Seed Preference in a Desert Harvester Ant, Messor Pergandei
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effects of Grassland Restoration Efforts on Mound-Building Ants in the Chihuahuan Desert
Journal of Arid Environments 111 (2014) 79e83 Contents lists available at ScienceDirect Journal of Arid Environments journal homepage: www.elsevier.com/locate/jaridenv Short communication Effects of grassland restoration efforts on mound-building ants in the Chihuahuan Desert * Monica M. McAllister a, b, Robert L. Schooley a, , Brandon T. Bestelmeyer b, John M. Coffman a, b, Bradley J. Cosentino c a Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL 61801, USA b USDA-ARS Jornada Experimental Range, New Mexico State University, MSC 3JER Box 30003, Las Cruces, NM 88003, USA c Department of Biology, Hobart and William Smith Colleges, Geneva, NY 14456, USA article info abstract Article history: Shrub encroachment is a serious problem in arid environments worldwide because of potential re- Received 21 April 2014 ductions in ecosystem services and negative effects on biodiversity. In southwestern USA, Chihuahuan Received in revised form Desert grasslands have experienced long-term encroachment by shrubs including creosotebush (Larrea 4 August 2014 tridentata). Land managers have attempted an ambitious intervention to control shrubs by spraying Accepted 13 August 2014 herbicides over extensive areas to provide grassland habitat for wildlife species of conservation concern. Available online 15 September 2014 To provide a broader assessment of how these restoration practices affect biodiversity, we evaluated responses by four mound-building ant species (Pogonomyrmex rugosus, Aphaenogaster cockerelli, Myr- Keywords: Biodiversity mecocystus depilis, and Myrmecocystus mexicanus). We compared colony densities between 14 pairs of e Desert ants treated areas (herbicide applied 10 30 years before sampling) and untreated areas (spatially matched Landscape restoration and dominated by creosotebush). -
91 Table F-10 Golden Eagle REA Mitigation
91 Table F-10 Golden Eagle REA Mitigation: Extrapolation of the Relative Productivity of Electric Pole Retrofitting in 2011 Over the 30 Years Associated with the Average Life Cycle of Wind Energy Projects Table F-11 Golden Eagle REA Scaling: Mitigation Owed for a 5-Year Permitted Take of 25 Golden Eagles (5 Eagles Annually) (REA Step 16) Total Debit 485.74 PV bird-years for 5 years of Golden Eagle take ÷ Relative Productivity of Electric Pole Retrofitting ÷4.20 Avoided loss of PV bird-years per retrofitted pole = Mitigation owed =115.61 Poles to be retrofitted to achieve no net loss PV=Present Value 92 APPENDIX G COMPENSATORY MITIGATION CASE STUDY7: POWER POLE RETROFITTING TO COMPENSATE FOR TAKE OF GOLDEN EAGLES To offset projected and permitted take, retrofitting of non- Avian Power Line Interaction Committee (APLIC) compliant power poles has been selected by the Service as the initial focus of compensatory mitigation projects. Raptor electrocution is a known source of eagle mortality in the United States (Franson et al. 1995, Millsap et al. 2004, APLIC 2006, Lehman et al. 2007, Lehman et al. 2010). In particular, Golden Eagles are electrocuted more than any other raptor in North America; Lehman et al. (2007) noted Golden Eagles accounted for 50 – 93% of all reported mortalities of raptor electrocutions. Eagles often come into contact with non-APLIC compliant electric transmission poles. These poles are often responsible for the high incidence of eagle mortality, especially in open habitat devoid of natural perches. Specific utility poles and line spans in need of retrofit due to known mortalities of eagles and other large raptors will be reviewed by the Service and selected for retrofit based on criteria specified below. -
Taxonomy and Ecology of Messor Himalayanus Forel (Hymenoptera: Formicidae)
IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT) ISSN: 21019-2402X Volume 1, Issue 1 (Sep.-Oct. 2012), PP 19-21 www.iosrjournals.org Taxonomic Redescription of Messor Himalayanus Forel (Hymenoptera: Formicidae), New Report from South India 1 Presty John & K A Karmaly 2 1s.H College, Thevara, Cochin, India 2 St.Xaviers College For Women Aluva. India Abstract: Ants are dominant insects and highly developed social animal. They are widely distributed throughout the world. Currently there are 28 subfamilies and 408 genera. (Bolton et.al, 2007) The species Messor himalayanus Forel belongs to the subfamily Myrmicinae of family Formicidae. The present study was carried out in three places of Kollam district viz. Kuriottumala, Punalur and Yeroor. The ecology of this species ie; nesting pattern, habit, habitat, food preferences, active involvement in day timings and colonial behavior are observed. The species Messor himalayanus Forel resdescribed, compared with other species of Messor and similarities and dissimilarities are also provided. Currently there are only two species of Messor reported from India and only one from South India and the species Messor himalayanus Forel adds a new report to South India. Keywords: Messor himalayanus, Myrmicinae, New report, Resdescription, South India. I. Introduction The genus Messor was established by Forel in 1890 as subgenus of Aphaenogaster . In 1892d Emery synonimised as Cratomyrmex based on the type-species Cratomyrmex regalis by monotypy, 1895 as subgenus of Stenamma . In 1903 Bingham raised Messor as genus based on the type species Formica Barbara, , in 1917 Veromessor by Forel as subgenus of Novomessor. The genus Veromessor was recently synonymised with Messor (Bolton, 1982). -
Hymenoptera: Formicidae)
SYSTEMATICS Phylogenetic Analysis of Aphaenogaster Supports the Resurrection of Novomessor (Hymenoptera: Formicidae) 1 B. B. DEMARCO AND A. I. COGNATO Department of Entomology, Michigan State University, 288 Farm Lane, East Lansing, MI 48824. Ann. Entomol. Soc. Am. 108(2): 201–210 (2015); DOI: 10.1093/aesa/sau013 ABSTRACT The ant genus Aphaenogaster Mayr is an ecologically diverse group that is common throughout much of North America. Aphaenogaster has a complicated taxonomic history due to variabil- ity of taxonomic characters. Novomessor Emery was previously synonymized with Aphaenogaster, which was justified by the partial mesonotal suture observed in Aphaenogaster ensifera Forel. Previous studies using Bayesian phylogenies with molecular data suggest Aphaenogaster is polyphyletic. Convergent evolution and retention of ancestral similarities are two major factors contributing to nonmonophyly of Aphaenogaster. Based on 42 multistate morphological characters and five genes, we found Novomessor more closely related to Veromessor Forel and that this clade is sister to Aphaenogaster. Our results confirm the validity of Novomessor stat. r. as a separate genus, and it is resurrected based on the combi- nation of new DNA, morphological, behavioral, and ecological data. KEY WORDS Aphaenogaster, Novomessor, phylogenetics, resurrection Introduction phylogenetic analyses resolved Aphaenogaster as polyphyletic, including Messor Forel, 1890 and Sten- The ant genus Aphaenogaster Mayr, 1853 is a speciose amma (Brady et al. 2006, Moreau and Bell 2013). group,whichhasnotbeentaxonomicallyreviewedin Ward (2011) suggested that convergent evolution and over 60 years (Creighton 1950). Aphaenogaster con- retention of ancestral similarities were two major fac- tains 227 worldwide species (Bolton 2006), with 23 tors contributing to polyphyly of Aphaenogaster. valid North American species reduced from 31 original Aphaenogaster taxonomy was further complicated species descriptions. -
Turf Insects
Ants O & T Guide [T-#01] Carol A. Sutherland Extension and State Entomologist Cooperative Extension Service z College of Agriculture and Home Economics z October 2006 With over 100 ant species in New Mexico, nursery below ground in harvester and fire ants are probably the most familiar and ant colonies. These require 10-14 days to most numerous insects found in turf, complete development. Æ During the ornamental plantings and elsewhere. Only summer, most adult ants probably three species of this abundant group of complete development from egg to adult insects will be described here. Harvester in 6-8 weeks during the summer. and southern fire ants are common in our turf. Red imported fire ant (RIFA) is an invasive, exotic species and a threat to New Mexico agriculture, public health and safety. Metamorphosis: Complete Mouth Parts: Chewing (larvae, adults) Pest Stage: Adults Scientifically: Ants are members of the Red imported fire ant worker, Solenopsis insect order Hymenoptera, Family invicta. Photo: April Noble, www.antweb.org, Formicidae. www.forestryimages.org Typical Life Cycle: Eggs are incubated in Ants are social insects living in colonies of the nursery area of the mound, close to the several hundred to many thousands of surface where the soil is sun warmed. Æ individuals. In its simplest form, a single Larvae are kept in the nursery area where mated queen produces all of the eggs. growing conditions are maintained at Nearly all of these are devoted to optimal levels. All of these stages are production of workers, sterile females tended, fed and protected by worker ants. -
Borowiec Et Al-2020 Ants – Phylogeny and Classification
A Ants: Phylogeny and 1758 when the Swedish botanist Carl von Linné Classification published the tenth edition of his catalog of all plant and animal species known at the time. Marek L. Borowiec1, Corrie S. Moreau2 and Among the approximately 4,200 animals that he Christian Rabeling3 included were 17 species of ants. The succeeding 1University of Idaho, Moscow, ID, USA two and a half centuries have seen tremendous 2Departments of Entomology and Ecology & progress in the theory and practice of biological Evolutionary Biology, Cornell University, Ithaca, classification. Here we provide a summary of the NY, USA current state of phylogenetic and systematic 3Social Insect Research Group, Arizona State research on the ants. University, Tempe, AZ, USA Ants Within the Hymenoptera Tree of Ants are the most ubiquitous and ecologically Life dominant insects on the face of our Earth. This is believed to be due in large part to the cooperation Ants belong to the order Hymenoptera, which also allowed by their sociality. At the time of writing, includes wasps and bees. ▶ Eusociality, or true about 13,500 ant species are described and sociality, evolved multiple times within the named, classified into 334 genera that make up order, with ants as by far the most widespread, 17 subfamilies (Fig. 1). This diversity makes the abundant, and species-rich lineage of eusocial ants the world’s by far the most speciose group of animals. Within the Hymenoptera, ants are part eusocial insects, but ants are not only diverse in of the ▶ Aculeata, the clade in which the ovipos- terms of numbers of species. -
The Ant Host of Razorfemora Zaragozae and Some Observations of Their Relationships Under Natural Conditions
Bulletin of Insectology 73 (2): 193-200, 2020 ISSN 1721-8861 eISSN 2283-0332 The ant host of Razorfemora zaragozae and some observations of their relationships under natural conditions Juan A. DELGADO1, R. Henry L. DISNEY2, Ricardo L. PALMA3 1Departamento de Zoología, Facultad de Biología, Universidad de Murcia, Spain 2Department of Zoology, University of Cambridge, United Kingdom 3Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand Abstract The biology of the scuttle fly Razorfemora zaragozae Disney (Diptera Phoridae) was previously unknown, but our observations in southern Spain indicate that this phorid fly is a parasitoid of the seed harvester ant Messor barbarus (L.) (Hymenoptera Formicidae). We report some aspects of the host location, host selection and oviposition behaviour of Razorfemora flies, as well as a potential defensive response of its host ant. Key words: Diptera, Phoridae, Razorfemora, scuttle flies, parasitoid, Hymenoptera, Formicidae, Messor, ants, behaviour, Spain. Introduction the species Razorfemora nussbaumi Disney from Israel, described from a single male (Disney, 1990). Disney Species of the dipteran family Phoridae are the most im- (1994) identified a female from Spain as R. nussbaumi portant parasitoids of members of the ant family Formi- but, when a large series of R. nussbaumi, including both cidae (Johnson, 2001). Since the review by Disney sexes, became available from Yemen, it was evident that (1994), many papers have focused on relationships be- the single female from Spain belonged to a second spe- tween parasitoid scuttle flies and ants (e.g. Hsieh and Per- cies (Disney, 2006). Since their description, nothing fecto, 2012; Mathis and Philpott, 2012; Elizalde et al., about the biology of the two species of Razorfemora has 2018). -
Messor Ebeninus Forel (Formicidae: Myrmicinae)
Adnexal Glands Chemistry of Messor ebeninus Forel (Formicidae: Myrmicinae) M. Coll and A. Hefetz Department of Zoology, Tel Aviv University, Ramat Aviv 69978, Israel H. A. Lloyd Laboratory of Chemistry, National Heart Lung and Blood Institute, Bethesda. MD 20892, USA Z. Naturforsch. 42c, 1027—1029 (1987); received March 30/June 11, 1987 Messor ebeninus, Poison Gland. Dufour's Gland, Exocrine Chemistry. Anabasine Anabasine is the major volatile product in the poison gland exudate of Messor ebeninus, acting as a defensive compound. Exudates of the poison gland also contain minor, yet unidentified, components that are possibly responsible for the alarm behavior that is also elicited by the venom. Dufour's gland secretion is characterized by aliphatic hydrocarbons of which 1-pentadecene predominates. Upon exposure to Dufour's gland secretion the ants recruited to the emitting source, but did not exhibit any aggressive behavior. The possible concordant effects of both adnexal glands secretions is discussed. Introduction Field observations with Messor ebeninus, the sub Among the abdominal glands of ants the two ad ject of this study, revealed that it has a well-devel nexal glands, Dufour’s and the poison glands, are oped alarm behaviour as well as long food trails. It prominent. Although the poison gland secretion in was therefore relevant to investigate the chemistry of the aculeate Hymenoptera served originally as de the poison gland and the adjacent Dufour’s gland fensive weapons, in some ant species this function secretions to determine the role of their constituents has been abandoned in favor of a communicative in these behaviors. role. The myrmicine ants are a good example of this evolutionary trend. -
Encyclopedia of Social Insects
G Guests of Social Insects resources and homeostatic conditions. At the same time, successful adaptation to the inner envi- Thomas Parmentier ronment shields them from many predators that Terrestrial Ecology Unit (TEREC), Department of cannot penetrate this hostile space. Social insect Biology, Ghent University, Ghent, Belgium associates are generally known as their guests Laboratory of Socioecology and Socioevolution, or inquilines (Lat. inquilinus: tenant, lodger). KU Leuven, Leuven, Belgium Most such guests live permanently in the host’s Research Unit of Environmental and nest, while some also spend a part of their life Evolutionary Biology, Namur Institute of cycle outside of it. Guests are typically arthropods Complex Systems, and Institute of Life, Earth, associated with one of the four groups of eusocial and the Environment, University of Namur, insects. They are referred to as myrmecophiles Namur, Belgium or ant guests, termitophiles, melittophiles or bee guests, and sphecophiles or wasp guests. The term “myrmecophile” can also be used in a broad sense Synonyms to characterize any organism that depends on ants, including some bacteria, fungi, plants, aphids, Inquilines; Myrmecophiles; Nest parasites; and even birds. It is used here in the narrow Symbionts; Termitophiles sense of arthropods that associated closely with ant nests. Social insect nests may also be parasit- Social insect nests provide a rich microhabitat, ized by other social insects, commonly known as often lavishly endowed with long-lasting social parasites. Although some strategies (mainly resources, such as brood, retrieved or cultivated chemical deception) are similar, the guests of food, and nutrient-rich refuse. Moreover, nest social insects and social parasites greatly differ temperature and humidity are often strictly regu- in terms of their biology, host interaction, host lated. -
Evolution of Colony Characteristics in the Harvester Ant Genus
Evolution of Colony Characteristics in The Harvester Ant Genus Pogonomyrmex Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Christoph Strehl Nürnberg Würzburg 2005 - 2 - - 3 - Eingereicht am: ......................................................................................................... Mitglieder der Prüfungskommission: Vorsitzender: ............................................................................................................. Gutachter : ................................................................................................................. Gutachter : ................................................................................................................. Tag des Promotionskolloquiums: .............................................................................. Doktorurkunde ausgehändigt am: ............................................................................. - 4 - - 5 - 1. Index 1. Index................................................................................................................. 5 2. General Introduction and Thesis Outline....................................................... 7 1.1 The characteristics of an ant colony...................................................... 8 1.2 Relatedness as a major component driving the evolution of colony characteristics.................................................................................................10 1.3 The evolution -
Arthropods of Public Health Significance in California
ARTHROPODS OF PUBLIC HEALTH SIGNIFICANCE IN CALIFORNIA California Department of Public Health Vector Control Technician Certification Training Manual Category C ARTHROPODS OF PUBLIC HEALTH SIGNIFICANCE IN CALIFORNIA Category C: Arthropods A Training Manual for Vector Control Technician’s Certification Examination Administered by the California Department of Health Services Edited by Richard P. Meyer, Ph.D. and Minoo B. Madon M V C A s s o c i a t i o n of C a l i f o r n i a MOSQUITO and VECTOR CONTROL ASSOCIATION of CALIFORNIA 660 J Street, Suite 480, Sacramento, CA 95814 Date of Publication - 2002 This is a publication of the MOSQUITO and VECTOR CONTROL ASSOCIATION of CALIFORNIA For other MVCAC publications or further informaiton, contact: MVCAC 660 J Street, Suite 480 Sacramento, CA 95814 Telephone: (916) 440-0826 Fax: (916) 442-4182 E-Mail: [email protected] Web Site: http://www.mvcac.org Copyright © MVCAC 2002. All rights reserved. ii Arthropods of Public Health Significance CONTENTS PREFACE ........................................................................................................................................ v DIRECTORY OF CONTRIBUTORS.............................................................................................. vii 1 EPIDEMIOLOGY OF VECTOR-BORNE DISEASES ..................................... Bruce F. Eldridge 1 2 FUNDAMENTALS OF ENTOMOLOGY.......................................................... Richard P. Meyer 11 3 COCKROACHES ........................................................................................... -
Seed Predation on Slickspot Peppergrass by The
SEED PREDATION ON SLICKSPOT PEPPERGRASS BY THE OWYHEE HARVESTER ANT By Joshua P. White A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Biology Boise State University May 2009 The thesis presented by Joshua P. White entitled “Seed Predation on Slickspot Peppergrass by the Owyhee Harvester Ant” is hereby approved: ________________________________________________ Ian C. Robertson Date Advisor _______________________________________________ Stephen J. Novak Date Committee Member _______________________________________________ Peter Koetsier Date Committee Member ________________________________________________ John R. Pelton Date Graduate Dean ACKNOWLEDGMENTS I would first like to thank my advisor Dr. Ian Robertson for all the advice and time he put in helping me to reach this point. Thank you also to my committee Dr. Steve Novak and Dr. Peter Koetsier for their comments and advisement during the degree process. Thanks you guys for all the help and understanding. A special thank you must go to my family for putting up with me over the last three years while I completed my degree. I would also like to thank Wyatt Williams and Quentin Tuckett who gave me excellent advice on not only the best way to complete my thesis but also prepared me for the process of graduate school. I would also like to thank Dana Quinney, Marjorie McHenry, Jay Weaver and Bill Clark for their ongoing assistance with this project, and Janet Nutting, Kyle Koffin and Justin Stark for their volunteer efforts in the field. The Idaho Army National Guard, Sigma Xi, and the Department of Biological Sciences at Boise State University provided funding for my thesis research.