Complete Account of the Selection Process
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SPTLC2 Polyclonal Antibody
SPTLC2 polyclonal antibody It catalyzes the pyridoxal-5-prime-phosphate-dependent condensation of L-serine and palmitoyl-CoA to Catalog Number: PAB4377 3-oxosphinganine. Mutations in this gene were identified in patients with hereditary sensory neuropathy type I. Regulatory Status: For research use only (RUO) Alternatively spliced variants encoding different isoforms have been identified. [provided by RefSeq] Product Description: Rabbit polyclonal antibody raised against synthetic peptide of SPTLC2. References: 1. Permeability barrier disruption increases the level of Immunogen: A synthetic peptide (conjugated with KLH) serine palmitoyltransferase in human epidermis. corresponding to amino acids 532-562 of human Stachowitz S, Alessandrini F, Abeck D, Ring J, Behrendt SPTLC2. H. J Invest Dermatol. 2002 Nov;119(5):1048-52. 2. Shotgun sequencing of the human transcriptome with Host: Rabbit ORF expressed sequence tags. Dias Neto E, Correa RG, Verjovski-Almeida S, Briones MR, Nagai MA, da Reactivity: Human,Mouse Silva W Jr, Zago MA, Bordin S, Costa FF, Goldman GH, Applications: ELISA, WB-Ti Carvalho AF, Matsukuma A, Baia GS, Simpson DH, (See our web site product page for detailed applications Brunstein A, de Oliveira PS, Bucher P, Jongeneel CV, information) O'Hare MJ, Soares F, Brentani RR, Reis LF, de Souza SJ, Simpson AJ. Proc Natl Acad Sci U S A. 2000 Mar Protocols: See our web site at 28;97(7):3491-6. http://www.abnova.com/support/protocols.asp or product 3. Human and murine serine-palmitoyl-CoA page for detailed protocols transferase--cloning, expression and characterization of the key enzyme in sphingolipid synthesis. Weiss B, Form: Liquid Stoffel W. -
WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US). -
IL-17 Induces an Expanded Range of Downstream Genes in Reconstituted Human Epidermis Model
IL-17 Induces an Expanded Range of Downstream Genes in Reconstituted Human Epidermis Model Andrea Chiricozzi1,2,3*, Kristine E. Nograles1,2, Leanne M. Johnson-Huang1, Judilyn Fuentes-Duculan1, Irma Cardinale1, Kathleen M. Bonifacio1, Nicholas Gulati1, Hiroshi Mitsui1, Emma Guttman-Yassky1,2,4, Mayte Sua´rez-Farin˜ as1,2", James G. Krueger1,2" 1 Laboratory for Investigative Dermatology, The Rockefeller University, New York City, New York, United States of America, 2 Center for Clinical and Translational Science, The Rockefeller University, New York City, New York, United States of America, 3 Department of Dermatology, University of Rome ‘‘Tor Vergata’’, Rome, Italy, 4 Department of Dermatology, Mount Sinai School of Medicine, New York City, New York, United States of America Abstract Background: IL-17 is the defining cytokine of the Th17, Tc17, and cd T cell populations that plays a critical role in mediating inflammation and autoimmunity. Psoriasis vulgaris is an inflammatory skin disease mediated by Th1 and Th17 cytokines with relevant contributions of IFN-c, TNF-a, and IL-17. Despite the pivotal role IL-17 plays in psoriasis, and in contrast to the other key mediators involved in the psoriasis cytokine cascade that are capable of inducing broad effects on keratinocytes, IL-17 was demonstrated to regulate the expression of a limited number of genes in monolayer keratinocytes cultured in vitro. Methodology/Principal Findings: Given the clinical efficacy of anti-IL-17 agents is associated with an impressive reduction in a large set of inflammatory genes, we sought a full-thickness skin model that more closely resemble in vivo epidermal architecture. -
Lipid Related Genes Altered in NASH Connect Inflammation in Liver Pathogenesis Progression to HCC: a Canonical Pathway
Lipid related genes altered in NASH connect inflammation in liver pathogenesis progression to HCC: a canonical pathway Christophe Desterke1, Franck Chiappini2* 1 Inserm, U935, Villejuif, F-94800, France 2 Cell Growth and Tissue Repair (CRRET) Laboratory, Université Paris-Est Créteil (UPEC), EA 4397 / ERL CNRS 9215, F-94010, Créteil, France. Corresponding author: *Franck Chiappini. Laboratoire du CRRET (Croissance, Réparation et Régénération Tissulaires), Université Paris-Est Créteil, 61 avenue du Général de Gaulle F- 94010, Créteil Cedex, Val de Marne, France. Email address: [email protected]; Tel: +33(0)145177080; Fax: +33(0)145171816 Supplementary Information Supplementary Datasets Table S1: Text-mining list of genes associated in PubMed literature with lipid related keywords. Supplementary Datasets Table S2: Expression fold change of lipid related genes found differentially expressed between NASH and healthy obese liver samples. Supplementary Datasets Table S3: Liver as principal filter for prioritization of lipid related genes found differentially expressed in NASH. Supplementary Datasets Table S4: Gene prioritization secondary filters (immunological, inflammation, liver pathogenesis progression) table found with lipid related genes differentially expressed in NASH. Supplementary Datasets Table S5: Identification of protein partners of YWHAZ gene using InnateDB database. Supplementary Datasets Table S1: Text-mining list of genes associated in PubMed literature with lipid related keywords. Ranking of "lipidic" textmining Gene symbol -
AGPAT2 Gene 1-Acylglycerol-3-Phosphate O-Acyltransferase 2
AGPAT2 gene 1-acylglycerol-3-phosphate O-acyltransferase 2 Normal Function The AGPAT2 gene provides instructions for making an enzyme that is found in many of the body's cells and tissues. It plays a critical role in the growth and development of adipocytes, which are cells that store fats for energy. Adipocytes are the major component of the body's fatty (adipose) tissue. The AGPAT2 enzyme is part of a chemical pathway in many cells that produces two important types of fats (lipids): glycerophospholipids and triacylglycerols. Glycerophospholipids are the major component of cell membranes and are involved in chemical signaling within cells. Triacylglycerols (also known as triglycerides) are fat molecules that are stored in adipocytes for later conversion to energy. The AGPAT2 enzyme is responsible for a particular chemical reaction in the production of these two types of lipids. Specifically, the enzyme helps convert a molecule called lysophosphatidic acid (LPA) to another molecule, phosphatidic acid (PA). Additional reactions convert phosphatidic acid to glycerophospholipids and triacylglycerols. Health Conditions Related to Genetic Changes Congenital generalized lipodystrophy At least 26 mutations in the AGPAT2 gene have been identified in people with congenital generalized lipodystrophy (also called Berardinelli-Seip congenital lipodystrophy) type 1. This rare condition is characterized by an almost total absence of adipose tissue and a very muscular appearance. A shortage of adipose tissue leads to multiple health problems, including high levels of triglycerides circulating in the bloodstream (hypertriglyceridemia) and diabetes mellitus. The AGPAT2 gene mutations that cause congenital generalized lipodystrophy type 1 greatly reduce or eliminate the activity of the AGPAT2 enzyme. -
Biomolecules
biomolecules Article The Vitamin D Receptor Regulates Glycerolipid and Phospholipid Metabolism in Human Hepatocytes Teresa Martínez-Sena 1, Polina Soluyanova 1, Carla Guzmán 1, José Manuel Valdivielso 2 , José Vicente Castell 1,3,4 and Ramiro Jover 1,3,4,* 1 Experimental Hepatology Unit, IIS Hospital La Fe, 46026 Valencia, Spain; [email protected] (T.M.-S.); [email protected] (P.S.); [email protected] (C.G.); [email protected] (J.V.C.) 2 Vascular and Renal Translational Research Group, Experimental Medicine Department, IRBLleida, 25196 Lleida, Spain; [email protected] 3 Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain 4 Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), ISCIII, 28029 Madrid, Spain * Correspondence: [email protected]; Tel.: +34-96124-6653 Received: 21 February 2020; Accepted: 20 March 2020; Published: 24 March 2020 Abstract: The vitamin D receptor (VDR) must be relevant to liver lipid metabolism because VDR deficient mice are protected from hepatosteatosis. Therefore, our objective was to define the role of VDR on the overall lipid metabolism in human hepatocytes. We developed an adenoviral vector for human VDR and performed transcriptomic and metabolomic analyses of cultured human hepatocytes upon VDR activation by vitamin D (VitD). Twenty percent of the VDR responsive genes were related to lipid metabolism, including MOGAT1, LPGAT1, AGPAT2, and DGAT1 (glycerolipid metabolism); CDS1, PCTP, and MAT1A (phospholipid metabolism); and FATP2, SLC6A12, and AQP3 (uptake of fatty acids, betaine, and glycerol, respectively). They were rapidly induced (4–6 h) upon VDR activation by 10 nM VitD or 100 µM lithocholic acid (LCA). -
Supplemental Table 1. List of Candidate Gene Filters Used in the Analysis of Exome Sequencing. MYOPATHY NEUROPATHY MND ABHD5
BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) J Neurol Neurosurg Psychiatry Supplemental table 1. List of candidate gene filters used in the analysis of exome sequencing. MYOPATHY NEUROPATHY MND ABHD5 AAAS AAAS ACADL AARS1 AARS1 ACADM ABCA1 AGT ACADS ABCD1 ALAD ACADVL ABHD12 ALS2 ACTA1 ADCY6 ANG ADSSL1 AFG3L2 APEX1 AGL AIFM1 APOE AGPAT2 AMACR AR AGRN ANG ASAH1 AIRE AP1S1 ATM ALDOA APOA1 ATP7A ALG14 APTX ATXN2 ALG2 ARHGEF10 ATXN3 ALG3 ARL6IP1 B4GALT6 ANKRD2 ARSA BCL11B ANO5 ASAH1 BCL6 ASCC1 ATL1 BICD2 ATGL ATL3 BSCL2 ATP2A1 ATM C19orf12 ATRN ATXN1 C9orf72 B3GALNT2 ATXN10 CCS B3GNT2 ATXN2 CDH13 BAG3 ATXN3 CDH22 BIN1 ATXN7 CHCHD10 BSCL2 B2M CHMP2B BVES B4GALNT1 CNTF CACNA1S BAG3 CNTN4 CAPN3 BCKDHB CNTN6 CASQ1 BSCL2 CRIM1 CAV1 C12orf65 CRYM CAV3 C9orf72 CSNK1G3 CAVIN1 CLP1 CST3 CCDC78 CNTNAP1 CUL4B CDKN1C COX10 CYP2D6 CFL2 COX6A1 DAO Grunseich C, et al. J Neurol Neurosurg Psychiatry 2021;0:1–11. doi: 10.1136/jnnp-2020-325437 BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) J Neurol Neurosurg Psychiatry CHAT CPOX DCAF15 CHCHD10 CRYAB DCTN1 CHD7 CTDP1 DIAPH3 CHKB CTSA DISC1 CHN1 CYP27A1 DNAJB2 CHRM3 DARS2 DOC2B CHRNA1 DDHD1 DPP6 CHRNB1 DGUOK DYNC1H1 CHRND DHH EFEMP1 CHRNE DHTKD1 ELP3 CIDEC DMD EPHA4 CLCN1 DNAJB2 EWSR1 CLN3 DNAJC3 EXOSC3 CNBP DNM2 FBLN5 CNTN1 DYNC1H1 FBXO38 COA3 EGR2 FEZF2 COL12A1 EMD FGGY COL13A1 ERCC6 FIG4 COL6A ERCC8 FUS COL6A1 FAH GARS1 COL6A2 FAM126A GBE1 COL6A3 FBLN5 GMPPA COL9A3 FGD4 GRB14 COLQ FGF14 GRN COX10 FIG4 HEXA COX15 FLNC HFE CPT2 FLRT1 HINT1 CRAT FLVCR1 HSPB1 CRPPA FMR1 HSPB3 CRYAB FUS HSPB8 CTNS FXN IGHMBP2 DAG1 GALC ITPR2 DECR1 GAN KDR DES GARS1 KIFAP3 DGUOK GBA2 KLHL9 DIH1 GBE1 LAMA2 DMD GDAP1 LAS1L DMPK GJB1 LIF DNAJB6 GJB3 LIPC DNAJC19 GLA LOX Grunseich C, et al. -
The Role of Fatty Acids in Ceramide Pathways and Their Influence On
International Journal of Molecular Sciences Review The Role of Fatty Acids in Ceramide Pathways and Their Influence on Hypothalamic Regulation of Energy Balance: A Systematic Review Andressa Reginato 1,2,3,*, Alana Carolina Costa Veras 2,3, Mayara da Nóbrega Baqueiro 2,3, Carolina Panzarin 2,3, Beatriz Piatezzi Siqueira 2,3, Marciane Milanski 2,3 , Patrícia Cristina Lisboa 1 and Adriana Souza Torsoni 2,3,* 1 Biology Institute, State University of Rio de Janeiro, UERJ, Rio de Janeiro 20551-030, Brazil; [email protected] 2 Faculty of Applied Science, University of Campinas, UNICAMP, Campinas 13484-350, Brazil; [email protected] (A.C.C.V.); [email protected] (M.d.N.B.); [email protected] (C.P.); [email protected] (B.P.S.); [email protected] (M.M.) 3 Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas 13083-864, Brazil * Correspondence: [email protected] (A.R.); [email protected] (A.S.T.) Abstract: Obesity is a global health issue for which no major effective treatments have been well established. High-fat diet consumption is closely related to the development of obesity because it negatively modulates the hypothalamic control of food intake due to metaflammation and lipotoxicity. The use of animal models, such as rodents, in conjunction with in vitro models of hypothalamic cells, can enhance the understanding of hypothalamic functions related to the control of energy Citation: Reginato, A.; Veras, A.C.C.; balance, thereby providing knowledge about the impact of diet on the hypothalamus, in addition Baqueiro, M.d.N.; Panzarin, C.; to targets for the development of new drugs that can be used in humans to decrease body weight. -
An Oxysterol Sensor and a Major Playerin the Control of Lipogenesis Simon Ducheix, J.M.A
Liver X Receptor: an oxysterol sensor and a major playerin the control of lipogenesis Simon Ducheix, J.M.A. Lobaccaro, Pascal G.P. Martin, Hervé Guillou To cite this version: Simon Ducheix, J.M.A. Lobaccaro, Pascal G.P. Martin, Hervé Guillou. Liver X Receptor: an oxysterol sensor and a major playerin the control of lipogenesis. Chemistry and Physics of Lipids, Elsevier, 2011, 164 (6), pp.500-14. 10.1016/j.chemphyslip.2011.06.004. hal-02651993 HAL Id: hal-02651993 https://hal.inrae.fr/hal-02651993 Submitted on 29 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Chemistry and Physics of Lipids 164 (2011) 500–514 Contents lists available at ScienceDirect Chemistry and Physics of Lipids journal homepage: www.elsevier.com/locate/chemphyslip Review Liver X Receptor: an oxysterol sensor and a major player in the control of lipogenesis S. Ducheix a, J.M.A. Lobaccaro b, P.G. Martin a, H. Guillou a,∗ a Integrative Toxicology and Metabolism, UR 66, ToxAlim, INRA, 31 027 Toulouse Cedex 3, France b Clermont Université, CNRS Unité Mixte de Recherche 6247 Génétique, Reproduction et Développement, Université Blaise Pascal, Centre de Recherche en Nutrition Humaine d’Auvergne, BP 10448, F-63000 Clermont-Ferrand, France article info abstract Article history: De novo fatty acid biosynthesis is also called lipogenesis. -
The Debut of a Rational Treatment for an Inherited Neuropathy?
The debut of a rational treatment for an inherited neuropathy? Steven S. Scherer J Clin Invest. 2011;121(12):4624-4627. https://doi.org/10.1172/JCI60511. Commentary Hereditary neuropathies are common neurological conditions characterized by progressive loss of motor and/or sensory function. There are no effective treatments. Among the many causes of hereditary neuropathies are dominant mutations in serine palmitoyltransferase, long chain base subunit 1 (SPTLC1), which cause hereditary sensory and autonomic neuropathy type 1 (HSAN1). By incorporating l-alanine in place of l-serine, the mutant HSAN1–associated serine palmitoyltransferase generates deoxysphingolipids, which are thought to be neurotoxic. In this issue of the JCI, Garofalo and colleagues report that oral l-serine reverses the accumulation of deoxysphingolipids in humans with HSAN1 and in a transgenic mouse model. As oral l-serine reduces the severity of neuropathy in the mouse model of HSAN1, these data suggest a rational candidate therapy for this devastating condition. Find the latest version: https://jci.me/60511/pdf commentaries The debut of a rational treatment for an inherited neuropathy? Steven S. Scherer Department of Neurology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA. Hereditary neuropathies are common neurological conditions characterized cause CMT (4), and many more remain to by progressive loss of motor and/or sensory function. There are no effective be discovered. The demyelinating forms are treatments. Among the many causes of hereditary neuropathies are dominant the most common, and the genetic causes mutations in serine palmitoyltransferase, long chain base subunit 1 (SPTLC1), of most of these conditions have been dis- which cause hereditary sensory and autonomic neuropathy type 1 (HSAN1). -
Transcriptional Regulation Profiling Reveals Disrupted Lipid Metabolism in Failing Hearts with a Pathogenic Phospholamban Mutation
bioRxiv preprint doi: https://doi.org/10.1101/2020.11.30.402792; this version posted December 1, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Transcriptional regulation profiling reveals disrupted lipid metabolism in failing hearts with a pathogenic phospholamban mutation Jiayi Pei1,2,3*, Renee G.C. Maas1,2*, Ema Nagyova1,4, Johannes M.I.H. Gho1, Christian Snijders Blok1,2, Iris van Adrichem1,2, Jorg J.A. Calis1,2, René van Es1, Shahrzad Sepehrkhouy5, Dries Feyen6, Noortje van den Dungen4, Nico Lansu4, Nicolaas de Jonge1, Hester M. den Ruijter1, Manon M.H. Huibers5, Roel A. de Weger5, Linda W. van Laake1, Marianne C. Verhaar2,3, Peter van Tintelen7, Frank G. van Steenbeek1,2,8, Alain van Mil1,2, Jan W. Buikema1,2, Boudewijn Burgering9, Ioannis Kararikes6, Mark Mercola6, Pieter A. Doevendans1,10, Joost Sluijter1,2, Aryan Vink5, Caroline Cheng2,3, Michal Mokry2,4,11*, Folkert W. Asselbergs1,9,12,13*#, Magdalena Harakalova1,2*# *equal contribution; #corresponding authors 1 Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands 2 Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands 3 Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, University Medical Center Utrecht (UMCU), The Netherlands 4 Epigenomics facility, University Medical Center Utrecht, Utrecht, The -
Inheritest 500 PLUS
Inheritest® 500 PLUS 525 genes Specimen ID: 00000000010 Container ID: H0651 Control ID: Acct #: LCA-BN Phone: SAMPLE REPORT, F-630049 Patient Details Specimen Details Physician Details DOB: 01/01/1991 Date Collected: 08/05/2019 12:00 (Local) Ordering: Age (yyy/mm/dd): 028/07/04 Date Received: 08/06/2019 Referring: Gender: Female Date Entered: 08/06/2019 ID: Patient ID: 00000000010 Date Reported: 08/21/2019 15:29 (Local) NPI: Ethnicity: Unknown Specimen Type: Blood Lab ID: MNEGA Indication: Carrier screening Genetic Counselor: None SUMMARY: POSITIVE POSITIVE RESULTS DISORDER (GENE) RESULTS INTERPRETATION Spinal muscular atrophy AT RISK AT RISK to be a silent carrier (2+0). For ethnic-specific risk (SMN1) 2 copies of SMN1; positive for revisions see Methods/Limitations. Genetic counseling is NMID: NM_000344 c.*3+80T>G SNP recommended. Risk: AT INCREASED RISK FOR AFFECTED PREGNANCY. See Additional Clinical Information. NEGATIVE RESULTS DISORDER (GENE) RESULTS INTERPRETATION Cystic fibrosis NEGATIVE This result reduces, but does not eliminate the risk to be a (CFTR) carrier. NMID: NM_000492 Risk: NOT at an increased risk for an affected pregnancy. Fragile X syndrome NEGATIVE: Not a carrier of a fragile X expansion. (FMR1) 29 and 36 repeats NMID: NM_002024 Risk: NOT at an increased risk for an affected pregnancy. ALL OTHER DISORDERS NEGATIVE This result reduces, but does not eliminate the risk to be a carrier. Risk: The individual is NOT at an increased risk for having a pregnancy that is affected with one of the disorders covered by this test. For partner's gene-specific risks, visit www.integratedgenetics.com.