asymptotical null distributions are suggested, namely the Wald (W), Lagrange Multiplier (LM), Likelihood Ratio (LR) and the multivariate Rao F-test. The critical values for the statistics are determined by their asymptotic null distributions, but also bootstrapped critical values are used. The size, power and robustness of the tests are examined in a Monte Carlo experiment. Our main findings are that all the tests limit their nominal sizes asymptotically, but some of them have superior small sample properties. These are the F, LM and bootstrapped versions of Wand LR tests. Keywords: heteroscedasticity, hypothesis test, bootstrap, multivariate analysis. I. Introduction In the last few decades a variety of methods has been proposed for testing for heteroscedasticity among the error terms in e.g. linear regression models. The assumption of homoscedasticity means that the disturbance variance should be constant (or homoscedastic) at each observation.
    [Show full text]
  • T-Statistic Based Correlation and Heterogeneity Robust Inference
    t-Statistic Based Correlation and Heterogeneity Robust Inference Rustam IBRAGIMOV Economics Department, Harvard University, 1875 Cambridge Street, Cambridge, MA 02138 Ulrich K. MÜLLER Economics Department, Princeton University, Fisher Hall, Princeton, NJ 08544 ([email protected]) We develop a general approach to robust inference about a scalar parameter of interest when the data is potentially heterogeneous and correlated in a largely unknown way. The key ingredient is the following result of Bakirov and Székely (2005) concerning the small sample properties of the standard t-test: For a significance level of 5% or lower, the t-test remains conservative for underlying observations that are independent and Gaussian with heterogenous variances. One might thus conduct robust large sample inference as follows: partition the data into q ≥ 2 groups, estimate the model for each group, and conduct a standard t-test with the resulting q parameter estimators of interest. This results in valid and in some sense efficient inference when the groups are chosen in a way that ensures the parameter estimators to be asymptotically independent, unbiased and Gaussian of possibly different variances. We provide examples of how to apply this approach to time series, panel, clustered and spatially correlated data. KEY WORDS: Dependence; Fama–MacBeth method; Least favorable distribution; t-test; Variance es- timation. 1. INTRODUCTION property of the correlations. The key ingredient to the strategy is a result by Bakirov and Székely (2005) concerning the small Empirical analyses in economics often face the difficulty that sample properties of the usual t-test used for inference on the the data is correlated and heterogeneous in some unknown fash- mean of independent normal variables: For significance levels ion.
    [Show full text]