Atomic Clocks for New Physics Searches Marianna Safronova

Total Page:16

File Type:pdf, Size:1020Kb

Atomic Clocks for New Physics Searches Marianna Safronova New Physics oN the Low-eNergy PrecisioN FroNtier, cerN Atomic Clocks for New Physics Searches Marianna Safronova Department of Physics and Astronomy, University of Delaware, Delaware, USA Joint Quantum Institute, NIST and the University of Maryland, College Park, Maryland, USA Optical atomic clocks will not lose one second in 30 billion years airandspace.si.edu GPS satellites: microwave atomic clocks Accuracy: 0.1 ns E1 1 hν 0 E0 0 What dark matter affects atomic energy levels? E1 1 ν is a clock frequency hν 0 0 E0 0 What dark matter can you detect if you can measure changes in atomic/nuclear frequencies to 20 digits? Outline How atomic clocks work Applications of atomic clocks How good is the clock: stability and uncertainty Dark matter searches with clocks - oscillatory and transient signals Future clock progress • Improvement of current clocks • Highly charged ion clocks • Nuclear clock Projected sensitivity of a nuclear clock to relaxion searches Ingredients for a clock 1. Need a system with periodic behavior: it cycles occur at constant frequency 2. Count the cycles to produce time interval 3. Agree on the origin of time to generate a time scale NOAA/Thomas G. Andrews Ludlow et al., RMP 87, 637 (2015) Ingredients for an atomic clock 1. Atoms are all the same and will oscillate at exactly the same frequency (in the same environment): E1 1 You now have a perfect oscillator! hν 0 2. Take a sample of atoms (or just one) E0 0 171 + 3. Build a laser in resonance with this atomic Yb frequency ION 4. Count cycles of this signal Ludlow et al., RMP 87, 637 (2015) How optical atomic clock works E1 1 hν 0 E0 0 The laserThe laseris resonant is resonant with the with atomic the transition.atomic A correctiontransition. signalA correction is derived from atomicsignal isspectroscopy derived from that atomic is fed back to thespectroscopy laser. that is fed back to the laser. An optical frequency synthesizer (optical frequency comb) is used to divide the optical frequency down to countable microwave or radio frequency signals. From: Poli et al. “Optical atomic clocks”, La rivista del Nuovo Cimento 36, 555 (2018) arXiv:1401.2378v2 Extraordinary progress in the control of atomic systems 300K 3D nK Image: Ye group and Steven Burrows, JILA Ultracold Trapped Precisely controlled Neutral atoms in optical lattice vs. a single trapped ion + 14 2 Yb 4f 5d D3/2 PTB E2 435 nm 10 years 13 2 2 Mg 4f 6s F7/2 Al+ Cd E3 Sr 467 nm Yb Hg 14 2 4f 6s S1/2 Strontium optical lattice neutral atom clock Yb+ single trapped ion clock http://www.nist.gov/pml/div689/20140122_strontium.cfm Applications of atomic clocks 10 -18 1 cm height Magma chamber GPS, deep Very Long Baseline Interferometry Relativistic geodesy Gravity Sensor space probes Searches for physics beyond the Definition of the second Quantum simulation Standard Model Image Credits: NOAA, Science 281,1825; 346, 1467, University of Hannover, PTB, PRD 94, 124043, Eur. Phys. J. Web Conf. 95 04009 Search for physics beyond the standard model with atomic clocks Atomic clocks can measure and compare frequencies to exceptional precisions! If fundamental constants change (now) due to for various “new physics” effects atomic clock may be able to detect it. Frequency E1 1 will change hν 0 BEYOND THE E 0 0 STANDARD MODEL? Searches for physics beyond the Standard Model with atomic clocks Dark matter Image credit: Jun Ye’s group searches Search for the violation Tests of the of Lorentz invariance equivalence principle Image credit: NASA Are fundamental α constants constant? Gravitational wave detection with atomic clocks PRD 94, 124043 (2016) RMP 90, 025008 (2018) http://www.nist.gov/pml/div689/20140122_strontium.cfm JILA Sr clock Clocks: new dark matter detectors 2×10-18 • Table-top devices • Quite a few already constructed, based on different atoms • Several clocks are usually in one place • Will be made portable (prototypes exist) • Will continue to rapidly improve • Will be sent to space How good is the clock? E 1 1 How optical atomic clock works hν 0 Ramsey scheme E0 0 Measure: 0 or 1 ? 01+ E2 π 2 π E1 detect 2 wait 2 fluorescence E0 0 Quantum projection noise: can only get 0 or 1 Initialize Initialize Repeat many times to get probability of Atom should be now excitation, scan different in 1 if on resonance frequencies to maximize How good is a clock: stability and uncertainty Stability is a measure of the precision with which we can measure a quantity. Uncertainty: how well we understand It is usually stated as a function of averaging the physical processes that can shift the time since for many noise processes the measured frequency from its unperturbed precision increases (i.e., the noise is reduced (“bare"), natural atomic frequency. through averaging) with more measurements. From: Poli et al. “Optical atomic clocks”, arXiv:1401.2378v2 How good is a clock: stability and uncertainty Sr lattice clock Stability as a function of averaging time Systematic evaluation of an atomic clock at 2×10-18 total uncertainty, T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, Nature Commun. 6, 6896 (2015). Clock instability Quantum projection noise limit 11 −15 1 στy ( ) ≈ στy ( ) =5 × 10 2πν 0 NTτ τ / s How long will it take to get to 10-19 uncertainty? Clock transition The frequency averaging period The number of atoms or ions used in a single 79 years! measurement Duration of single measurement cycle N=1 for ions N>1000 for neutral atoms Limited by clock state lifetime and laser stability Clock instability Quantum projection noise limit 11 −15 1 στy ( ) ≈ στy ( ) =1 × 10 2πν 0 NTτ τ / s How long will it take to get to 10-19 uncertainty? Clock transition The frequency averaging period The number of atoms or ions used in a single 3 years! measurement Duration of single measurement cycle N=1 for ions N>1000 for neutral atoms Limited by clock state lifetime and laser stability Clock instability Quantum projection noise limit 11 −16 1 στy ( ) ≈ στy ( ) =1 × 10 2πν 0 NTτ τ / s How long will it take to get to 10-19 uncertainty? Clock transition The frequency averaging period The number of atoms or 11.6 days ions used in a single measurement Duration of single N=1 need T=10 seconds measurement cycle N=1 for ions π π N>1000 for neutral atoms Limited by clock state 2 wait measure initialize 2 lifetime and laser stability Variation of fundamental constants Theories with varying dimensionless fundamental constants J.-P. Uzan, Living Rev. Relativity 14, 2 (2011) String theories Other theories with extra dimensions Loop quantum gravity Dark energy theories: chameleon and quintessence models …many others Frequency of optical transitions depends on the fine-structure constant α. Measure the ratio of two optical clock frequencies to search for the variation of α. Dark matter can also cause variation of fundamental constants! A. Derevianko and M. Pospelov, Nature Phys. 10, 933 (2014), A. Arvanitaki et al., PRD 91, 015015 (2015) Variation of fundamental constants Theories with varying dimensionless fundamental constants J.-P. Uzan, Living Rev. Relativity 14, 2 (2011) String theories Other theories with extra dimensions Loop quantum gravity Dark energy theories: chameleon and quintessence models …many others Frequency of optical transitions depends on the fine-structure constant α. Some clocks are more sensitive to this effect than others Measure the ratio of two optical clock frequencies to search for the variation of α. Keep doing this for a while. Sensitivity of optical clocks to α-variation/dark matter α 2 Enhancement factor EE=+−0 q1 2q 2 = α0 K E0 Can calculate with high accuracy Need: large K for at least one for the clocks Best case: large K2 and K1 of opposite sign for clocks 1 and 2 ∂∂v2 1 α ln = ()K2 − K1 ∂∂tv1 α t Frequency ratio Test of α-variation accuracy -18 -20 10 100 10 Easier to measure large effects! Enhancement factors for current clocks 2q K = K E0 Cavity: part of the + clock laser systems + 1 K( Hg) = 0.8, K( Yb E2) = 1 K() Sr = 0.4 Effective K=1 K() Yb = 0.3 0 K( Al++) = 0.01, K() Sr= 0.06, K( Ca ) = 0.1 Excellent stability N ~ 1000 -3 K() Hg + = −2.9 Single ion clocks, N = 1 ∂∂α + v2 1 -6 K() Yb E36= − ln = ()K2 − K1 ∂∂tv1 α t Observable: ratio of two clock frequencies + Measure a ratio of Al+ clock ν (Hg + ) K() Hg = −2.9 Sensitivity factors frequency to Hg+ clock Not sensitive to α-variation, ν + K Al + = 0.01 frequency (Al ) ( ) used as reference 1126 nm 1070 nm laser fiber laser ×2 ×2 fiber ×2 ×2 9Be+ 199Hg++ fb,Al Hg fb,Hg 27Al+ n frep+ fceo m frep+ fceo Picture credit: Jim Bergquist Science 319, 1808 (2008) why search For dark matter? Slide from Andrew Long’s 2018 LDW talk Ultralight dark matter has to be bosonic – Fermi velocity for DM with mass >10 eV is higher than our Galaxy escape velocity. 10-22 eV 10-12 eV µeV eV GeV Simon Knapen, 2018 KITP Dilatons −3 Dark matter density in our Galaxy > λdB λdB is the de Broglie wavelength of the particle. Then, the scalar dark matter exhibits coherence and behaves like a wave A. Arvanitaki et al., PRD 91, 015015 (2015) How to detect ultralight dark matter with clocks? Asimina Arvanitaki, Junwu Huang, and Ken Van Tilburg, PRD 91, 015015 (2015) 10-22 eV 10-12 eV µeV eV GeV Dark matter field couples to electromagnetic interaction and “normal matter” It will make fundamental coupling constants and mass ratios oscillate Atomic energy levels will oscillate so clock frequencies will oscillate Can be detected with monitoring ratios of clock frequencies over time (or clock/cavity).
Recommended publications
  • Jedrska Ura Jan Jurkovicˇ
    \Jan.Jurkovic Nuclear.Clock" | 2018/3/20 | 19:49 | page 1 | #1 JEDRSKA URA JAN JURKOVICˇ Fakulteta za matematiko in fiziko Univerza v Ljubljani Natanˇcnost ˇcasa postaja vse bolj uporabna in pomembna, zato se rojevajo novi naˇcini merjenja ˇcasa. Do danes najbolj natanˇcnih meritev ˇcasa in frekvence pridemo z atomskimi urami. Te so ˇze tako natanˇcne, da ˇce bi delovale veˇcdeset milijard let, bi imele dano napako manjˇsood ene sekunde. Kljub tako veliki natanˇcnosti bi jih v prihodnosti lahko prekosile nove ure, imenovane jedrske ure. Medtem ko atomske ure delujejo na podlagi vzbujanja elektronov atomov v viˇsjastanja, bodo jedrske ure delovale na podlagi vzbujanja atomskega jedra. To je zelo obetavno, saj na atomsko jedro okolica ne vpliva tako moˇcno kot na elektrone v atomski ovojnici. Za atomsko uro lahko uporabimo atome razliˇcnih elementov, jedrska ura pa bi lahko delovala le z enim izmed vseh 176.000 znanih jedrskih stanj. To stanje je prvo vzbujeno jedrsko stanje 229Th. Kljub temu je do prve delujoˇce jedrske ure potrebno raziskati ˇseveliko nejasnosti. NUCLEAR CLOCK As time precision becomes more and more useful and important, new ways of time measurement have been born. Today's most precise time and frequency measurements are performed with atomic clocks. The most precise ones work so well, that if they worked for tens of billions of years, they would be less than a second off. However, in the future they could be even outperformed by the so-called nuclear clocks. While the atomic clock is based on the excitation of the electrons in an atom, the nuclear clock would work with excitation of an atomic nucleus, which is promising, because the atomic nucleus is less affected by the effects of the surroundings like the electrons in the atomic shell.
    [Show full text]
  • New Physics Searches with Atomic Clocks
    New physics searches with atomic clocks MARIANNA SAFRONOVA Next Frontiers in the Search for Dark Matter GGI, Florence, Italy GPS satellites: microwave atomic clocks airandspace.si.edu Atomic clocks will not lose one second in 30 billion years What dark matter affects atomic energy levels? n 0 is a clock frequency What dark matter can you detect if you can measure changes in atomic frequencies to 20 digits? What dark matter can you detect if you can measure changes in atomic frequencies to 20 digits? What if you can get extra 5 orders of DM sensitivity By using a nuclear transition? What new dark matter detection opportunity we get with a network of clocks? Clocks: new dark matter detectors • Table-top devices • Quite a few already constructed, based on different atoms • Several clocks are usually in one place • Will be made portable (prototypes exist) • Will continue to rapidly improve • Will be sent to space Nicholson et al., Nature Comm. 6, 6896 (2015) Sr: 2×10-18 http://www.nist.gov/pml/div689/20140122_strontium.cfm Overview • How atomic clocks work? • Ultralight dark matter & variation of fundamental constants • Present dark matter searches with clocks • The clocks of the next decade • Testing Lorentz invariance with clocks Ingredients for a clock 1. Need a system with periodic behavior: it cycles occur at constant frequency 2. Count the cycles to produce time interval 3. Agree on the origin of time to generate a time scale NOAA/Thomas G. Andrews Ludlow et al., RMP 87, 637 (2015) Ingredients for an atomic clock 1. Atoms are all the same and will oscillate at exactly the same frequency (in the same environment): you now have a perfect oscillator! 2.
    [Show full text]
  • Optical Lattice Clock with Spin-1/2 Ytterbium Atoms Nathan Dean Lemke University of Colorado at Boulder, [email protected]
    University of Colorado, Boulder CU Scholar Physics Graduate Theses & Dissertations Physics Spring 1-1-2012 Optical Lattice Clock with Spin-1/2 Ytterbium Atoms Nathan Dean Lemke University of Colorado at Boulder, [email protected] Follow this and additional works at: http://scholar.colorado.edu/phys_gradetds Part of the Atomic, Molecular and Optical Physics Commons Recommended Citation Lemke, Nathan Dean, "Optical Lattice Clock with Spin-1/2 Ytterbium Atoms" (2012). Physics Graduate Theses & Dissertations. Paper 58. This Dissertation is brought to you for free and open access by Physics at CU Scholar. It has been accepted for inclusion in Physics Graduate Theses & Dissertations by an authorized administrator of CU Scholar. For more information, please contact [email protected]. Optical Lattice Clock with Spin-1/2 Ytterbium Atoms by N. D. Lemke B.S., Bethel University, 2006 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Physics 2012 This thesis entitled: Optical Lattice Clock with Spin-1/2 Ytterbium Atoms written by N. D. Lemke has been approved for the Department of Physics Dr. Jun Ye Dr. Chris Oates Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. iii Lemke, N. D. (Ph.D., Physics) Optical Lattice Clock with Spin-1/2 Ytterbium Atoms Thesis directed by Dr. Jun Ye An optical lattice clock probes a spectrally narrow electronic transition in an ensemble of optically trapped, laser-cooled atoms, for use as a time and frequency standard.
    [Show full text]
  • Energy of the 229Th Nuclear Clock Transition
    Energy of the 229Th nuclear clock transition Benedict Seiferle1, Lars von der Wense1, Pavlo V. Bilous2, Ines Amersdorffer1, Christoph Lemell3, Florian Libisch3, Simon Stellmer4, Thorsten Schumm5, Christoph E. D¨ullmann6;7;8, Adriana P´alffy2 & Peter G. Thirolf1 The first nuclear excited state of 229Th offers the unique opportunity for laser-based optical control of a nucleus 1,2. Its exceptional properties allow for the development of a nuclear optical clock 3 which of- fers a complementary technology and is expected to outperform current electronic-shell based atomic clocks 4. The development of a nuclear clock was so far impeded by an imprecise knowledge of the energy of the 229Th nuclear excited state. In this letter we report a direct excitation energy measurement of this elusive state and constrain this to 8.28±0.17 eV. The energy is determined by spectroscopy of the internal conversion electrons emitted in-flight during the decay of the excited nucleus in neutral 229Th atoms. The nuclear excitation energy is measured via the valence electronic shell, thereby merging the fields of nuclear- and atomic physics to advance precision metrology. The transition energy between ground and excited state corresponds to a wavelength of 149.7±3.1 nm. These findings set the starting point for high-resolution nuclear laser spectroscopy and thus the development of a nuclear optical clock of unprecedented accuracy. A nuclear clock is expected to have a large variety of applications, ranging from relativistic geodesy 5 over dark matter research 6 to the observation of potential temporal variation of fundamental constants 7.
    [Show full text]
  • Deep Space Atomic Clock
    National Aeronautics and Space Administration Deep Space Atomic Clock tion and radio science. Here are some examples of how one-way deep-space tracking with DSAC can improve navigation and radio science that is not supported by current two-way tracking. Ground-based 1. Simultaneously track two spacecraft on a atomic clocks are downlink with the Deep Space Network (DSN) the cornerstone of at destinations such as Mars, and nearly dou- spacecraft navigation ble a space mission’s tracking data because it for most deep-space missions because of their use no longer has to “time-share” an antenna. in generating precision two-way tracking measure- ments. These typically include range (the distance 2. Improve tracking data precision by an order of between two objects) and Doppler (a measure of magnitude using the DSN’s Ka-band downlink the relative speed between them). A two-way link (a tracking capability. signal that originates and ends at the ground track- ing antenna) is required because today’s spacecraft 3. Mitigate Ka-band’s weather sensitivity (as clocks introduce too much error for the equivalent compared to two-way X-band) by being able one-way measurements to be useful. Ground atom- to switch from a weather-impacted receiving ic clocks, while providing extremely stable frequen- antenna to one in a different location with no cy and time references, are too large for hosting on tracking outages. a spacecraft and cannot survive the harshness of space. New technology is on the horizon that will 4. Track longer by using a ground antenna’s en- change this paradigm.
    [Show full text]
  • Atomic Clocks: an Application of Spectroscopy in the Last Installment of This Column (1), I Talked About Clocks As the First Scientific Instrument
    14 Spectroscopy 21(1) January 2007 www.spectroscopyonline.com The Baseline Atomic Clocks: An Application of Spectroscopy In the last installment of this column (1), I talked about clocks as the first scientific instrument. What do clocks have to do with spectroscopy? Actually, the world’s most accurate clocks, atomic clocks, are based upon a spectroscopic transition of cesium or other elements, making spectroscopy a fundamental tool in our measurements of the natural universe. David W. Ball ime is one of the seven fundamental quantities in Originally, a second was defined as part of a minute, nature. I made a case in the last installment of this which was part of an hour, which was in turn defined as T column (1) that mechanical devices for measuring part of a day. Thus, 1 s was 1/(60 ϫ 60 24), or 1/86,400 time — clocks — might be considered the world’s first sci- of a day. However, even by the 17th century, defining the entific instruments. Clocks are ubiquitous because the day itself was difficult. Was the day based upon the position measurement of time is a fundamental activity that is im- of the sun (the solar day) or the position of distant stars portant to computer users, pilots, and lollygaggers alike. (the sidereal day)? At what latitude (that is, position toward the north or south) is a day measured? Over time it was rec- The Second ognized that measuring time accurately was a challenge. Quantities of time are expressed in a variety of units that In 1660, the Royal Society proposed that a second be de- we teach our grade-schoolers, but the IUPAC-approved termined by the half-period (that is, one swing) of a pendu- fundamental unit of time is the second (abbreviated “s” not lum of a given length.
    [Show full text]
  • Splash Proof Atomic Clock with Outdoor Temperature/Humidity
    SPLASH PROOF ATOMIC CLOCK WITH OUTDOOR TEMPERATURE/HUMIDITY MODEL: 515-1912 DC: 092419 TABLE OF CONTENTS 3. Power up 3. Buttons 3. Atomic Time 4. Settings Menu 5. Custom Display Views 6. Timer 7. Search for Outdoor Sensor 7. Low Battery 7. Specifications 8. We’re Here to Help 8. Join the Conversation 8. Warranty Info 8. Care and Maintenance 8. FCC Statement 8. Canada Statement Atomic Digital Clock Page | 2 POWER UP 1. Insert 2-AA batteries into your Outdoor Sensor. 2. Insert 2-AA batteries into your Atomic Clock. 3. Configure basic Settings. 4. Once the sensor is reading to your clock, place sensor outside in a shaded location. Watch sensor mounting video: bit.ly/TH_SensorMounting TX191TH AA Outdoor Sensor AA AA AA 515-1912 Atomic Clock BUTTONS TIMER +PLUS (+) MINUS- (-) SET Hold: Set Timer duration Hold: Search for Press: Change Hold: Set Time Press: Start, Pause or Outdoor Sensor Display Press: Search for Restart Timer Press: Adjust Values Atomic Time Signal ATOMIC TIME • The clock will only search for the WWVB Atomic Time Signal at UTC 7:00, 8:00, 9:00, 10:00, and 11:00. • The Atomic Time Indicator will flash while searching, and will remain solid on screen when connected. • From the normal time display, press the SET button to search for the WWVB Atomic Time Signal. Atomic Digital Clock Page | 3 SETTINGS MENU Daylight Saving Time Options: DST ON- Clock gains 1 hour in spring and loses 1 hour in the fall DST OFF- Clock remains in Standard Time all year long DST ALWAYS ON- Clock remains in Daylight Saving Time all year long Settings order: • Beep ON/OFF • Atomic ON/OFF • DST (Daylight Saving Time) o DST ON o DST OFF o DST ALWAYS ON • Time Zone TIME ZONES AST = Atlantic • Hour EST = Eastern • Minutes CST = Central • Year MST = Mountain PST = Pacific • Month AKT = Alaska • Date HAT = Hawaii • Fahrenheit/Celsius To begin: 1.
    [Show full text]
  • Governing the Time of the World Written by Tim Stevens
    Governing the Time of the World Written by Tim Stevens This PDF is auto-generated for reference only. As such, it may contain some conversion errors and/or missing information. For all formal use please refer to the official version on the website, as linked below. Governing the Time of the World https://www.e-ir.info/2016/08/07/governing-the-time-of-the-world/ TIM STEVENS, AUG 7 2016 This is an excerpt from Time, Temporality and Global Politics – an E-IR Edited Collection. Available now on Amazon (UK, USA, Ca, Ger, Fra), in all good book stores, and via a free PDF download. Find out more about E-IR’s range of open access books here Recent scholarship in International Relations (IR) is concerned with how political actors conceive of time and experience temporality and, specifically, how these ontological and epistemological considerations affect political theory and practice (Hutchings 2008; Stevens 2016). Drawing upon diverse empirical and theoretical resources, it emphasises both the political nature of ‘time’ and the temporalities of politics. This chronopolitical sensitivity augments our understanding of international relations as practices whose temporal dimensions are as fundamental to their operations as those revealed by more established critiques of spatiality, materiality and discourse (see also Klinke 2013). This transforms our understanding of time as a mere backdrop to ‘history’ and other core concerns of IR (Kütting 2001) and provides opportunities to reflect upon the constitutive role of time in IR theory itself (Berenskoetter 2011; Hom and Steele 2010; Hutchings 2007; McIntosh 2015). One strand of IR scholarship problematises the historical emergence of a hegemonic global time that subsumed within it local and indigenous times to become the time by which global trade and communications are transacted (Hom 2010, 2012).
    [Show full text]
  • Proposal of Atomic Clock in Motion: Time in Moving Clock
    Proposal of atomic clock in motion: Time in moving clock Masanori Sato Honda Electronics Co., Ltd., 20 Oyamazuka, Oiwa-cho, Toyohashi, Aichi 441-3193, Japan E-mail: [email protected] Abstract: The time in an atomic clock in motion is discussed using the analogy of a sing around sound source. Sing around frequency is modified according to the motion of the sing around sound source, using the Lorentz transformation equation. Thus, if we use the sing around frequency as a reference, we can define the reference “time”. We propose that the time delay of an atomic clock in motion be derived using the sing around method. In this letter, we show that time is defined by a combination of light speed and motion. PACS numbers: 03.30.+p Key words: Atomic clock in motion, Lorentz transformation, Michelson-Morley experiment, special relativity, sing around 1. INTRODUCTION The derivation of the Lorentz transformation equation was clearly described by Feynman et al. [1]. The Doppler shift equation was observed to be different between acoustic wave and light, thus we determined the reason for this difference [2]. We pointed out that the frequency of a sound source should be modified according to its motion. We proposed a sing around sound source whose frequency changes with its velocity, as is suggested by the Lorentz transformation equation. We discussed the reference frequency of a moving sound source with respect to the Lorentz transformation equation. The sing around sound source moving in air exhibits a decrease in frequency. If the modified frequency is used as a reference frequency, the time delay in a moving frame can be explained [2].
    [Show full text]
  • Best Practices for Leap Second Event Occurring on 30 June 2015
    26 May 2015 Best Practices for Leap Second Event Occurring on 30 June 2015 Sponsored by the National Cybersecurity and Communications Integration Center in coordination with the United States Naval Observatory, National Institute of Standards and Technology, the USCG Navigation Center, and the National Coordination Office for Space-Based Positioning, Navigation and Timing. This product is intended to assist federal, state, local, and private sector organizations with preparations for the 30-June 2015 Leap Second event. Entities using precision time should be mindful that no leap second adjustment has occurred on a non- holiday weekday in the past decade. Of the three leap seconds implemented since 2000, two have been scheduled on 31 December and the most recent was on Sunday, 1 July 2012. Please report operational challenges you experience to the following organizations: GPS -- United States Coast Guard Navigation Center (NAVCEN), via the NAVCEN Website, http://www.navcen.uscg.gov/ under "Report a GPS Problem" Network Timing Protocols (NTP) -- Michael Lombardi at NIST, Boulder, Colorado at 303-497- 3212, or [email protected]. ============================================= 1. Leap Second Introduction The Coordinated Universal Time (UTC) time standard, based on atomic clocks, is widely used for international timekeeping and as the reference for time in most countries. UTC is the basis of legal time for most of the world. UTC must be adjusted at irregular intervals to maintain its correlation to mean solar time due to irregularities in the Earth’s rotation. These adjustments, called leap seconds, are pre-determined. The next leap second will occur on 30 June 2015 at 23:59:59 UTC.
    [Show full text]
  • An Atomic Clock for 10-18 Timekeeping
    An atomic clock for 10−18 timekeeping by N. Hinkley B.S., Michigan Technological University, 2009 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Physics 2016 This thesis entitled: An atomic clock for 10−18 timekeeping written by N. Hinkley has been approved for the Department of Physics Dr. Ana Maria Rey Dr. Chris Oates Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. iii Hinkley, N. (Ph.D., Physics) An atomic clock for 10−18 timekeeping Thesis directed by Dr. Ana Maria Rey Oscillators used in timing standards aim to provide a universal, well defined frequency output with minimal random fluctuations. The stability (precision) of an oscillator is highlighted by its quality factor Q = ν0/δν, where ν0 is the output frequency with a frequency linewidth of δν. To achieve a high timekeeping precision, an oscillator can operate at high frequency, allowing each partition of time, defined by one oscillation, to be short in duration and thus highly precise. In a similar fashion, because oscillator linewidth determines resolution of the output frequency, a narrow linewidth will yield a highly precise measure of time or frequency. High quality factors are advantageous for two reasons: i) frequency stability sets a fundamental limit to the consistency a clock can partition units of time and ii) measurement precision aids in the the study of physical effects that shift the clock frequency, leading to improved oscillator output control.
    [Show full text]
  • Time in the Theory of Relativity: on Natural Clocks, Proper Time, the Clock Hypothesis, and All That
    Time in the theory of relativity: on natural clocks, proper time, the clock hypothesis, and all that Mario Bacelar Valente Abstract When addressing the notion of proper time in the theory of relativity, it is usually taken for granted that the time read by an accelerated clock is given by the Minkowski proper time. However, there are authors like Harvey Brown that consider necessary an extra assumption to arrive at this result, the so-called clock hypothesis. In opposition to Brown, Richard TW Arthur takes the clock hypothesis to be already implicit in the theory. In this paper I will present a view different from these authors by taking into account Einstein’s notion of natural clock and showing its relevance to the debate. 1 Introduction: the notion of natural clock th Up until the mid 20 century the metrological definition of second was made in terms of astronomical motions. First in terms of the Earth’s rotation taken to be uniform (Barbour 2009, 2-3), i.e. the sidereal time; then in terms of the so-called ephemeris time, in which time was calculated, using Newton’s theory, from the motion of the Moon (Jespersen and Fitz-Randolph 1999, 104-6). The measurements of temporal durations relied on direct astronomical observation or on instruments (clocks) calibrated to the motions in the ‘heavens’. However soon after the adoption of a definition of second based on the ephemeris time, the improvements on atomic frequency standards led to a new definition of the second in terms of the resonance frequency of the cesium atom.
    [Show full text]