Koszul Notes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Geometry of Syzygies
The Geometry of Syzygies A second course in Commutative Algebra and Algebraic Geometry David Eisenbud University of California, Berkeley with the collaboration of Freddy Bonnin, Clement´ Caubel and Hel´ ene` Maugendre For a current version of this manuscript-in-progress, see www.msri.org/people/staff/de/ready.pdf Copyright David Eisenbud, 2002 ii Contents 0 Preface: Algebra and Geometry xi 0A What are syzygies? . xii 0B The Geometric Content of Syzygies . xiii 0C What does it mean to solve linear equations? . xiv 0D Experiment and Computation . xvi 0E What’s In This Book? . xvii 0F Prerequisites . xix 0G How did this book come about? . xix 0H Other Books . 1 0I Thanks . 1 0J Notation . 1 1 Free resolutions and Hilbert functions 3 1A Hilbert’s contributions . 3 1A.1 The generation of invariants . 3 1A.2 The study of syzygies . 5 1A.3 The Hilbert function becomes polynomial . 7 iii iv CONTENTS 1B Minimal free resolutions . 8 1B.1 Describing resolutions: Betti diagrams . 11 1B.2 Properties of the graded Betti numbers . 12 1B.3 The information in the Hilbert function . 13 1C Exercises . 14 2 First Examples of Free Resolutions 19 2A Monomial ideals and simplicial complexes . 19 2A.1 Syzygies of monomial ideals . 23 2A.2 Examples . 25 2A.3 Bounds on Betti numbers and proof of Hilbert’s Syzygy Theorem . 26 2B Geometry from syzygies: seven points in P3 .......... 29 2B.1 The Hilbert polynomial and function. 29 2B.2 . and other information in the resolution . 31 2C Exercises . 34 3 Points in P2 39 3A The ideal of a finite set of points . -
Lecture 3. Resolutions and Derived Functors (GL)
Lecture 3. Resolutions and derived functors (GL) This lecture is intended to be a whirlwind introduction to, or review of, reso- lutions and derived functors { with tunnel vision. That is, we'll give unabashed preference to topics relevant to local cohomology, and do our best to draw a straight line between the topics we cover and our ¯nal goals. At a few points along the way, we'll be able to point generally in the direction of other topics of interest, but other than that we will do our best to be single-minded. Appendix A contains some preparatory material on injective modules and Matlis theory. In this lecture, we will cover roughly the same ground on the projective/flat side of the fence, followed by basics on projective and injective resolutions, and de¯nitions and basic properties of derived functors. Throughout this lecture, let us work over an unspeci¯ed commutative ring R with identity. Nearly everything said will apply equally well to noncommutative rings (and some statements need even less!). In terms of module theory, ¯elds are the simple objects in commutative algebra, for all their modules are free. The point of resolving a module is to measure its complexity against this standard. De¯nition 3.1. A module F over a ring R is free if it has a basis, that is, a subset B ⊆ F such that B generates F as an R-module and is linearly independent over R. It is easy to prove that a module is free if and only if it is isomorphic to a direct sum of copies of the ring. -
Depth, Dimension and Resolutions in Commutative Algebra
Depth, Dimension and Resolutions in Commutative Algebra Claire Tête PhD student in Poitiers MAP, May 2014 Claire Tête Commutative Algebra This morning: the Koszul complex, regular sequence, depth Tomorrow: the Buchsbaum & Eisenbud criterion and the equality of Aulsander & Buchsbaum through examples. Wednesday: some elementary results about the homology of a bicomplex Claire Tête Commutative Algebra I will begin with a little example. Let us consider the ideal a = hX1, X2, X3i of A = k[X1, X2, X3]. What is "the" resolution of A/a as A-module? (the question is deliberatly not very precise) Claire Tête Commutative Algebra I will begin with a little example. Let us consider the ideal a = hX1, X2, X3i of A = k[X1, X2, X3]. What is "the" resolution of A/a as A-module? (the question is deliberatly not very precise) We would like to find something like this dm dm−1 d1 · · · Fm Fm−1 · · · F1 F0 A/a with A-modules Fi as simple as possible and s.t. Im di = Ker di−1. Claire Tête Commutative Algebra I will begin with a little example. Let us consider the ideal a = hX1, X2, X3i of A = k[X1, X2, X3]. What is "the" resolution of A/a as A-module? (the question is deliberatly not very precise) We would like to find something like this dm dm−1 d1 · · · Fm Fm−1 · · · F1 F0 A/a with A-modules Fi as simple as possible and s.t. Im di = Ker di−1. We say that F· is a resolution of the A-module A/a Claire Tête Commutative Algebra I will begin with a little example. -
Linear Resolutions Over Koszul Complexes and Koszul Homology
LINEAR RESOLUTIONS OVER KOSZUL COMPLEXES AND KOSZUL HOMOLOGY ALGEBRAS JOHN MYERS Abstract. Let R be a standard graded commutative algebra over a field k, let K be its Koszul complex viewed as a differential graded k-algebra, and let H be the homology algebra of K. This paper studies the interplay between homological properties of the three algebras R, K, and H. In particular, we introduce two definitions of Koszulness that extend the familiar property originally introduced by Priddy: one which applies to K (and, more generally, to any connected differential graded k-algebra) and the other, called strand- Koszulness, which applies to H. The main theoretical result is a complete description of how these Koszul properties of R, K, and H are related to each other. This result shows that strand-Koszulness of H is stronger than Koszulness of R, and we include examples of classes of algebras which have Koszul homology algebras that are strand-Koszul. Introduction Koszul complexes are classical objects of study in commutative algebra. Their structure reflects many important properties of the rings over which they are de- fined, and these reflections are often encoded in the product structure of their homology. Indeed, Koszul complexes are more than just complexes — they are, in fact, the prototypical examples of differential graded (= DG) algebras in commu- tative ring theory, and thus the homology of a Koszul complex carries an algebra structure. These homology algebras encode (among other things) the Gorenstein condition [5], the Golod condition [15], and whether or not the ring is a complete intersection [1]. -
Koszul Cohomology and Algebraic Geometry Marian Aprodu Jan Nagel
Koszul Cohomology and Algebraic Geometry Marian Aprodu Jan Nagel Institute of Mathematics “Simion Stoilow” of the Romanian Acad- emy, P.O. Box 1-764, 014700 Bucharest, ROMANIA & S¸coala Normala˘ Superioara˘ Bucures¸ti, 21, Calea Grivit¸ei, 010702 Bucharest, Sector 1 ROMANIA E-mail address: [email protected] Universite´ Lille 1, Mathematiques´ – Bat.ˆ M2, 59655 Villeneuve dAscq Cedex, FRANCE E-mail address: [email protected] 2000 Mathematics Subject Classification. Primary 14H51, 14C20, 14F99, 13D02 Contents Introduction vii Chapter 1. Basic definitions 1 1.1. The Koszul complex 1 1.2. Definitions in the algebraic context 2 1.3. Minimal resolutions 3 1.4. Definitions in the geometric context 5 1.5. Functorial properties 6 1.6. Notes and comments 10 Chapter 2. Basic results 11 2.1. Kernel bundles 11 2.2. Projections and linear sections 12 2.3. Duality 17 2.4. Koszul cohomology versus usual cohomology 19 2.5. Sheaf regularity. 21 2.6. Vanishing theorems 22 Chapter 3. Syzygy schemes 25 3.1. Basic definitions 25 3.2. Koszul classes of low rank 32 3.3. The Kp,1 theorem 34 3.4. Rank-2 bundles and Koszul classes 38 3.5. The curve case 41 3.6. Notes and comments 45 Chapter 4. The conjectures of Green and Green–Lazarsfeld 47 4.1. Brill-Noether theory 47 4.2. Numerical invariants of curves 49 4.3. Statement of the conjectures 51 4.4. Generalizations of the Green conjecture. 54 4.5. Notes and comments 57 Chapter 5. Koszul cohomology and the Hilbert scheme 59 5.1. -
Commutative Algebra
Commutative Algebra Andrew Kobin Spring 2016 / 2019 Contents Contents Contents 1 Preliminaries 1 1.1 Radicals . .1 1.2 Nakayama's Lemma and Consequences . .4 1.3 Localization . .5 1.4 Transcendence Degree . 10 2 Integral Dependence 14 2.1 Integral Extensions of Rings . 14 2.2 Integrality and Field Extensions . 18 2.3 Integrality, Ideals and Localization . 21 2.4 Normalization . 28 2.5 Valuation Rings . 32 2.6 Dimension and Transcendence Degree . 33 3 Noetherian and Artinian Rings 37 3.1 Ascending and Descending Chains . 37 3.2 Composition Series . 40 3.3 Noetherian Rings . 42 3.4 Primary Decomposition . 46 3.5 Artinian Rings . 53 3.6 Associated Primes . 56 4 Discrete Valuations and Dedekind Domains 60 4.1 Discrete Valuation Rings . 60 4.2 Dedekind Domains . 64 4.3 Fractional and Invertible Ideals . 65 4.4 The Class Group . 70 4.5 Dedekind Domains in Extensions . 72 5 Completion and Filtration 76 5.1 Topological Abelian Groups and Completion . 76 5.2 Inverse Limits . 78 5.3 Topological Rings and Module Filtrations . 82 5.4 Graded Rings and Modules . 84 6 Dimension Theory 89 6.1 Hilbert Functions . 89 6.2 Local Noetherian Rings . 94 6.3 Complete Local Rings . 98 7 Singularities 106 7.1 Derived Functors . 106 7.2 Regular Sequences and the Koszul Complex . 109 7.3 Projective Dimension . 114 i Contents Contents 7.4 Depth and Cohen-Macauley Rings . 118 7.5 Gorenstein Rings . 127 8 Algebraic Geometry 133 8.1 Affine Algebraic Varieties . 133 8.2 Morphisms of Affine Varieties . 142 8.3 Sheaves of Functions . -
Syzygies, Finite Length Modules, and Random Curves
Syzygies, finite length modules, and random curves Christine Berkesch and Frank-Olaf Schreyer∗ Abstract We apply the theory of Gr¨obner bases to the computation of free reso- lutions over a polynomial ring, the defining equations of a canonically em- bedded curve, and the unirationality of the moduli space of curves of a fixed small genus. Introduction While a great deal of modern commutative algebra and algebraic geometry has taken a nonconstructive form, the theory of Gr¨obner bases provides an algorithmic approach. Algorithms currently implemented in computer algebra systems, such as Macaulay2 and SINGULAR, already exhibit the wide range of computational possibilities that arise from Gr¨obner bases [M2, DGPS]. In these lectures, we focus on certain applications of Gr¨obner bases to syzy- gies and curves. In Section 1, we use Gr¨obner bases to give an algorithmic proof arXiv:1403.0581v2 [math.AC] 10 Sep 2014 of Hilbert’s Syzygy Theorem, which bounds the length of a free resolution over a polynomial ring. In Section 2, we prove Petri’s theorem about the defining equa- tions for canonical embeddings of curves. We turn in Section 3 to the Hartshorne– Rao module of a curve, showing by example how a module M of finite length can be used to explicitly construct a curve whose Hartshorne–Rao module is M. Sec- tion 4 then applies this construction to the study of the unirationality of the moduli space Mg of curves of genus g. 2010 Mathematics Subject Classification 13P10, 13D05, 13C40, 14H10, 14-04, 14M20, 14Q05. ∗This article consists of extended notes from lectures by the second author at the Joint Intro- ductory Workshop: Cluster Algebras and Commutative Algebra at MSRI during the Fall of 2012. -
Koszul Complex Over Skew Polynomial Rings 11
KOSZUL COMPLEX OVER SKEW POLYNOMIAL RINGS JOSEP ALVAREZ` MONTANER, ALBERTO F. BOIX, AND SANTIAGO ZARZUELA Dedicated to Professor Gennady Lyubeznik on the occasion of his 60th birthday Abstract. We construct a Koszul complex in the category of left skew polynomial rings associated to a flat endomorphism that provides a finite free resolution of an ideal generated by a Koszul regular sequence. 1. Introduction Let A be a commutative Noetherian ring of characteristic p > 0 and F : A −! A the associated Frobenius map for which F (a) = ap for all a 2 A. The study of A-modules with an action of the Frobenius map has received a lot of attention over the last decades and is at the core of the celebrated theory of tight closure developed by M. Hochster and C. Huneke in [HH90] and the theory of F -modules introduced by G. Lyubeznik [Lyu97]. To provide an action of the Frobenius on an A-module M is equivalent to give a left A[Θ; F ]- module structure on M. Here A[Θ; F ] stands for the left skew polynomial ring associated to F , which is an associative, N-graded, not necessarily commutative ring extension of A. More generally, we may also consider the skew polynomial rings A[Θ; F e] associated to the e-th iterated Frobenius M L M map and the graded ring F = e≥0 Fe introduced by G. Lyubeznik and K. E. Smith in [LS01] that collects all the A[Θ; F e]-module structures on M or equivalently, all possible actions of F e on M. -