Chapter 13 Matrix Representation

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 13 Matrix Representation Chapter 13 Matrix Representation Matrix Rep. Same basics as introduced already. Convenient method of working with vectors. Superposition Complete set of vectors can be used to express any other vector. Complete set of N orthonormal vectors can form other complete sets of N orthonormal vectors. Can find set of vectors for Hermitian operator satisfying Au= α u. Eigenvectors and eigenvalues Matrix method Find superposition of basis states that are eigenstates of particular operator. Get eigenvalues. Copyright – Michael D. Fayer, 2018 Orthonormal basis set in N dimensional vector space { e j } basis vectors Any N dimensional vector can be written as N = j j x∑ xej with xj = ex j=1 To get this, project out eejj from x j jj j xej = e e x piece of x that is e , then sum over all e j . Copyright – Michael D. Fayer, 2018 Operator equation y= Ax NN jj ∑∑yejj= A xe Substituting the series in terms of bases vectors. jj=11= N j = ∑ xj Ae j=1 Left mult. by ei N ij yij= ∑ e Ae x j=1 The N2 scalar products ij e Ae N values of j for each yi; and N different yi are completely determined by Ae and the basis set { j }. Copyright – Michael D. Fayer, 2018 Writing = ij j aij e Ae Matrix elements of A in the basis { e } gives for the linear transformation N = yi∑ ax ij j jN= 12,, j=1 j Know the aij because we know A and { e } In terms of the vector representatives Q=++754 xyzˆˆˆ x1 y1 vector x2 y 7 x = y = 2 vector representative, 5 must know basis xN yN 4 (Set of numbers, gives you vector when basis is known.) The set of N linear algebraic equations can be written as y= Ax double underline means matrix Copyright – Michael D. Fayer, 2018 A array of coefficients - matrix aa11 12 a1N aa a 21 22 2 N The aij are the elements of the matrix A . Aa=( ij ) = aaNN12 aNN y= Ax vector representatives in particular basis y1 aa 11 12 a1N x 1 y aa x 2 = 21 22 2 yNNN aa12 aNN x N The product of matrix A and vector representative x is a new vector representative y with components N yi= ∑ ax ij j j=1 Copyright – Michael D. Fayer, 2018 Matrix Properties, Definitions, and Rules Two matrices, A and B are equal AB= if aij = bij. The unit matrix The zero matrix 10 0 01 0 ones down 00 0 1 =δ = ij principal diagonal 00 0 0 = 00 1 00 0 Gives identity transformation N 00x = yi =∑δ ij xx j = i j=1 Corresponds to y=1 xx = Copyright – Michael D. Fayer, 2018 Matrix multiplication Consider y= Ax z= By operator equations z= BA x Using the same basis for both transformations N = zk∑ by ki i z= By Bb= matrix = (ki ) i=1 z= By = BAx = Cx C= BA has elements Example N c= ba 23 75 2928 kj∑ ki ij = i=1 34 56 4139 Law of matrix multiplication Copyright – Michael D. Fayer, 2018 Multiplication Associative ( AB) C= A( BC) Multiplication NOT Commutative except in special cases. AB ≠ BA Matrix addition and multiplication by complex number αβA+= BC cabij=αβ ij + ij Copyright – Michael D. Fayer, 2018 Reciprocal of Product −1 −− ( AB) = B11 A For matrix defined as Aa= ()ij Transpose Aa= ( ji ) interchange rows and columns Complex Conjugate * * Aa= ( ij ) complex conjugate of each element Hermitian Conjugate + * Aa= ( ji ) complex conjugate transpose Inverse of a matrix A − −−11 inverse of A A 1 AA= A A = 1 identity matrix CT − A transpose of cofactor matrix (matrix of signed minors) A 1 = A determinant A≠=0 If AA 0 is singular Copyright – Michael D. Fayer, 2018 Rules ( AB) = BA transpose of product is product of transposes in reverse order ||||AA = determinant of transpose is determinant ** ()AB* = A B complex conjugate of product is product of complex conjugates |AA* |||= * determinant of complex conjugate is complex conjugate of determinant ++ ()AB+ = B A Hermitian conjugate of product is product of Hermitian conjugates in reverse order + |AA |||= * determinant of Hermitian conjugate is complex conjugate of determinant Copyright – Michael D. Fayer, 2018 Definitions AA= Symmetric + AA= Hermitian AA= * Real * AA= − Imaginary −+1 AA= Unitary aaij= ijδ ij Diagonal Powers of a matrix A01=1 A = A A 2 = AA ⋅⋅⋅ A2 eAA =1 + + +⋅⋅⋅ 2! Copyright – Michael D. Fayer, 2018 Column vector representative one column matrix x1 x x = 2 vector representatives in particular basis xN then y= Ax becomes y1 aa 11 12 a1N x 1 y aa x 2 = 21 22 2 yNNN aa12 aNN x N row vector transpose of column vector x = ( xx12, xN ) y= Ax y= xA transpose + y= Ax y++= xA Hermitian conjugate Copyright – Michael D. Fayer, 2018 Change of Basis orthonormal basis { ei } then ij ee= δ ij ( ij,= 1, 2, N) Superposition of { ei } can form N new vectors linearly independent a new basis { ei′ } N ik′ e= ∑ ueik i= 1, 2, N k=1 complex numbers Copyright – Michael D. Fayer, 2018 New Basis is Orthonormal ji′′ ee = δ ij if the matrix Uu= ( ik ) coefficients in superposition N ik′ e= ∑ ueik i= 1, 2, N meets the condition k=1 + UU= 1 −+ UU1 = U is unitary – Hermitian conjugate = inverse Important result. The new basis { e i′ } will be orthonormal if U , the transformation matrix, is unitary (see book ++ and Errata and Addenda, linear algebra book ). UU= U U = 1 Copyright – Michael D. Fayer, 2018 Unitary transformation substitutes orthonormal basis { e ′ } for orthonormal basis { e } . Vector x i x= ∑ xei i vector – line in space (may be high dimensionality abstract space) ′ i′ x= ∑ xei written in terms of two basis sets i x Same vector – different basis. The unitary transformation U can be used to change a vector representative of x in one orthonormal basis set to its vector representative in another orthonormal basis set. x – vector rep. in unprimed basis x' – vector rep. in primed basis x′ = Ux change from unprimed to primed basis + x= Ux′ change from primed to unprimed basis Copyright – Michael D. Fayer, 2018 Example Consider basis {xyzˆˆ,,ˆ} y |s z x Vector s - line in real space. In terms of basis s=++771 xˆˆ yzˆ Vector representative in basis {xyzˆˆ,,ˆ} 7 = s 7 1 Copyright – Michael D. Fayer, 2018 Change basis by rotating axis system 45° around zˆ . Can find the new representative of s , s' s′ = Us U is rotation matrix x yz cosθ sinθ 0 U = −sinθ cosθ 0 0 01 For 45° rotation around z 2/2 2/2 0 U = − 2/2 2/2 0 0 01 Copyright – Michael D. Fayer, 2018 Then 2/2 2/2 0 7 72 ′ s =−=2/2 2/2 0 7 0 0 0 11 1 72 s e′ s′ = 0 vector representative of in basis { } 1 Same vector but in new basis. Properties unchanged. 1/2 Example – length of vector ( ss) 1/2 1/2 1/2 1/2 ss=⋅( s* s ) = (49 ++ 49 1) = (99) 1/2 * 1/2 1/2 1/2 ss=( s′′ ⋅ s ) = (2 × 49 ++ 0 1) = (99) Copyright – Michael D. Fayer, 2018 Can go back and forth between representatives of a vector x by change from unprimed change from primed to primed basis to unprimed basis + x′ = Ux x= Ux′ components of x in different basis Copyright – Michael D. Fayer, 2018 Consider the linear transformation y= Ax operator equation In the basis { e } can write y= Ax or yi= ∑ ax ij j j Change to new orthonormal basis { e ′ } using U + y′′= Uy = UAx = UAUx or y′′= Ax′ with the matrix A ′ given by + A′ = U AU −1 Because U is unitary A′ = U AU Copyright – Michael D. Fayer, 2018 Extremely Important − A′ = U AU 1 Can change the matrix representing an operator in one orthonormal basis into the equivalent matrix in a different orthonormal basis. Called Similarity Transformation Copyright – Michael D. Fayer, 2018 yAx= ABC = ABC += In basis { e } Go into basis { e′ } yAx′′=′ ABC′′= ′ ABC ′ += ′ ′ Relations unchanged by change of basis. Example AB= C ++ U ABU= UCU + +− Can insert UU between AB because UU = U1 U = 1 ++ + U AU U BU= U CU Therefore AB′′= C ′ Copyright – Michael D. Fayer, 2018 Isomorphism between operators in abstract vector space and matrix representatives. Because of isomorphism not necessary to distinguish abstract vectors and operators from their matrix representatives. The matrices (for operators) and the representatives (for vectors) can be used in place of the real things. Copyright – Michael D. Fayer, 2018 Hermitian Operators and Matrices Hermitian operator xAy= yAx Hermitian operator Hermitian Matrix + AA= + - complex conjugate transpose - Hermitian conjugate Copyright – Michael D. Fayer, 2018 Theorem (Proof: Powell and Craseman, P. 303 – 307, or linear algebra book) For a Hermitian operator A in a linear vector space of N dimensions, there exists an orthonormal basis, UU12, UN relative to which A is represented by a diagonal matrix α1 00 00α A′ = 2 0 . 0 α N i The vectors, U , and the corresponding real numbers, αi, are the solutions of the Eigenvalue Equation AU= α U and there are no others. Copyright – Michael D. Fayer, 2018 Application of Theorem Operator A represented by matrix A in some basis { e i } . The basis is any convenient basis. In general, the matrix will not be diagonal. There exists some new basis eigenvectors { U i } in which A ′ represents operator and is diagonal eigenvalues. To get from { e i } to { U i } unitary transformation. { Uii} = Ue{ }. − A′ = U AU 1 Similarity transformation takes matrix in arbitrary basis into diagonal matrix with eigenvalues on the diagonal.
Recommended publications
  • Math 651 Homework 1 - Algebras and Groups Due 2/22/2013
    Math 651 Homework 1 - Algebras and Groups Due 2/22/2013 1) Consider the Lie Group SU(2), the group of 2 × 2 complex matrices A T with A A = I and det(A) = 1. The underlying set is z −w jzj2 + jwj2 = 1 (1) w z with the standard S3 topology. The usual basis for su(2) is 0 i 0 −1 i 0 X = Y = Z = (2) i 0 1 0 0 −i (which are each i times the Pauli matrices: X = iσx, etc.). a) Show this is the algebra of purely imaginary quaternions, under the commutator bracket. b) Extend X to a left-invariant field and Y to a right-invariant field, and show by computation that the Lie bracket between them is zero. c) Extending X, Y , Z to global left-invariant vector fields, give SU(2) the metric g(X; X) = g(Y; Y ) = g(Z; Z) = 1 and all other inner products zero. Show this is a bi-invariant metric. d) Pick > 0 and set g(X; X) = 2, leaving g(Y; Y ) = g(Z; Z) = 1. Show this is left-invariant but not bi-invariant. p 2) The realification of an n × n complex matrix A + −1B is its assignment it to the 2n × 2n matrix A −B (3) BA Any n × n quaternionic matrix can be written A + Bk where A and B are complex matrices. Its complexification is the 2n × 2n complex matrix A −B (4) B A a) Show that the realification of complex matrices and complexifica- tion of quaternionic matrices are algebra homomorphisms.
    [Show full text]
  • Math 223 Symmetric and Hermitian Matrices. Richard Anstee an N × N Matrix Q Is Orthogonal If QT = Q−1
    Math 223 Symmetric and Hermitian Matrices. Richard Anstee An n × n matrix Q is orthogonal if QT = Q−1. The columns of Q would form an orthonormal basis for Rn. The rows would also form an orthonormal basis for Rn. A matrix A is symmetric if AT = A. Theorem 0.1 Let A be a symmetric n × n matrix of real entries. Then there is an orthogonal matrix Q and a diagonal matrix D so that AQ = QD; i.e. QT AQ = D: Note that the entries of M and D are real. There are various consequences to this result: A symmetric matrix A is diagonalizable A symmetric matrix A has an othonormal basis of eigenvectors. A symmetric matrix A has real eigenvalues. Proof: The proof begins with an appeal to the fundamental theorem of algebra applied to det(A − λI) which asserts that the polynomial factors into linear factors and one of which yields an eigenvalue λ which may not be real. Our second step it to show λ is real. Let x be an eigenvector for λ so that Ax = λx. Again, if λ is not real we must allow for the possibility that x is not a real vector. Let xH = xT denote the conjugate transpose. It applies to matrices as AH = AT . Now xH x ≥ 0 with xH x = 0 if and only if x = 0. We compute xH Ax = xH (λx) = λxH x. Now taking complex conjugates and transpose (xH Ax)H = xH AH x using that (xH )H = x. Then (xH Ax)H = xH Ax = λxH x using AH = A.
    [Show full text]
  • Inner Product Spaces
    CHAPTER 6 Woman teaching geometry, from a fourteenth-century edition of Euclid’s geometry book. Inner Product Spaces In making the definition of a vector space, we generalized the linear structure (addition and scalar multiplication) of R2 and R3. We ignored other important features, such as the notions of length and angle. These ideas are embedded in the concept we now investigate, inner products. Our standing assumptions are as follows: 6.1 Notation F, V F denotes R or C. V denotes a vector space over F. LEARNING OBJECTIVES FOR THIS CHAPTER Cauchy–Schwarz Inequality Gram–Schmidt Procedure linear functionals on inner product spaces calculating minimum distance to a subspace Linear Algebra Done Right, third edition, by Sheldon Axler 164 CHAPTER 6 Inner Product Spaces 6.A Inner Products and Norms Inner Products To motivate the concept of inner prod- 2 3 x1 , x 2 uct, think of vectors in R and R as x arrows with initial point at the origin. x R2 R3 H L The length of a vector in or is called the norm of x, denoted x . 2 k k Thus for x .x1; x2/ R , we have The length of this vector x is p D2 2 2 x x1 x2 . p 2 2 x1 x2 . k k D C 3 C Similarly, if x .x1; x2; x3/ R , p 2D 2 2 2 then x x1 x2 x3 . k k D C C Even though we cannot draw pictures in higher dimensions, the gener- n n alization to R is obvious: we define the norm of x .x1; : : : ; xn/ R D 2 by p 2 2 x x1 xn : k k D C C The norm is not linear on Rn.
    [Show full text]
  • Chapter 1: Complex Numbers Lecture Notes Math Section
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Almae Matris Studiorum Campus Chapter 1: Complex Numbers Lecture notes Math Section 1.1: Definition of Complex Numbers Definition of a complex number A complex number is a number that can be expressed in the form z = a + bi, where a and b are real numbers and i is the imaginary unit, that satisfies the equation i2 = −1. In this expression, a is the real part Re(z) and b is the imaginary part Im(z) of the complex number. The complex number a + bi can be identified with the point (a; b) in the complex plane. A complex number whose real part is zero is said to be purely imaginary, whereas a complex number whose imaginary part is zero is a real number. Ex.1 Understanding complex numbers Write the real part and the imaginary part of the following complex numbers and plot each number in the complex plane. (1) i (2) 4 + 2i (3) 1 − 3i (4) −2 Section 1.2: Operations with Complex Numbers Addition and subtraction of two complex numbers To add/subtract two complex numbers we add/subtract each part separately: (a + bi) + (c + di) = (a + c) + (b + d)i and (a + bi) − (c + di) = (a − c) + (b − d)i Ex.1 Addition and subtraction of complex numbers (1) (9 + i) + (2 − 3i) (2) (−2 + 4i) − (6 + 3i) (3) (i) − (−11 + 2i) (4) (1 + i) + (4 + 9i) Multiplication of two complex numbers To multiply two complex numbers we proceed as follows: (a + bi)(c + di) = ac + adi + bci + bdi2 = ac + adi + bci − bd = (ac − bd) + (ad + bc)i Ex.2 Multiplication of complex numbers (1) (3 + 2i)(1 + 7i) (2) (i + 1)2 (3) (−4 + 3i)(2 − 5i) 1 Chapter 1: Complex Numbers Lecture notes Math Conjugate of a complex number The complex conjugate of the complex number z = a + bi is defined to be z¯ = a − bi.
    [Show full text]
  • COMPLEX MATRICES and THEIR PROPERTIES Mrs
    ISSN: 2277-9655 [Devi * et al., 6(7): July, 2017] Impact Factor: 4.116 IC™ Value: 3.00 CODEN: IJESS7 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY COMPLEX MATRICES AND THEIR PROPERTIES Mrs. Manju Devi* *Assistant Professor In Mathematics, S.D. (P.G.) College, Panipat DOI: 10.5281/zenodo.828441 ABSTRACT By this paper, our aim is to introduce the Complex Matrices that why we require the complex matrices and we have discussed about the different types of complex matrices and their properties. I. INTRODUCTION It is no longer possible to work only with real matrices and real vectors. When the basic problem was Ax = b the solution was real when A and b are real. Complex number could have been permitted, but would have contributed nothing new. Now we cannot avoid them. A real matrix has real coefficients in det ( A - λI), but the eigen values may complex. We now introduce the space Cn of vectors with n complex components. The old way, the vector in C2 with components ( l, i ) would have zero length: 12 + i2 = 0 not good. The correct length squared is 12 + 1i12 = 2 2 2 2 This change to 11x11 = 1x11 + …….. │xn│ forces a whole series of other changes. The inner product, the transpose, the definitions of symmetric and orthogonal matrices all need to be modified for complex numbers. II. DEFINITION A matrix whose elements may contain complex numbers called complex matrix. The matrix product of two complex matrices is given by where III. LENGTHS AND TRANSPOSES IN THE COMPLEX CASE The complex vector space Cn contains all vectors x with n complex components.
    [Show full text]
  • Complex Inner Product Spaces
    MATH 355 Supplemental Notes Complex Inner Product Spaces Complex Inner Product Spaces The Cn spaces The prototypical (and most important) real vector spaces are the Euclidean spaces Rn. Any study of complex vector spaces will similar begin with Cn. As a set, Cn contains vectors of length n whose entries are complex numbers. Thus, 2 i ` 3 5i C3, » ´ fi P i — ffi – fl 5, 1 is an element found both in R2 and C2 (and, indeed, all of Rn is found in Cn), and 0, 0, 0, 0 p ´ q p q serves as the zero element in C4. Addition and scalar multiplication in Cn is done in the analogous way to how they are performed in Rn, except that now the scalars are allowed to be nonreal numbers. Thus, to rescale the vector 3 i, 2 3i by 1 3i, we have p ` ´ ´ q ´ 3 i 1 3i 3 i 6 8i 1 3i ` p ´ qp ` q ´ . p ´ q « 2 3iff “ « 1 3i 2 3i ff “ « 11 3iff ´ ´ p ´ qp´ ´ q ´ ` Given the notation 3 2i for the complex conjugate 3 2i of 3 2i, we adopt a similar notation ` ´ ` when we want to take the complex conjugate simultaneously of all entries in a vector. Thus, 3 4i 3 4i ´ ` » 2i fi » 2i fi if z , then z ´ . “ “ — 2 5iffi — 2 5iffi —´ ` ffi —´ ´ ffi — 1 ffi — 1 ffi — ´ ffi — ´ ffi – fl – fl Both z and z are vectors in C4. In general, if the entries of z are all real numbers, then z z. “ The inner product in Cn In Rn, the length of a vector x ?x x is a real, nonnegative number.
    [Show full text]
  • MATH 304 Linear Algebra Lecture 25: Complex Eigenvalues and Eigenvectors
    MATH 304 Linear Algebra Lecture 25: Complex eigenvalues and eigenvectors. Orthogonal matrices. Rotations in space. Complex numbers C: complex numbers. Complex number: z = x + iy, where x, y R and i 2 = 1. ∈ − i = √ 1: imaginary unit − Alternative notation: z = x + yi. x = real part of z, iy = imaginary part of z y = 0 = z = x (real number) ⇒ x = 0 = z = iy (purely imaginary number) ⇒ We add, subtract, and multiply complex numbers as polynomials in i (but keep in mind that i 2 = 1). − If z1 = x1 + iy1 and z2 = x2 + iy2, then z1 + z2 = (x1 + x2) + i(y1 + y2), z z = (x x ) + i(y y ), 1 − 2 1 − 2 1 − 2 z z = (x x y y ) + i(x y + x y ). 1 2 1 2 − 1 2 1 2 2 1 Given z = x + iy, the complex conjugate of z is z¯ = x iy. The modulus of z is z = x 2 + y 2. − | | zz¯ = (x + iy)(x iy) = x 2 (iy)2 = x 2 +py 2 = z 2. − − | | 1 z¯ 1 x iy z− = ,(x + iy) = − . z 2 − x 2 + y 2 | | Geometric representation Any complex number z = x + iy is represented by the vector/point (x, y) R2. ∈ y r φ 0 x 0 x = r cos φ, y = r sin φ = z = r(cos φ + i sin φ) = reiφ ⇒ iφ1 iφ2 If z1 = r1e and z2 = r2e , then i(φ1+φ2) i(φ1 φ2) z1z2 = r1r2e , z1/z2 = (r1/r2)e − . Fundamental Theorem of Algebra Any polynomial of degree n 1, with complex ≥ coefficients, has exactly n roots (counting with multiplicities).
    [Show full text]
  • The Integration Problem for Complex Lie Algebroids
    The integration problem for complex Lie algebroids Alan Weinstein∗ Department of Mathematics University of California Berkeley CA, 94720-3840 USA [email protected] July 17, 2018 Abstract A complex Lie algebroid is a complex vector bundle over a smooth (real) manifold M with a bracket on sections and an anchor to the complexified tangent bundle of M which satisfy the usual Lie algebroid axioms. A proposal is made here to integrate analytic complex Lie al- gebroids by using analytic continuation to a complexification of M and integration to a holomorphic groupoid. A collection of diverse exam- ples reveal that the holomorphic stacks presented by these groupoids tend to coincide with known objects associated to structures in com- plex geometry. This suggests that the object integrating a complex Lie algebroid should be a holomorphic stack. 1 Introduction It is a pleasure to dedicate this paper to Professor Hideki Omori. His work arXiv:math/0601752v1 [math.DG] 31 Jan 2006 over many years, introducing ILH manifolds [30], Weyl manifolds [32], and blurred Lie groups [31] has broadened the notion of what constitutes a “space.” The problem of “integrating” complex vector fields on real mani- folds seems to lead to yet another kind of space, which is investigated in this paper. ∗research partially supported by NSF grant DMS-0204100 MSC2000 Subject Classification Numbers: Keywords: 1 Recall that a Lie algebroid over a smooth manifold M is a real vector bundle E over M with a Lie algebra structure (over R) on its sections and a bundle map ρ (called the anchor) from E to the tangent bundle T M, satisfying the Leibniz rule [a, fb]= f[a, b] + (ρ(a)f)b for sections a and b and smooth functions f : M → R.
    [Show full text]
  • Complex Numbers and Coordinate Transformations WHOI Math Review
    Complex Numbers and Coordinate transformations WHOI Math Review Isabela Le Bras July 27, 2015 Class outline: 1. Complex number algebra 2. Complex number application 3. Rotation of coordinate systems 4. Polar and spherical coordinates 1 Complex number algebra Complex numbers are ap combination of real and imaginary numbers. Imaginary numbers are based around the definition of i, i = −1. They are useful for solving differential equations; they carry twice as much information as a real number and there exists a useful framework for handling them. To add and subtract complex numbers, group together the real and imaginary parts. For example, (4 + 3i) + (3 + 2i) = 7 + 5i: Try a few examples: • (9 + 3i) - (4 + 7i) = • (6i) + (8 + 2i) = • (7 + 7i) - (9 - 9i) = To multiply, multiply all components by each other, and use the fact that i2 = −1 to simplify. For example, (3 − 2i)(4 + 3i) = 12 + 9i − 8i − 6i2 = 18 + i To divide, multiply the numerator by the complex conjugate of the denominator. The complex conjugate is formed by multiplying the imaginary part of the complex number by -1, and is often denoted by a star, i.e. (6 + 3i)∗ = (6 − 3i). The reason this works is easier to see in the complex plane. Here is an example of division: (4 + 2i)=(3 − i) = (4 + 2i)(3 + i) = 12 + 4i + 6i + 2i2 = 10 + 10i Try a few examples of multiplication and division: • (4 + 7i)(2 + i) = 1 • (5 + 3i)(5 - 2i) = • (6 -2i)/(4 + 3i) = • (3 + 2i)/(6i) = We often think of complex numbers as living on the plane of real and imaginary numbers, and can write them as reiq = r(cos(q) + isin(q)).
    [Show full text]
  • C*-Algebras, Classification, and Regularity
    C*-algebras, classification, and regularity Aaron Tikuisis [email protected] University of Aberdeen Aaron Tikuisis C*-algebras, classification, and regularity C*-algebras The canonical C*-algebra is B(H) := fcontinuous linear operators H ! Hg; where H is a (complex) Hilbert space. B(H) is a (complex) algebra: multiplication = composition of operators. Operators are continuous if and only if they are bounded (operator) norm on B(H). ∗ Every operator T has an adjoint T involution on B(H). A C*-algebra is a subalgebra of B(H) which is norm-closed and closed under adjoints. Aaron Tikuisis C*-algebras, classification, and regularity C*-algebras The canonical C*-algebra is B(H) := fcontinuous linear operators H ! Hg; where H is a (complex) Hilbert space. B(H) is a (complex) algebra: multiplication = composition of operators. Operators are continuous if and only if they are bounded (operator) norm on B(H). ∗ Every operator T has an adjoint T involution on B(H). A C*-algebra is a subalgebra of B(H) which is norm-closed and closed under adjoints. Aaron Tikuisis C*-algebras, classification, and regularity C*-algebras The canonical C*-algebra is B(H) := fcontinuous linear operators H ! Hg; where H is a (complex) Hilbert space. B(H) is a (complex) algebra: multiplication = composition of operators. Operators are continuous if and only if they are bounded (operator) norm on B(H). ∗ Every operator T has an adjoint T involution on B(H). A C*-algebra is a subalgebra of B(H) which is norm-closed and closed under adjoints. Aaron Tikuisis C*-algebras, classification, and regularity C*-algebras The canonical C*-algebra is B(H) := fcontinuous linear operators H ! Hg; where H is a (complex) Hilbert space.
    [Show full text]
  • Commutative Quaternion Matrices for Its Applications
    Commutative Quaternion Matrices Hidayet H¨uda KOSAL¨ and Murat TOSUN November 26, 2016 Abstract In this study, we introduce the concept of commutative quaternions and commutative quaternion matrices. Firstly, we give some properties of commutative quaternions and their Hamilton matrices. After that we investigate commutative quaternion matrices using properties of complex matrices. Then we define the complex adjoint matrix of commutative quaternion matrices and give some of their properties. Mathematics Subject Classification (2000): 11R52;15A33 Keywords: Commutative quaternions, Hamilton matrices, commu- tative quaternion matrices. 1 INTRODUCTION Sir W.R. Hamilton introduced the set of quaternions in 1853 [1], which can be represented as Q = {q = t + xi + yj + zk : t,x,y,z ∈ R} . Quaternion bases satisfy the following identities known as the i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j. arXiv:1306.6009v1 [math.AG] 25 Jun 2013 From these rules it follows immediately that multiplication of quaternions is not commutative. So, it is not easy to study quaternion algebra problems. Similarly, it is well known that the main obstacle in study of quaternion matrices, dating back to 1936 [2], is the non-commutative multiplication of quaternions. In this sense, there exists two kinds of its eigenvalue, called right eigenvalue and left eigenvalue. The right eigenvalues and left eigenvalues of quaternion matrices must be not the same. The set of right eigenvalues is always nonempty, and right eigenvalues are well studied in literature [3]. On the contrary, left eigenvalues are less known. Zhang [4], commented that the set of left eigenvalues is not easy to handle, and few result have been obtained.
    [Show full text]
  • Unitary-And-Hermitian-Matrices.Pdf
    11-24-2014 Unitary Matrices and Hermitian Matrices Recall that the conjugate of a complex number a + bi is a bi. The conjugate of a + bi is denoted a + bi or (a + bi)∗. − In this section, I’ll use ( ) for complex conjugation of numbers of matrices. I want to use ( )∗ to denote an operation on matrices, the conjugate transpose. Thus, 3 + 4i = 3 4i, 5 6i =5+6i, 7i = 7i, 10 = 10. − − − Complex conjugation satisfies the following properties: (a) If z C, then z = z if and only if z is a real number. ∈ (b) If z1, z2 C, then ∈ z1 + z2 = z1 + z2. (c) If z1, z2 C, then ∈ z1 z2 = z1 z2. · · The proofs are easy; just write out the complex numbers (e.g. z1 = a+bi and z2 = c+di) and compute. The conjugate of a matrix A is the matrix A obtained by conjugating each element: That is, (A)ij = Aij. You can check that if A and B are matrices and k C, then ∈ kA + B = k A + B and AB = A B. · · You can prove these results by looking at individual elements of the matrices and using the properties of conjugation of numbers given above. Definition. If A is a complex matrix, A∗ is the conjugate transpose of A: ∗ A = AT . Note that the conjugation and transposition can be done in either order: That is, AT = (A)T . To see this, consider the (i, j)th element of the matrices: T T T [(A )]ij = (A )ij = Aji =(A)ji = [(A) ]ij. Example. If 1 2i 4 1 + 2i 2 i 3i ∗ − A = − , then A = 2 + i 2 7i .
    [Show full text]