Environmental Concerns of Natural Gas Vehicles: Do We Know Enough?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Natural Gas Vehicles Myth Vs. Reality
INNOVATION | NGV NATURAL GAS VEHICLES MYTH VS. REALITY Transitioning your fleet to alternative fuels is a major decision, and there are several factors to consider. Unfortunately, not all of the information in the market related to heavy-duty natural gas vehicles (NGVs) is 100 percent accurate. The information below aims to dispel some of these myths while providing valuable insights about NGVs. MYTH REALITY When specifying a vehicle, it’s important to select engine power that matches the given load and duty cycle. Earlier 8.9 liter natural gas engines were limited to 320 horsepower. They were not always used in their ideal applications and often pulled loads that were heavier than intended. As a result, there were some early reliability challenges. NGVs don’t have Fortunately, reliability has improved and the Cummins Westport near-zero 11.9 liter engine enough power, offers up to 400 horsepower and 1,450 lb-ft torque to pull full 80,000 pound GVWR aren’t reliable. loads.1 In a study conducted by the American Gas Association (AGA) NGVs were found to be as safe or safer than vehicles powered by liquid fuels. NGVs require Compressed Natural Gas (CNG) fuel tanks, or “cylinders.” They need to be inspected every three years or 36,000 miles. The AGA study goes on to state that the NGV fleet vehicle injury rate was 37 CNG is not safe. percent lower than the gasoline fleet vehicle rate and there were no fuel related fatalities compared with 1.28 deaths per 100 million miles for gasoline fleet vehicles.2 Improvements in CNG cylinder storage design have led to fuel systems that provide E F range that matches the range of a typical diesel-powered truck. -
Natural Gas Vehicle Technology
Natural Gas Vehicle Technology Basic Information about Light -Duty Vehicles History Natural Gas Vehicles 1910’s : Low-pressu re bag carried on a trailer (USA) 1930’s Wood-Gas (Germany) © ENGVA, 2003 1 Gaseous Vehicle Fuels LPG (Liquefied Petroleum Gas) Propane, butane, mixture 3 – 15 bar (45 – 625 psi) at ambient temperature CNG (Compressed Natural Gas) Methane CH 4 200 bar (3000 psi) at ambient temperature LNG (Liquefied Natural Gas) Methane CH 4 Cryogenic : Liquefied at -162°C (typical for vehicle use -140°C @ 3 to 5 bar) H2 (Hydrogen) CH 2 (350 bar (5150 psi) compressed) or LH 2 (liquefied, -253°C) © ENGVA, 2003 CNG system overview Light-Duty Typical CNG Components in a Natural Gas Vehicle Fill receptacle Storage tank(s) Piping and fittings High Pressure Regulator Fuel-rail CNG injectors ECU Source : Volvo © ENGVA, 2003 2 CNG storage Storage in gaseous phase Storage under high pressure : 200 bar / 3000 psi Storage in one or more cylinders LPG storage Source : Barbotti, Argentina Storage in liquid phase Storage under low pressure : 3 - 15 bar Storage (mostly) in one cylinder Source : Opel © ENGVA, 2003 CNG fuel systems Light-Duty Mono-Fuel CNG only (dedicated) Bi-Fuel Source : Fiat Auto Spa CNG & Petrol © ENGVA, 2003 3 Mono-Fuel system Light-Duty Advantages Optimised engine possible Higher power output Lower fuel consumption Better exhaust gas emissions More available space for CNG tanks Better access to incentive programs Disadvantages Higher system price Restricted (total) range Dependency on filling station availability Source : -
Report to Congress
REPORT TO CONGRESS Effects of the Alternative Motor Fuels Act CAFE Incentives Policy PREPARED BY: U.S. Department of Transportation U.S. Department of Energy U.S. Environmental Protection Agency March 2002 Table of Contents Highlights.............................................................................................................................iii Executive Summary.............................................................................................................vi I. Introduction.....................................................................................................................1 II. Background.....................................................................................................................3 III. Availability of Alternative Fuel Vehicles.....................................................................13 IV. Availability and Use of Alternative Fuels....................................................................27 V. Analysis of the Effects on Energy Conservation and the Environment...................................................................................................37 VI. Summary of Findings and Recommendations............................................................49 Appendices.........................................................................................................................52 Appendix A: Summary of Federal Register Comments Appendix B: Listing of CAFE Fines Paid by Vehicle Manufacturers Appendix C: U.S. Refueling Site Counts by State -
2002-00201-01-E.Pdf (Pdf)
report no. 2/95 alternative fuels in the automotive market Prepared for the CONCAWE Automotive Emissions Management Group by its Technical Coordinator, R.C. Hutcheson Reproduction permitted with due acknowledgement Ó CONCAWE Brussels October 1995 I report no. 2/95 ABSTRACT A review of the advantages and disadvantages of alternative fuels for road transport has been conducted. Based on numerous literature sources and in-house data, CONCAWE concludes that: · Alternatives to conventional automotive transport fuels are unlikely to make a significant impact in the foreseeable future for either economic or environmental reasons. · Gaseous fuels have some advantages and some growth can be expected. More specifically, compressed natural gas (CNG) and liquefied petroleum gas (LPG) may be employed as an alternative to diesel fuel in urban fleet applications. · Bio-fuels remain marginal products and their use can only be justified if societal and/or agricultural policy outweigh market forces. · Methanol has a number of disadvantages in terms of its acute toxicity and the emissions of “air toxics”, notably formaldehyde. In addition, recent estimates suggest that methanol will remain uneconomic when compared with conventional fuels. KEYWORDS Gasoline, diesel fuel, natural gas, liquefied petroleum gas, CNG, LNG, Methanol, LPG, bio-fuels, ethanol, rape seed methyl ester, RSME, carbon dioxide, CO2, emissions. ACKNOWLEDGEMENTS This literature review is fully referenced (see Section 12). However, CONCAWE is grateful to the following for their permission to quote in detail from their publications: · SAE Paper No. 932778 ã1993 - reprinted with permission from the Society of Automotive Engineers, Inc. (15) · “Road vehicles - Efficiency and emissions” - Dr. Walter Ospelt, AVL LIST GmbH. -
Replacing Gasoline: Alternative Fuels for Light-Duty Vehicles
Executive Summary OVERVIEW als requirements, feedstock requirements, and so forth. The variety of effects, coupled with the Recent interest in alternative fuels for light-duty existence of the three separate “policy drivers” for highway vehicles (automobiles and light trucks) is introducing alternative fuels, create a complex set of based on their potential to address three important trade-offs for policymakers to weigh. Further, there societal problems: unhealthy levels of ozone in are temporal trade-offs: decisions made now about major urban areas; growing U.S. dependence on promoting short-term fuel options will affect the imported petroleum; and rising emissions of carbon range of options open to future policymakers, e.g., dioxide and other greenhouse gases. This assess- by emplacing new infrastructure that is more or less ment examines the following alternative fuels: adaptable to future fuel options, or by easing methanol, ethanol, natural gas (in either compressed pressure on oil markets and reducing pressure for (CNG) or liquid (LNG) form), electricity (to drive development of nonfossil alternative fuels. Table 1 electric vehicles (EVs)), hydrogen, and reformulated presents some of the trade-offs among the alternative gasoline. fuels relative to gasoline. Substituting another fuel for gasoline affects the Much is known about these fuels from their use in entire fuel cycle, with impacts not only on vehicular commerce and some vehicular experience. Much performance but on fuel handling and safety, materi- remains to be learned, however, especially about Photo credtt General Motors Corp. GM’s Impact electric vehicle, though a prototype requiring much additional testing and development, represents a promising direction for alternative fuel vehicles: a “ground up,” innovative design focused on the unique requirements of the fuel sources, in this case electricity. -
Quantifying the Potential of Renewable Natural Gas to Support a Reformed Energy Landscape: Estimates for New York State
energies Review Quantifying the Potential of Renewable Natural Gas to Support a Reformed Energy Landscape: Estimates for New York State Stephanie Taboada 1,2, Lori Clark 2,3, Jake Lindberg 1,2, David J. Tonjes 2,3,4 and Devinder Mahajan 1,2,* 1 Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA; [email protected] (S.T.); [email protected] (J.L.) 2 Institute of Gas Innovation and Technology, Advanced Energy Research and Technology, Stony Brook, NY 11794, USA; [email protected] (L.C.); [email protected] (D.J.T.) 3 Department of Technology and Society, Stony Brook University, 100 Nicolls Rd, Stony Brook, NY 11794, USA 4 Waste Data and Analysis Center, Stony Brook University, 100 Nicolls Rd, Stony Brook, NY 11794, USA * Correspondence: [email protected] Abstract: Public attention to climate change challenges our locked-in fossil fuel-dependent energy sector. Natural gas is replacing other fossil fuels in our energy mix. One way to reduce the greenhouse gas (GHG) impact of fossil natural gas is to replace it with renewable natural gas (RNG). The benefits of utilizing RNG are that it has no climate change impact when combusted and utilized in the same applications as fossil natural gas. RNG can be injected into the gas grid, used as a transportation fuel, or used for heating and electricity generation. Less common applications include utilizing RNG to produce chemicals, such as methanol, dimethyl ether, and ammonia. The GHG impact should be quantified before committing to RNG. This study quantifies the potential production of biogas (i.e., Citation: Taboada, S.; Clark, L.; the precursor to RNG) and RNG from agricultural and waste sources in New York State (NYS). -
Biogas Technology
FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS SUPPORT FOR DEVELOPMENT OF NATIONAL BIOGAS PROGRAMME (FAO/TCP/NEP/4451-T) BIOGAS TECHNOLOGY: A TRAINING MANUAL FOR EXTENSION NEPAL September 1996 Consolidated Management Services Nepal (P) Ltd. CMS House, Lazimpat, GPO Box # 10872, Kathmandu, Nepal Tel # (977-1 ) 410 498/421 654, Fax # (977-1) 415 886 E-mail : [email protected] FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS SUPPORT FOR DEVELOPMENT OF NATIONAL BIOGAS PROGRAMME (FAO/TCP/NEP/4451-T) BIOGAS TECHNOLOGY: A TRAINING MANUAL FOR EXTENSION NEPAL September 1996 Consolidated Management Services Nepal (P) Ltd. CMS House, Lazimpat, GPO Box # 10872, Kathmandu, Nepal Tel # (977-1 ) 410 498/421 654, Fax # (977-1) 415 886 E-mail : [email protected] FAO/TCP/NEP/4415-T Consolidated Management Services Nepal PREFACE Biogas has proved to be a viable technology in the physical and socio-economic conditions of Nepal. The hydropower generating potential of Nepal is calculated as one of the highest in the world but only about 12 percent of the population is connected to the national electricity grid. The percapita energy consumption is one of the lowest in the world and more than 90 percent of the energy use is in the domestic sector, mainly for cooking. Nepal's agrarian economy is fully dependent on imports for all of its chemical fertilizer, petroleum and coal requirements. The growing population and small scale industries are pushing the use of traditional sources of energy (forest and agricultural waste) beyond the sustainable generation capacity of the existing forest and farm lands. -
Natural Gas Fleet Toolkit
Alternative Fuel Toolkit for Fleets Why is it important to learn about alternative fuels? Not only are local governments thinking about alternative fuels, but there are several state‐level Alternative fuel vehicles can become an integral part of policies and strategies that promote the increased use a fleet. These vehicles offer long‐time cost savings and of alternative fuels. have the same performance quality of internal combustion engine vehicles, but without the air How do I use this tool kit? pollution that comes with it. This toolkit provides resources that fleets have identified Policies for the acquisition of alternative fuel vehicles as being very desirable for further training and may already be in your organization’s larger long‐term assistance in the transition into alternative fuel vehicles. energy plan or Climate Action Plan. A majority of The toolkit involves the following resources: municipalities and public agencies throughout the San Diego region have already referenced the increased Guidance on availability of funding for procurement of alternative fuel vehicles as a way to alternative fuel vehicles and infrastructure reduce greenhouse gas (GHG) emissions that cause installation projects climate change. Fact sheets or reference guides on general information about alternative fuels Estimated Total Cost of Ownership Comparison for Mid‐Size Light‐Duty Vehicle Options with 120,000 Lifetime Miles, United States: 2012 Case studies of jurisdictions or private fleets that use alternative fuels Source: Pike Research, Forbes.com NATURAL GAS Natural Gas FACTS ABOUT NATURAL GAS On a well‐to‐wheels basis, natural gas vehicles (NGVs) What is natural gas? produce 22% less greenhouse gas than comparable diesel vehicles and 29% less than Natural gas used as a transportation gasoline vehicles. -
Why the Development of Internal Combustion Engines Is Still Necessary to Fight Against Global Climate Change from the Perspective of Transportation
applied sciences Editorial Why the Development of Internal Combustion Engines Is Still Necessary to Fight against Global Climate Change from the Perspective of Transportation José Ramón Serrano * , Ricardo Novella and Pedro Piqueras CMT—Motores Térmicos, Universitat Politècnica de València, 46022 València, Spain; [email protected] (R.N.); [email protected] (P.P.) * Correspondence: [email protected] Received: 26 September 2019; Accepted: 4 October 2019; Published: 29 October 2019 Internal combustion engines (ICE) are the main propulsion systems in road transport. In mid-2017, Serrano [1] referred to the impossibility of replacing them as the power plant in most vehicles. Nowadays, this statement is true even when considering the best growth scenario for all-electric and hybrid vehicles. The arguments supporting this position consider the growing demand for transport, the strong development of cleaner and more efficient ICEs [2,3], the availability of fossil fuels, and the high energy density of said conventional fuels. Overall, there seems to be strong arguments to support the medium-long-term viability of ICEs as the predominant power plant for road transport applications. However, the situation has changed dramatically in the last few years. The media and other market players are claiming the death of ICEs in the mid-term [4]. Politicians from several G7 countries, such as France, Spain, and the United Kingdom, have announced the prohibition of ICEs in their markets [5], in some cases, as early as 2040. Large cities, such London, Paris, Madrid, and Berlin, are also considering severe limits to ICE-powered vehicles. What is the analysis that can be made from this new situation? 1. -
Multifuel Station Concept
Technical Support Document: Multifuel energy stations for cars, buses and trucks Interreg Baltic Sea Region Project #R032 Technical Support Document Multifuel energy stations for cars, buses and trucks Interreg Baltic Sea Region Project #R032 “Sustainable and Multimodal Transport Actions in the Scandinavian-Adriatic Corridor” Work Package WP2 Clean Fuel Deployment Activity A2.2 Technical support Document Responsible Partner RISE and Skåne Association of Local Authorities Author Erik Wiberg, Peter Bremer Version RC 10 Date 31.10.18 Status Final Version 9, 2018-05-03 » 1 | 64 Technical Support Document: Multifuel energy stations for cars, buses and trucks Interreg Baltic Sea Region Project #R032 Index 1 Index of tables .............................................................................................................................................. 4 2 List of abbreviations ...................................................................................................................................... 5 3 Executive Summary ...................................................................................................................................... 7 3.1 Key findings ................................................................................................................................................. 7 3.2 Conclusions ................................................................................................................................................. 8 3.2.1 Technical and economical perspectives -
Ethyl Alcohol As a Fuel for Contemporary Internal Combustion Engines
Article citation info: 27 Kozak M. Ethyl alcohol as a fuel for contemporary internal combustion engines. Diagnostyka. 2019;20(2):27-32. https://doi.org/10.29354/diag/109173 ISSN 1641-6414 DIAGNOSTYKA, 2019, Vol. 20, No. 2 e-ISSN 2449-5220 DOI: 10.29354/diag/109173 ETHYL ALCOHOL AS A FUEL FOR CONTEMPORARY INTERNAL COMBUSTION ENGINES Miłosław KOZAK Institute of Combustion Engines and Transport at Poznan University of Technology, ul. Piotrowo 3, 60-965 Poznań, email: [email protected] Abstract The article presents the conditions for the use of ethyl alcohol as a component and a sole fuel for internal combustion engines. Methods of ethanol production, its properties and the benefits and risks associated with using it as engine fuel have been described. The variants of commercial ethanol fuels allowed by law have also been presented. Ecological aspects of the use of ethanol fuels for modern internal combustion engines were presented. The opinion was expressed that although ethanol is used in bulk as a component of gasolines, its use as a self-contained fuel is and probably will continue to be small in the near future. Keywords: ethyl alcohol, combustion engines, motor fuels ALKOHOL ETYLOWY JAKO PALIWO DO WSPÓŁCZESNYCH SILNIKÓW SPALINOWYCH Streszczenie W artykule przedstawiono uwarunkowania stosowania alkoholu etylowego jako składnika oraz samodzielnego paliwa do silników spalinowych. Opisano metody produkcji etanolu, jego właściwości oraz korzyści i zagrożenia związane ze stosowaniem go jako paliwa silnikowego. Zaprezentowano dopuszczalne prawem warianty handlowych paliw etanolowych. Przedstawiono ekologiczne aspekty stosowania paliw etanolowych do współczesnych silników spalinowych. Wyrażono opinię, iż mimo, że etanol stosowany jest masowo jako komponent benzyn silnikowych, to jego zastosowanie jako samodzielnego paliwa jest i prawdopodobnie w najbliższej przyszłości będzie niewielkie. -
Technical Evaluation and Assessment of CNG/LPG Bi-Fuel and Flex-Fuel Vehicle Viability C-ACC-4-14042-01
May 1994 • NRELffP-425-6544 Technical Eval ·on and Assessment of C !LPG Bi-Fuel and Flex-Fuel V cle Viability J .E. Sinor Consultants, Inc. Niwot, CO •.. •... ···� �=- ·-· ·��-· National Renewable Energy Laboratory 1617• Cole Boulevard Golden, Colorado 80401-3393 A national laboratory of the U.S. Department of Energy Operated by Midwest Research Institute for the U.S. Department of Energy Under Contract No. DE-AC02-83CH)0093_____ _ _ NRELffP-425-6544 • UC Category: 335 • DE94006925 Technical Evaltil*ion··:·:·:·:·:·:·:·: and ·, Assessment of C , /LPG Bi-Fuel and Flex-Fuel Vell�le Viability J J.E. Sinor Consultants, Inc. Niwot, CO technical monitor: C. Colucci NREL �·� .,!!!!!�-· ·� �-- .. •.·-· ···� National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 A national laboratory operated for the U.S. Department of Energy under contract No. DE-AC02-83CH10093 Prepared under Subcontract No. ACC-4-14042-01 May 1994 Thispub lication was reproducedfrom thebest available camera-readycopy submitted by the subcontractor and received no editorial review at NREL. NOTICE NOTICE: This reportwas prepared as an accountof work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or processdisclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof.