Cell Contact and Nf2/Merlin-Dependent Regulation of TEAD Palmitoylation and Activity

Total Page:16

File Type:pdf, Size:1020Kb

Cell Contact and Nf2/Merlin-Dependent Regulation of TEAD Palmitoylation and Activity Cell contact and Nf2/Merlin-dependent regulation of TEAD palmitoylation and activity Nam-Gyun Kima,b and Barry M. Gumbinera,b,c,1 aCenter for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA 98101; bDepartment of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195; and cDepartment of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195 Edited by Joan S. Brugge, Harvard Medical School, Boston, MA, and approved April 10, 2019 (received for review November 19, 2018) The Hippo pathway is involved in regulating contact inhibition of S-palmitoylation is a posttranslational modification of proteins in proliferation and organ size control and responds to various physical which a saturated fatty acid, palmitate, is attached via thioester and biochemical stimuli. It is a kinase cascade that negatively linkage to cysteine residue and, less frequently, to serine and regulates the activity of cotranscription factors YAP and TAZ, which threonine residues of protein (16, 17). Palmitate is supplied ex- interact with DNA binding transcription factors including TEAD and ogenously by diet or de novo biosynthesized by fatty acid syn- activate the expression of target genes. In this study, we show that thase (FASN) (18), the only mammalian enzyme that catalyzes the palmitoylation of TEAD, which controls the activity and stability palmitate from acetyl CoA, malonyl-CoA, and NADPH. Unlike of TEAD proteins, is actively regulated by cell density independent of other lipid modifications, such as prenylation and myristoylation, Lats, the key kinase of the Hippo pathway. The expression of fatty the palmitoylation process is reversible and can be dynamically acid synthase and acetyl-CoA carboxylase involved in de novo modulated in response to cell stimulation (16). Some proteins, in- biosynthesis of palmitate is reduced by cell density in an Nf2/ cluding TEAD, undergo nonenzymatic autopalmitoylation by direct Merlin-dependent manner. Depalmitoylation of TEAD is mediated binding to palmitoyl-CoA (14). The protein palmitoylation process by depalmitoylases including APT2 and ABHD17A. Palmitoylation- can also be mediated by the palmitoyl-acyl-transferase (PAT) en- deficient TEAD4 mutant is unstable and degraded by proteasome zymes, which transfer palmitoyl group to -SH group on a target through the activity of the E3 ubiquitin ligase CHIP. These findings protein (17). The palmitate turnover of palmitoylated proteins is show that TEAD activity is tightly controlled through the regulation regulated by depalmitoylases, such as acyl-protein thioesterase CELL BIOLOGY of palmitoylation and stability via the orchestration of FASN, (APT), which remove palmitoyl group from target proteins (17). depalmitoylases, and E3 ubiquitin ligase in response to cell contact. Protein palmitoylation contributes to membrane association and, by enhancing hydrophobicity, exerts pleotropic effects on – Hippo signaling | TEAD | palmitoylation | fatty acid synthase | protein protein interaction, protein activity, aggregation, clus- depalmitoylase tering, and stability (16, 17). Approximately 2,000 proteins in- cluding EGFR, H/N-Ras, Cdc42, and PSD-95 are known to be palmitoylated in mammals (19). Recent studies have shown that he Hippo signaling pathway contributes to the regulation of the activity of TEAD1 and stability of TEAD2 protein are reg- contact inhibition of proliferation, cell differentiation, and T ulated by palmitoylation, the mutation of palmitoylated cysteine organ size control (1). The pathway is comprised of a highly residues preventing its binding to YAP and decreasing its sta- conserved kinase cascade that leads to the activation of Lats1/2 bility (14, 15). However, the regulatory mechanism that dynam- (Large tumor suppressor kinase 1/2), which regulates the activity ically controls TEAD palmitoylation and its biological roles has and subcellular localization of transcriptional coactivators YAP not yet been identified. In this study, we show that the cell contact (Yes-associated protein) and its paralogue TAZ (transcriptional or Nf2/merlin-dependent regulation of TEAD palmitoylation is coactivator with PDZ-binding motif). Mst1/2 (Mammalian Ste20- like kinases 1/2) and MAP4Ks (Mitogen-activated protein kinase Significance kinase kinase kinases) phosphorylate and activate the Lats1/2 ki- nases in response to a number of upstream signals (2–5). In a growth permissive state, YAP/TAZ are translocated into the nu- The Hippo signaling pathway regulates cell proliferation in re- cleus where they interact with various DNA binding transcription sponse to cell contact and a variety of other extracellular stimuli. It factors, especially TEADs (TEA domain family members), but also controls the activity and nuclear localization of cotranscriptional p73, Runx2, and ERBB4 (6). Because YAP/TAZ lack the DNA activator YAP, which interacts with DNA binding transcription binding domain, the transcription of their downstream target genes factor TEAD, for the expression of target genes involved in cell is determined by DNA binding transcription factors. proliferation. We show here that the expression level and tran- TEAD is required for YAP/TAZ to transcribe the target genes scriptional activity of TEAD are actively controlled by cell density involved in cell proliferation, oncogenic transformation, and epi- through the modulation of its palmitoylation status. TEAD palmi- thelial–mesenchymal transition (7). Mammals express four TEAD toylation is controlled via fatty acid synthase and depalmitoylases genes (TEAD1–4) with similar domain architectures: the N-terminal in response to cell density. Our study indicates that the regulation DNA binding domain, and the C-terminal protein interaction do- of palmitoylation status is a potential target for controlling TEAD- main, which binds to various transcriptional coactivators such as dependent processes, perhaps including cancer growth. YAP/TAZ and the Vestigial-like (VGLL) (8). Although they have identical DNA binding domains and recognize the same DNA se- Author contributions: N.-G.K. and B.M.G. designed research; N.-G.K. performed research; N.-G.K. contributed new reagents/analytic tools; N.-G.K. and B.M.G. analyzed data; and quence, each TEAD shows tissue-specific and developmental stage- N.-G.K. and B.M.G. wrote the paper. specific expression patterns (9, 10). This suggests a unique biological function for each TEAD protein. In addition, the activity and sub- The authors declare no conflict of interest. cellular localization of TEAD is regulated by biological conditions This article is a PNAS Direct Submission. and during development (8, 11–13). Published under the PNAS license. Recent studies suggest that palmitoylation of TEAD is im- 1To whom correspondence should be addressed. Email: [email protected]. portant for its stability and activity (14, 15). However, it is not This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. known whether the state of TEAD palmitoylation is regulated in 1073/pnas.1819400116/-/DCSupplemental. the cell or controlled by upstream signals that affect the pathway. Published online May 1, 2019. www.pnas.org/cgi/doi/10.1073/pnas.1819400116 PNAS | May 14, 2019 | vol. 116 | no. 20 | 9877–9882 Downloaded by guest on September 27, 2021 controlled by the expression of FASN, depalmitoylases, and E3 YAP binding-deficient TEAD4 showed density-dependent re- ubiquitin ligase. ductions of TEAD4 protein (Fig. 1D). This implies that the density-dependent regulation of TEAD4 protein level is in- Results dependent from YAP binding. To identify the Hippo signaling Density and Nf2-Dependent Regulation of TEAD Activity Is Controlled component that contributes to the posttranslational regulation of in a Lats-Independent Manner. The phosphorylation and localiza- TEAD4 protein level, we depleted Hippo signaling components tion of YAP are controlled by cell density via the Hippo pathway. in HA-tagged TEAD4 expressing MCF-10A cells through CRISPR-mediated knockout (KO) of Lats1/2, the core kinase of siRNA transfection and examined the exogenous TEAD4 pro- the Hippo pathway, in an immortalized human mammary epi- tein expression. Depletion of Nf2/Merlin increased the level of thelial cell line, MCF-10A, decreased the phosphorylation of HA-tagged TEAD4 in MCF-10A cells at low and high densities YAP in sparse and dense cell cultures (Fig. 1A). However, the (Fig. 1E), while depletion of Lats or Mst kinases did not influ- expression of YAP target gene mRNAs was reduced by increases ence the exogenous TEAD4 protein expression level. Nf2 is a in cell density even in Lats KO MCF-10A cells (Fig. 1B). Ad- membrane associated protein that mediates contact inhibition of ditionally, the depletion of Lats1/2 or overexpression of domi- growth, in part through the regulation of the Hippo pathway nant negative Lats1 strongly increased the YAP-TEAD (20). These results suggest that cell density and Nf2 play im- transcriptional reporter activity in cells at low density; however, portant roles in the regulation of TEAD4 levels in a Lats- the reporter activity was significantly reduced in cells at high independent manner. density (Fig. 1C). This implies the presence of another regulatory pathway, in addition to the Lats-dependent regulation of YAP Palmitoylation of TEAD Is Decreased in Cells at High Density. TEAD activity, which inhibits the transcriptional activation of YAP- undergoes autopalmitoylation at evolutionarily conserved
Recommended publications
  • Down-Regulation of Stem Cell Genes, Including Those in a 200-Kb Gene Cluster at 12P13.31, Is Associated with in Vivo Differentiation of Human Male Germ Cell Tumors
    Research Article Down-Regulation of Stem Cell Genes, Including Those in a 200-kb Gene Cluster at 12p13.31, Is Associated with In vivo Differentiation of Human Male Germ Cell Tumors James E. Korkola,1 Jane Houldsworth,1,2 Rajendrakumar S.V. Chadalavada,1 Adam B. Olshen,3 Debbie Dobrzynski,2 Victor E. Reuter,4 George J. Bosl,2 and R.S.K. Chaganti1,2 1Cell Biology Program and Departments of 2Medicine, 3Epidemiology and Biostatistics, and 4Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York Abstract on the degree and type of differentiation (i.e., seminomas, which Adult male germ cell tumors (GCTs) comprise distinct groups: resemble undifferentiated primitive germ cells, and nonseminomas, seminomas and nonseminomas, which include pluripotent which show varying degrees of embryonic and extraembryonic embryonal carcinomas as well as other histologic subtypes patterns of differentiation; refs. 2, 3). Nonseminomatous GCTs are exhibiting various stages of differentiation. Almost all GCTs further subdivided into embryonal carcinomas, which show early show 12p gain, but the target genes have not been clearly zygotic or embryonal-like differentiation, yolk sac tumors and defined. To identify 12p target genes, we examined Affymetrix choriocarcinomas, which exhibit extraembryonal forms of differ- (Santa Clara, CA) U133A+B microarray (f83% coverage of 12p entiation, and teratomas, which show somatic differentiation along genes) expression profiles of 17 seminomas, 84 nonseminoma multiple lineages (3). Both seminomas and embryonal carcinoma GCTs, and 5 normal testis samples. Seventy-three genes on 12p are known to express stem cell markers, such as POU5F1 (4) and were significantly overexpressed, including GLUT3 and REA NANOG (5).
    [Show full text]
  • Machine-Learning and Chemicogenomics Approach Defi Nes and Predicts Cross-Talk of Hippo and MAPK Pathways
    Published OnlineFirst November 18, 2020; DOI: 10.1158/2159-8290.CD-20-0706 RESEARCH ARTICLE Machine -Learning and Chemicogenomics Approach Defi nes and Predicts Cross-Talk of Hippo and MAPK Pathways Trang H. Pham 1 , Thijs J. Hagenbeek 1 , Ho-June Lee 1 , Jason Li 2 , Christopher M. Rose 3 , Eva Lin 1 , Mamie Yu 1 , Scott E. Martin1 , Robert Piskol 2 , Jennifer A. Lacap 4 , Deepak Sampath 4 , Victoria C. Pham 3 , Zora Modrusan 5 , Jennie R. Lill3 , Christiaan Klijn 2 , Shiva Malek 1 , Matthew T. Chang 2 , and Anwesha Dey 1 ABSTRACT Hippo pathway dysregulation occurs in multiple cancers through genetic and non- genetic alterations, resulting in translocation of YAP to the nucleus and activation of the TEAD family of transcription factors. Unlike other oncogenic pathways such as RAS, defi ning tumors that are Hippo pathway–dependent is far more complex due to the lack of hotspot genetic alterations. Here, we developed a machine-learning framework to identify a robust, cancer type–agnostic gene expression signature to quantitate Hippo pathway activity and cross-talk as well as predict YAP/TEAD dependency across cancers. Further, through chemical genetic interaction screens and multiomics analyses, we discover a direct interaction between MAPK signaling and TEAD stability such that knockdown of YAP combined with MEK inhibition results in robust inhibition of tumor cell growth in Hippo dysregulated tumors. This multifaceted approach underscores how computational models combined with experimental studies can inform precision medicine approaches including predictive diagnostics and combination strategies. SIGNIFICANCE: An integrated chemicogenomics strategy was developed to identify a lineage- independent signature for the Hippo pathway in cancers.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Glioblastoma Stem Cells Induce Quiescence in Surrounding Neural Stem Cells Via Notch Signalling
    bioRxiv preprint doi: https://doi.org/10.1101/856062; this version posted November 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Glioblastoma stem cells induce quiescence in surrounding neural stem cells via Notch signalling. Katerina Lawlor1, Maria Angeles Marques-Torrejon2, Gopuraja Dharmalingham3, Yasmine El-Azhar1, Michael D. Schneider1, Steven M. Pollard2§ and Tristan A. Rodríguez1§ 1National Heart and Lung Institute, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom. 2 MRC Centre for Regenerative Medicine & Edinburgh Cancer Research UK Centre, University of Edinburgh, Edinburgh, UK. 3MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Imperial College London, UK §Authors for correspondence: [email protected] and [email protected] Running title: Glioblastoma stem cell competition Keyword: Neural stem cells, quiescence, glioblastoma, Notch, cell competition 1 bioRxiv preprint doi: https://doi.org/10.1101/856062; this version posted November 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Abstract 2 There is increasing evidence suggesting that adult neural stem cells (NSCs) are a cell of 3 origin of glioblastoma, the most aggressive form of malignant glioma. The earliest stages of 4 hyperplasia are not easy to explore, but likely involve a cross-talk between normal and 5 transformed NSCs. How normal cells respond to this cross-talk and if they expand or are 6 outcompeted is poorly understood.
    [Show full text]
  • Supplemental Materials ZNF281 Enhances Cardiac Reprogramming
    Supplemental Materials ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression Huanyu Zhou, Maria Gabriela Morales, Hisayuki Hashimoto, Matthew E. Dickson, Kunhua Song, Wenduo Ye, Min S. Kim, Hanspeter Niederstrasser, Zhaoning Wang, Beibei Chen, Bruce A. Posner, Rhonda Bassel-Duby and Eric N. Olson Supplemental Table 1; related to Figure 1. Supplemental Table 2; related to Figure 1. Supplemental Table 3; related to the “quantitative mRNA measurement” in Materials and Methods section. Supplemental Table 4; related to the “ChIP-seq, gene ontology and pathway analysis” and “RNA-seq” and gene ontology analysis” in Materials and Methods section. Supplemental Figure S1; related to Figure 1. Supplemental Figure S2; related to Figure 2. Supplemental Figure S3; related to Figure 3. Supplemental Figure S4; related to Figure 4. Supplemental Figure S5; related to Figure 6. Supplemental Table S1. Genes included in human retroviral ORF cDNA library. Gene Gene Gene Gene Gene Gene Gene Gene Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol AATF BMP8A CEBPE CTNNB1 ESR2 GDF3 HOXA5 IL17D ADIPOQ BRPF1 CEBPG CUX1 ESRRA GDF6 HOXA6 IL17F ADNP BRPF3 CERS1 CX3CL1 ETS1 GIN1 HOXA7 IL18 AEBP1 BUD31 CERS2 CXCL10 ETS2 GLIS3 HOXB1 IL19 AFF4 C17ORF77 CERS4 CXCL11 ETV3 GMEB1 HOXB13 IL1A AHR C1QTNF4 CFL2 CXCL12 ETV7 GPBP1 HOXB5 IL1B AIMP1 C21ORF66 CHIA CXCL13 FAM3B GPER HOXB6 IL1F3 ALS2CR8 CBFA2T2 CIR1 CXCL14 FAM3D GPI HOXB7 IL1F5 ALX1 CBFA2T3 CITED1 CXCL16 FASLG GREM1 HOXB9 IL1F6 ARGFX CBFB CITED2 CXCL3 FBLN1 GREM2 HOXC4 IL1F7
    [Show full text]
  • Glucocorticoid Receptor Signaling Activates TEAD4 to Promote Breast
    Published OnlineFirst July 9, 2019; DOI: 10.1158/0008-5472.CAN-19-0012 Cancer Molecular Cell Biology Research Glucocorticoid Receptor Signaling Activates TEAD4 to Promote Breast Cancer Progression Lingli He1,2, Liang Yuan3,Yang Sun1,2, Pingyang Wang1,2, Hailin Zhang4, Xue Feng1,2, Zuoyun Wang1,2, Wenxiang Zhang1,2, Chuanyu Yang4,Yi Arial Zeng1,2,Yun Zhao1,2,3, Ceshi Chen4,5,6, and Lei Zhang1,2,3 Abstract The Hippo pathway plays a critical role in cell growth and to the TEAD4 promoter to boost its own expression. Func- tumorigenesis. The activity of TEA domain transcription factor tionally, the activation of TEAD4 by GC promoted breast 4 (TEAD4) determines the output of Hippo signaling; how- cancer stem cells maintenance, cell survival, metastasis, and ever, the regulation and function of TEAD4 has not been chemoresistance both in vitro and in vivo. Pharmacologic explored extensively. Here, we identified glucocorticoids (GC) inhibition of TEAD4 inhibited GC-induced breast cancer as novel activators of TEAD4. GC treatment facilitated gluco- chemoresistance. In conclusion, our study reveals a novel corticoid receptor (GR)-dependent nuclear accumulation and regulation and functional role of TEAD4 in breast cancer and transcriptional activation of TEAD4. TEAD4 positively corre- proposes a potential new strategy for breast cancer therapy. lated with GR expression in human breast cancer, and high expression of TEAD4 predicted poor survival of patients with Significance: This study provides new insight into the role breast cancer. Mechanistically, GC activation promoted GR of glucocorticoid signaling in breast cancer, with potential for interaction with TEAD4, forming a complex that was recruited clinical translation.
    [Show full text]
  • Tead2 Expression Levels Control the Subcellular Distribution Of
    ß 2014. Published by The Company of Biologists Ltd | Journal of Cell Science (2014) 127, 1523–1536 doi:10.1242/jcs.139865 RESEARCH ARTICLE Tead2 expression levels control the subcellular distribution of Yap and Taz, zyxin expression and epithelial–mesenchymal transition Maren Diepenbruck1,*, Lorenz Waldmeier1,*, Robert Ivanek1, Philipp Berninger2, Phil Arnold2, Erik van Nimwegen2 and Gerhard Christofori1,` ABSTRACT tumor, but also results in the acquisition of stem-cell-like traits, which has implications for cancer therapy and might also be The cellular changes during an epithelial–mesenchymal transition important for colonization at distant organs (Chaffer and Weinberg, (EMT) largely rely on global changes in gene expression 2011; Magee et al., 2012; Polyak and Weinberg, 2009; Scheel and orchestrated by transcription factors. Tead transcription factors Weinberg, 2012). Among the many genes and signaling pathways and their transcriptional co-activators Yap and Taz have been active during EMT, transcription factors are the master coordinators previously implicated in promoting an EMT; however, their direct of the EMT program (Acloque et al., 2009; Moreno-Bueno et al., transcriptional target genes and their functional role during EMT 2008; Nieto, 2011). have remained elusive. We have uncovered a previously The Hippo tumor suppressor signaling pathway plays a critical unanticipated role of the transcription factor Tead2 during EMT. role in restricting organ size by antagonizing the oncogenic During EMT in mammary gland epithelial cells and breast cancer transcriptional co-activators Yap and Taz (Hong and Guan, 2012; cells, levels of Tead2 increase in the nucleus of cells, thereby Zhao et al., 2011). A complex network of cell adhesion and signaling directing a predominant nuclear localization of its co-factors molecules, including the tumor suppressor neurofibromin-2/ Yap and Taz via the formation of Tead2–Yap–Taz complexes.
    [Show full text]
  • Bioinformatics Studies Provide Insight Into Possible Target and Mechanisms of Action of Nobiletin Against Cancer Stem Cells
    DOI:10.31557/APJCP.2020.21.3.611 Bioinformatics Studies Provide Insight into Possible Target and Mechanisms of Action of Nobiletin against Cancer Stem Cells RESEARCH ARTICLE Editorial Process: Submission:05/08/2019 Acceptance:03/06/2020 Bioinformatics Studies Provide Insight into Possible Target and Mechanisms of Action of Nobiletin against Cancer Stem Cells Adam Hermawan1*, Herwandhani Putri2 Abstract Objective: Nobiletin treatment on MDA-MB 231 cells reduces the expression of CXC chemokine receptor type 4 (CXCR4), which is highly expressed in cancer stem cell populations in tumor patients. However, the mechanisms of nobiletin in cancer stem cells (CSCs) remain elusive. This study was aimed to explore the potential target and mechanisms of nobiletin in cancer stem cells using bioinformatics approaches. Methods: Gene expression profiles by public COMPARE predicting the sensitivity of tumor cells to nobiletin. Functional annotations on gene lists are carried out with The Database for Annotation, Visualization and Integrated Discovery (DAVID) v6.8, and WEB-based GEne SeT Analysis Toolkit (WebGestalt). The protein-protein interaction (PPI) network was analyzed by STRING-DB and visualized by Cytoscape. Results: Microarray analyses reveal many genes involved in protein binding, transcriptional and translational activity. Pathway enrichment analysis revealed breast cancer regulation of estrogen signaling and Wnt/ß-catenin by nobiletin. Moreover, three hub genes, i.e. ESR1, NCOA3, and RPS6KB1 and one significant module were filtered out and selected from the PPI network. Conclusion: Nobiletin might serve as a lead compound for the development of CSCs-targeted drugs by targeting estrogen and Wnt/ß-catenin signaling. Further studies are needed to explore the full therapeutic potential of nobiletin in cancer stem cells.
    [Show full text]
  • Full Text (PDF)
    Published OnlineFirst May 1, 2014; DOI: 10.1158/0008-5472.CAN-13-3147 Cancer Tumor and Stem Cell Biology Research Loss of the Polycomb Mark from Bivalent Promoters Leads to Activation of Cancer-Promoting Genes in Colorectal Tumors Maria A. Hahn1, Arthur X. Li2, Xiwei Wu3, Richard Yang1, David A. Drew4, Daniel W. Rosenberg4, and Gerd P. Pfeifer1 Abstract In colon tumors, the transcription of many genes becomes deregulated by poorly defined epigenetic mechanisms that have been studied mainly in established cell lines. In this study, we used frozen human colon tissues to analyze patterns of histone modification and DNA cytosine methylation in cancer and matched normal mucosa specimens. DNA methylation is strongly targeted to bivalent H3K4me3- and H3K27me3-associated promoters, which lose both histone marks and acquire DNA methylation. However, we found that loss of the Polycomb mark H3K27me3 from bivalent promoters was accompanied often by activation of genes associated with cancer progression, including numerous stem cell regulators, oncogenes, and proliferation-associated genes. Indeed, we found many of these same genes were also activated in patients with ulcerative colitis where chronic inflammation predisposes them to colon cancer. Based on our findings, we propose that a loss of Polycomb repression at bivalent genes combined with an ensuing selection for tumor-driving events plays a major role in cancer progression. Cancer Res; 74(13); 3617–29. Ó2014 AACR. Introduction cells (21, 22). The acquisition of the more permanent silencing Tumorigenesis is a complex process that is driven by a mark, 5mC, at the promoters of Polycomb target genes does number of genetic and epigenetic alterations, which often not fundamentally change their expression levels although result in aberrant gene expression (1–3).
    [Show full text]
  • YAP Activation Drives Liver Regeneration After Cholestatic Damage Induced by Rbpj Deletion
    International Journal of Molecular Sciences Article YAP Activation Drives Liver Regeneration after Cholestatic Damage Induced by Rbpj Deletion Umesh Tharehalli 1 , Michael Svinarenko 1, Johann M. Kraus 2, Silke D. Kühlwein 2 , Robin Szekely 2, Ute Kiesle 1, Annika Scheffold 3, Thomas F.E. Barth 4, Alexander Kleger 1, Reinhold Schirmbeck 1, Hans A. Kestler 2 , Thomas Seufferlein 1, Franz Oswald 1, Sarah-Fee Katz 1 and André Lechel 1,* 1 Department of Internal Medicine I, Ulm University, 89081 Ulm, Germany; [email protected] (U.T.); [email protected] (M.S.); [email protected] (U.K.); [email protected] (A.K.); [email protected] (R.S.); [email protected] (T.S.); [email protected] (F.O.); [email protected] (S.-F.K.) 2 Medical Systems Biology, Ulm University, 89081 Ulm, Germany; [email protected] (J.M.K.); [email protected] (S.D.K.); [email protected] (R.S.); [email protected] (H.A.K.) 3 Department of Internal Medicine III, Ulm University, 89081 Ulm, Germany; [email protected] 4 Department of Pathology, Ulm University, 89081 Ulm, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-731-500-44810 Received: 8 November 2018; Accepted: 26 November 2018; Published: 29 November 2018 Abstract: Liver cholestasis is a chronic liver disease and a major health problem worldwide. Cholestasis is characterised by a decrease in bile flow due to impaired secretion by hepatocytes or by obstruction of bile flow through intra- or extrahepatic bile ducts.
    [Show full text]
  • Accompanies CD8 T Cell Effector Function Global DNA Methylation
    Global DNA Methylation Remodeling Accompanies CD8 T Cell Effector Function Christopher D. Scharer, Benjamin G. Barwick, Benjamin A. Youngblood, Rafi Ahmed and Jeremy M. Boss This information is current as of October 1, 2021. J Immunol 2013; 191:3419-3429; Prepublished online 16 August 2013; doi: 10.4049/jimmunol.1301395 http://www.jimmunol.org/content/191/6/3419 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2013/08/20/jimmunol.130139 Material 5.DC1 References This article cites 81 articles, 25 of which you can access for free at: http://www.jimmunol.org/content/191/6/3419.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on October 1, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Global DNA Methylation Remodeling Accompanies CD8 T Cell Effector Function Christopher D. Scharer,* Benjamin G. Barwick,* Benjamin A. Youngblood,*,† Rafi Ahmed,*,† and Jeremy M.
    [Show full text]
  • Investigation of the Underlying Hub Genes and Molexular Pathogensis in Gastric Cancer by Integrated Bioinformatic Analyses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Investigation of the underlying hub genes and molexular pathogensis in gastric cancer by integrated bioinformatic analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract The high mortality rate of gastric cancer (GC) is in part due to the absence of initial disclosure of its biomarkers. The recognition of important genes associated in GC is therefore recommended to advance clinical prognosis, diagnosis and and treatment outcomes. The current investigation used the microarray dataset GSE113255 RNA seq data from the Gene Expression Omnibus database to diagnose differentially expressed genes (DEGs). Pathway and gene ontology enrichment analyses were performed, and a proteinprotein interaction network, modules, target genes - miRNA regulatory network and target genes - TF regulatory network were constructed and analyzed. Finally, validation of hub genes was performed. The 1008 DEGs identified consisted of 505 up regulated genes and 503 down regulated genes.
    [Show full text]