February 2020 Vol 26, No 2, February 2020

Total Page:16

File Type:pdf, Size:1020Kb

February 2020 Vol 26, No 2, February 2020 ® February 2020 Purchase and partial gift from the Catherine and Ralph Benkaim Collection; Severance and Greta Millikin Purchase Fund. Public domain digital image courtesy of The Cleveland Museum of Modern Art, Cleveland, Ohio Cleveland, Art, Modern of Museum Cleveland The of courtesy image digital domain Public Fund. Purchase Millikin Greta and Severance Collection; Benkaim Ralph and Catherine the from gift partial and Purchase Opaque watercolor, ink, and gold on paper. 10 1/4 in x 6 15/16 in/26 cm x 17.6 cm. cm. 17.6 x cm in/26 15/16 6 x in 1/4 10 paper. on gold and ink, watercolor, Opaque , Possibly Maru Ragini from a Ragamala, 1650–80. 1650–80. Ragamala, a from Ragini Maru Possibly , A Rajput Warrior with Camel with Warrior Rajput A Artist Unknown. Unknown. Artist Coronaviruses Vol 26, No 2, February 2020 EMERGING INFECTIOUS DISEASES Pages 191–400 DEPARTMENT OF HEALTH & HUMAN SERVICES Public Health Service Centers for Disease Control and Prevention (CDC) Mailstop D61, Atlanta, GA 30329-4027 Official Business Penalty for Private Use $300 Return Service Requested ISSN 1080-6040 Peer-Reviewed Journal Tracking and Analyzing Disease Trends Pages 191–400 EDITOR-IN-CHIEF D. Peter Drotman ASSOCIATE EDITORS EDITORIAL BOARD Charles Ben Beard, Fort Collins, Colorado, USA Barry J. Beaty, Fort Collins, Colorado, USA Ermias Belay, Atlanta, Georgia, USA Martin J. Blaser, New York, New York, USA David M. Bell, Atlanta, Georgia, USA Andrea Boggild, Toronto, Ontario, Canada Sharon Bloom, Atlanta, Georgia, USA Christopher Braden, Atlanta, Georgia, USA Richard Bradbury, Melbourne, Australia Arturo Casadevall, New York, New York, USA Mary Brandt, Atlanta, Georgia, USA Kenneth G. Castro, Atlanta, Georgia, USA Corrie Brown, Athens, Georgia, USA Vincent Deubel, Shanghai, China Charles H. Calisher, Fort Collins, Colorado, USA Christian Drosten, Charité Berlin, Germany Benjamin J. Cowling, Hong Kong, China Isaac Chun-Hai Fung, Statesboro, Georgia, USA Michel Drancourt, Marseille, France Kathleen Gensheimer, College Park, Maryland, USA Paul V. Effler, Perth, Australia Anthony Fiore, Atlanta, Georgia, USA Rachel Gorwitz, Atlanta, Georgia, USA David O. Freedman, Birmingham, Alabama, USA Duane J. Gubler, Singapore Peter Gerner-Smidt, Atlanta, Georgia, USA Richard L. Guerrant, Charlottesville, Virginia, USA Stephen Hadler, Atlanta, Georgia, USA Scott Halstead, Arlington, Virginia, USA Matthew J. Kuehnert, Edison, New Jersey, USA David L. Heymann, London, UK Nina Marano, Atlanta, Georgia, USA Keith Klugman, Seattle, Washington, USA Martin I. Meltzer, Atlanta, Georgia, USA Takeshi Kurata, Tokyo, Japan David Morens, Bethesda, Maryland, USA S.K. Lam, Kuala Lumpur, Malaysia J. Glenn Morris, Jr., Gainesville, Florida, USA Stuart Levy, Boston, Massachusetts, USA Patrice Nordmann, Fribourg, Switzerland John S. Mackenzie, Perth, Australia Johann D.D. Pitout, Calgary, Alberta, Canada John E. McGowan, Jr., Atlanta, Georgia, USA Ann Powers, Fort Collins, Colorado, USA Jennifer H. McQuiston, Atlanta, Georgia, USA Didier Raoult, Marseille, France Tom Marrie, Halifax, Nova Scotia, Canada Pierre E. Rollin, Atlanta, Georgia, USA Nkuchia M. M’ikanatha, Harrisburg, Pennsylvania, USA Frederic E. Shaw, Atlanta, Georgia, USA David H. Walker, Galveston, Texas, USA Frederick A. Murphy, Bethesda, Maryland, USA J. Todd Weber, Atlanta, Georgia, USA Barbara E. Murray, Houston, Texas, USA J. Scott Weese, Guelph, Ontario, Canada Stephen M. Ostroff, Silver Spring, Maryland, USA Mario Raviglione, Milan, Italy, and Geneva, Switzerland Managing Editor Byron Breedlove, Atlanta, Georgia, USA David Relman, Palo Alto, California, USA Guenael R. Rodier, Saône-et-Loire, France Copy Editors Kristina Clark, Dana Dolan, Karen Foster, Connie Schmaljohn, Frederick, Maryland, USA Thomas Gryczan, Amy Guinn, Michelle Moran, Shannon Tom Schwan, Hamilton, Montana, USA O’Connor, Jude Rutledge, P. Lynne Stockton, Deborah Wenger Rosemary Soave, New York, New York, USA Production Thomas Eheman, William Hale, Barbara Segal, P. Frederick Sparling, Chapel Hill, North Carolina, USA Reginald Tucker Robert Swanepoel, Pretoria, South Africa Journal Administrator Susan Richardson David E. Swayne, Athens, Georgia, USA Phillip Tarr, St. Louis, Missouri, USA Editorial Assistant Kristine Phillips Duc Vugia, Richmond, California, USA Communications/Social Media Sarah Logan Gregory, Mary Edythe Wilson, Iowa City, Iowa, USA Tony Pearson-Clarke, Deanna Altomara (intern) Emerging Infectious Diseases is published monthly by the Centers for Disease Control Founding Editor and Prevention, 1600 Clifton Rd NE, Mailstop H16-2, Atlanta, GA 30329-4027, USA. Joseph E. McDade, Rome, Georgia, USA Telephone 404-639-1960, fax 404-639-1954, email [email protected]. The conclusions, findings, and opinions expressed by authors All material published in Emerging Infectious Diseases is in the contributing to this journal do not necessarily reflect the official public domain and may be used and reprinted without special position of the U.S. Department of Health and Human Services, permission; proper citation, however, is required. the Public Health Service, the Centers for Disease Control and Use of trade names is for identification only and does not imply Prevention, or the authors’ affiliated institutions. Use of trade names endorsement by the Public Health Service or by the U.S. Department is for identification only and does not imply endorsement by any of of Health and Human Services. the groups named above. EMERGING INFECTIOUS DISEASES is a registered service mark of the U.S. Department of Health & Human Services (HHS). Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 26, No. 2, February 2020 Coronaviruses February 2020 Synopses Acute Toxoplasmosis among Canadian Deer Hunters Associated with Consumption of Undercooked Deer Meat Hunted in the United States Heath professionals should be aware that such outbreaks might be more common in the future. C. Gaulin et al. 199 Public Health Program for Decreasing Risk for Ebola Virus Disease Resurgence from Survivors of the 2013–2016 Outbreak, Guinea M. Keita et al. 206 Research Characteristics of Patients with Acute Flaccid Myelitis, United States, 2015–2018 Differences in clinical and laboratory characteristics between years with and without increased activity suggest differences in viral etiologies. N. McLaren et al. 212 On the Cover Illness Severity in Hospitalized Influenza Patients by Virus Type and Subtype, Spain, 2010–2017 Artist Unknown. A Rajput Warrior with Camel, possibly Maru Ragini from a Ragamala, 1650–80. Opaque watercolor, ink, and gold on paper. Influenza A(H1N1)pdm09 infections caused more 10 1/4 in x 6 15/16 in/26 cm x 17.6 cm. Purchase and partial gift from the hospitalizations, intensive care unit admissions, and Catherine and Ralph Benkaim Collection; Severance and Greta Millikin deaths than influenza A(H3N2) or B infections. Purchase Fund. Public domain digital image courtesy of The Cleveland Museum of Modern Art, Cleveland, Ohio C. Delgado-Sanz et al. 220 About the Cover p. 395 Exposure to Ebola Virus and Risk for Infection with Malaria Parasites, Rural Gabon Perspective J.L. Abbate et al. 229 Middle East Respiratory Syndrome Cost-Effectiveness of Screening Program for Coronavirus Transmission Chronic Q Fever, the Netherlands M.E. Killerby et al. 191 P.T. de Boer et al. 238 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 26, No. 2, February 2020 February 2020 Elizabethkingia anopheles Infection in Infants, Cambodia, 2012–2018 T.A.N. Reed et al. 320 Global Expansion of Pacific NorthwestVibrio parahaemolyticus Sequence Type 36 M. Abanto et al. 323 Surge in Anaplasmosis Cases in Maine, USA, 277 2013–2017 S.P. Elias et al. 327 Unique Clindamycin-Resistant Clostridioides Mycoplasma genitalium Antimicrobial difficile Strain Related to Fluoroquinolone- Resistance in Community and Sexual Health Resistant Epidemic BI/RT027 Strain Clinic Patients, Auckland, New Zealand A.M. Skinner et al. 247 A. Vesty et al. 332 Porcine Deltacoronavirus Infection and Early Detection of Public Health Emergencies Transmission in Poultry, United States of International Concern through Undiagnosed P.A. Boley et al. 255 Disease Reports in ProMED-Mail C. Rolland et al. 336 Chronic Human Pegivirus 2 and Hepatitis C Virus Co-infection Ocular Spiroplasma ixodetis in Newborns, France K.E. Coller et al. 265 A. Matet et al. 340 Interspecies Transmission of Reassortant Swine Influenza A Virus Containing Genes from Swine Influenza A(H1N1)pdm09 and A(H1N2) Viruses H.E. Everett et al. 273 Multiplex Mediator Displacement Loop-Mediated Isothermal Amplification for Detection of Treponema pallidum and Haemophilus ducreyi L. Becherer et al. 282 Novel Subclone of Carbapenem-Resistant Klebsiella pneumoniae Sequence Type 11 with Enhanced Virulence and Transmissibility, China K. Zhou et al. 289 Neutralizing Antibodies against Enteroviruses in Patients with Hand, Foot and Mouth Disease L.A. Nguyet et al. 298 Dispatches Emergence of Chikungunya Virus, Pakistan, 2016–2017 N. Badar et al. 307 Influence of Rainfall on Leptospira Infection and Disease in a Tropical Urban Setting, Brazil K.P. Hacker et al. 311 Systematic Hospital-Based Travel Screening to Assess Exposure to Zika Virus A. Iqbal et al. 315 365 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 26, No. 2, February 2020 Use of Surveillance Outbreak Response Management and Analysis System for Human Monkeypox Outbreak, Nigeria, 2017–2019 B.C. Silenou et al. 345 Human Norovirus Infection in Dogs, Thailand K. Charoenkul et al. 350 February 2020 Hepatitis
Recommended publications
  • Fighting Ebola: Voices from the Frontline Documenting the Experiences of East African Deployed Experts Who Volunteered to Fight Ebola in West Africa Implemented By
    Fighting Ebola: Voices from the Frontline Documenting the experiences of East African deployed experts who volunteered to fight Ebola in West Africa Implemented by: Fighting Ebola: Voices from the Frontline Documenting the experiences of East African deployed experts who volunteered to fight Ebola in West Africa Contents Introduction . 6 Foreword from the Hon . Jesca Eriyo . 9 Foreword from Dr Zabulon Yoti . .. 10 Foreword from Dr Jackson Amone . 12 Foreword from Dr Irene Lukassowitz . 13 George Acire . 14 Rebecca Racheal Apolot . 17 Sarah Awilo . 22 Dr Mwaniki Collins . 24 Charles Draleku . 26 Emmanuel Ejoku .. 28 Dr Madina Hussein . 31 Loveness Daniel Isojick . 34 Dr Abdulrahman Said Kassim . 36 Teddy Kusemererwa . .. 40 Liliane Luwaga . 43 Dr Appolinaire Manirafasha . 46 Dr Landry Mayigane . 48 James Mugume . 50 Dr Monica Musenero . 52 Doreen Nabawanuka . 55 Dr Bella Nihorimbere . 56 Teresia Wairimu Thuku . 57 Tony Walter Onena . 59 Acknowledgements . 61 4 Fighting Ebola: Voices from the Frontline 5 Introduction ccording to the World Health Organization (WHO), Others, seeing scenes of death and devastation on their The East African Community Secretariat, in collaboration the Ebola epidemic that occurred in West Africa television screens, just felt compelled to do whatever they with the Federal Government of Germany through the Abetween 2014 and 2016 killed over 11,000 people could to help . Given that so many West African health GIZ-coordinated Support to Pandemic Preparedness in out of the almost 30,000 that were infected . From one
    [Show full text]
  • Towards the Improved Accuracy of Hepatitis E Diagnosis In
    healthcare Review Towards the Improved Accuracy of Hepatitis E Diagnosis in Vulnerable and Target Groups: A Global Perspective on the Current State of Knowledge and the Implications for Practice Jasminka Talapko 1 , Tomislav Meštrovi´c 2,3, Emina Pustijanac 4 and Ivana Škrlec 1,* 1 Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; [email protected] 2 University Centre Varaždin, University North, HR-42000 Varaždin, Croatia; [email protected] 3 Clinical Microbiology and Parasitology Unit, Dr. Zora Profozi´cPolyclinic, HR-10000 Zagreb, Croatia 4 Faculty of Natural Sciences, Juraj Dobrila University of Pula, HR-52100 Pula, Croatia; [email protected] * Correspondence: [email protected] Abstract: The hepatitis E virus (HEV) is a positive single-stranded, icosahedral, quasi-enveloped RNA virus in the genus Orthohepevirus of the family Hepeviridae. Orthohepevirus A is the most numerous species of the genus Orthohepevirus and consists of eight different HEV genotypes that can cause infection in humans. HEV is a pathogen transmitted via the fecal–oral route, most commonly by consuming fecally contaminated water. A particular danger is the HEV-1 genotype, which poses a very high risk of vertical transmission from the mother to the fetus. Several outbreaks caused by this genotype have been reported, resulting in many premature births, abortions, and also neonatal Citation: Talapko, J.; Meštrovi´c,T.; and maternal deaths. Genotype 3 is more prevalent in Europe; however, due to the openness of Pustijanac, E.; Škrlec, I. Towards the the market, i.e., trade-in animals which represent a natural reservoir of HEV (such as pigs), there is Improved Accuracy of Hepatitis E a possibility of spreading HEV infections outside endemic areas.
    [Show full text]
  • Targeting Ebola 2015
    Agenda of Targeting Ebola 2015 May 28-29, 2015 Institut Pasteur - Paris, France www.targeting-ebola.com Welcome Note On behalf of the Targeting Infectious Diseases Committee, the Institut Pasteur, the COPED and the Task Force for Ebola in France, it is our pleasure to announce the organization of the International Congress on Targeting Ebola 2015 which will be held on May 28-29, 2015 at Pasteur Institute, Paris, France. The World Health Organization (WHO) was notified on March 23, 2014, of an outbreak of EVD in Guinea. The disease soon spread to the bordering countries of Liberia and Sierra Leone, which are the most severely affected countries. On August 8, 2014, the epidemic was declared a “public health emergency of international concern” (WHO Ebola Response Team, NEJM 2014, 371, 1481). Suspected cases of EVD have since been reported in seven affected countries (Guinea, Liberia, Nigeria, Senegal, Sierra Leone, Spain, and the United States of America). Unprecedented in scale and geographical distribution since the identification of Ebola in 1976, the current epidemic has an apparent overall case-fatality ratio of about 70%; but it is suspected that many more cases have gone unrecorded. On May 2015, more than 10.000 deaths and 30.000 cases had been reported in Sierra Leone, Liberia and Guinea, according to the WHO. Globally, the situation is improving. The epidemic is over in Liberia, however in Guinea and Sierra Leone, the initial decline observed a few weeks ago is stable with approximately 20 new cases / week. The vast majority of cases are reported from the western prefecture of Forecariah, which borders the Sierra Leonean district of Kambia.
    [Show full text]
  • Clinical Trial Protocol Sponsored by OCRPRO
    PREVAIL IV: Double-blind, Randomized, Two-phase, Placebo-controlled, Phase II Trial of GS-5734 to Assess the Antiviral Activity, Longer-term Clearance of Ebola Virus, and Safety in Male Ebola Survivors with Evidence of Ebola Virus Persistence in Semen NIAID Protocol Number: 16-I-N137 Version Number: 10.0 Date: May 13, 2019 Investigational New Drug (IND) Number: 130621 IND Sponsor: Office of Clinical Research Policy and Regulatory Operations (OCRPRO), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH) Local Liberian Medical Officer: Ian Wachekwa, MD Safety Medical Officer John F. Kennedy Hospital 21 Street, Sinkor Monrovia, Liberia [email protected] (t) +231880890907 Sponsor Medical Monitor: Alan Lifson, MD, MPH Professor, Division of Epidemiology and Community Health School of Public Health University of Minnesota 1300 S. Second St., Ste. 300 Minneapolis, MN 55454 (t) 612-626-9697 (f) 612-624-0315 [email protected] Pharmaceutical Support Provided by: Gilead Sciences, Inc. PREVAIL IV Version 10.0 13 May 2019 Conducted by: Liberia-US Joint Clinical Research Partnership also known as the Partnership for Research on Ebola Virus in Liberia (PREVAIL) Page 2 of 77 PREVAIL IV Version 10.0 13 May 2019 Key Roles NIH Principal Investigator: Elizabeth S. Higgs, MD, MIA, DTMH Division of Clinical Research, NIAID [email protected] (c) +301-768-3947 skype: libby.higgs2 Liberian Principal Investigator: Dehkontee Gayedyu-Dennis, MD PREVAIL [email protected] (t) +231-886-538-810
    [Show full text]
  • Chapter 1 BEFORE EBOLA
    10/12/2017 Preparing for a Crisis: Lessons Learned at Emory Before, During, and After Ebola Jay B. Varkey, MD On behalf of the Chapter 1 BEFORE EBOLA 2 1 10/12/2017 The Story of Emile Meliandou, Guinea, December 2013 Photograph by Suzanne Beukes, UNICEF The Story of Emile Meliandou, Guinea, December 2013 AM Saéz et al, EMBO Mole Med 2015 2 10/12/2017 The Story of Emile Meliandou, Guinea, December 2013 The Story of Emile Meliandou, Guinea, December 2013 AM Saéz et al, EMBO Mole Med 2015 3 10/12/2017 The Story of Emile Meliandou, Guinea, December 2013 Photograph by Suzanne Beukes, UNICEF Spread of a “Cholera‐Like Illness” MeliandouConakry, 12/2013 – 3/2014 S Baize, N Engl J Med 2014 4 10/12/2017 Ebola Virus Disease (EVD) Spread to Liberia and Sierra Leone 4/2014 ELWA Ebola Treatment Unit (ETU) Monrovia, Liberia 6/2014 – 7/2014 Photograph by Bethany Fankhauser, SIM 5 10/12/2017 ELWA ETU Monrovia, Liberia 6/2014 – 7/2014 Photograph by Bethany Fankhauser, SIM ELWA ETU Monrovia, Liberia July 2014 • 40 patients with EVD treated • 39 of 40 died • July 22‐23: 2 American humanitarians working in the ELWA ETC develop a fever…. • Initially treated for malaria • Laboratory testing confirmed Ebola Virus Disease 6 10/12/2017 Ebola Virus Disease and Emory July 30, 2014 • Emory University Hospital was asked to receive the first patients with confirmed Ebola virus disease to be treated in the United States • 2 American humanitarians had become infected while working in an ETU in Monrovia, Liberia • Patient 1: 33 yo male physician • Patient 2: 59 yo female medical missionary • Expected arrival time unclear but Emory was asked to be ready to receive the 1st patient within 72 hours.
    [Show full text]
  • Characterizing and Evaluating the Zoonotic Potential of Novel Viruses Discovered in Vampire Bats
    viruses Article Characterizing and Evaluating the Zoonotic Potential of Novel Viruses Discovered in Vampire Bats Laura M. Bergner 1,2,* , Nardus Mollentze 1,2 , Richard J. Orton 2 , Carlos Tello 3,4, Alice Broos 2, Roman Biek 1 and Daniel G. Streicker 1,2 1 Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; [email protected] (N.M.); [email protected] (R.B.); [email protected] (D.G.S.) 2 MRC–University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; [email protected] (R.J.O.); [email protected] (A.B.) 3 Association for the Conservation and Development of Natural Resources, Lima 15037, Peru; [email protected] 4 Yunkawasi, Lima 15049, Peru * Correspondence: [email protected] Abstract: The contemporary surge in metagenomic sequencing has transformed knowledge of viral diversity in wildlife. However, evaluating which newly discovered viruses pose sufficient risk of infecting humans to merit detailed laboratory characterization and surveillance remains largely speculative. Machine learning algorithms have been developed to address this imbalance by ranking the relative likelihood of human infection based on viral genome sequences, but are not yet routinely Citation: Bergner, L.M.; Mollentze, applied to viruses at the time of their discovery. Here, we characterized viral genomes detected N.; Orton, R.J.; Tello, C.; Broos, A.; through metagenomic sequencing of feces and saliva from common vampire bats (Desmodus rotundus) Biek, R.; Streicker, D.G. and used these data as a case study in evaluating zoonotic potential using molecular sequencing Characterizing and Evaluating the data.
    [Show full text]
  • Kinase Inhibitors and Nucleoside Analogues As Novel Therapies to Inhibit HIV-1 Or ZEBOV Replication
    Kinase Inhibitors and Nucleoside Analogues as Novel Therapies to Inhibit HIV-1 or ZEBOV Replication by Stephen D. S. McCarthy A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Laboratory Medicine and Pathobiology University of Toronto © Copyright by Stephen D. S. McCarthy (2017) Kinase Inhibitors and Nucleoside Analogues as Novel Therapies to Inhibit HIV-1 or ZEBOV Replication Stephen D.S. McCarthy Doctor of Philosophy Graduate Department of Laboratory Medicine and Pathobiology University of Toronto 2017 Abstract Without a vaccine for Human Immunodeficiency Virus type 1 (HIV-1), or approved therapy for treating Zaire Ebolavirus (ZEBOV) infection, new means to treat either virus during acute infection are under intense investigation. Repurposing tyrosine kinase inhibitors of known specificity may not only inhibit HIV-1 replication, but also treat associated inflammation or neurocognitive disorders caused by chronic HIV-1 infection. Moreover, tyrosine kinase inhibitors may effectively treat other infections, including ZEBOV. In addition, established nucleoside/nucleotide analogues that effectively inhibit HIV-1 infection, could also be repurposed to inhibit ZEBOV replication. In this work the role of two host cell kinases, cellular protoncogene SRC (c-SRC) and Protein Tyrosine Kinase 2 Beta (PTK2B), were found to have key roles during early HIV-1 replication in primary activated CD4+ T-cells ex vivo. siRNA knockdown of either kinase increased intracellular reverse transcripts and decreased nuclear proviral integration, suggesting they act at the level of pre-integration complex (PIC) formation or PIC nuclear translocation. c-SRC siRNA knockdown consistently reduced p24 levels of IIIB(X4) and Ba-L(R5) infection, or luciferase ii activity of HXB2(X4) or JR-FL(R5) recombinant viruses, prompting further drug inhibition studies of this kinase.
    [Show full text]
  • Porcine Kobuvirus
    PORCINE KOBUVIRUS Prepared for the Swine Health Information Center By the Center for Food Security and Public Health, College of Veterinary Medicine, Iowa State University September 2015 SUMMARY Etiology • Porcine kobuvirus (PKoV) is a small, non-enveloped RNA virus in the family Picornaviridae. • There are three distinct clusters within the genus Kobuvirus: Aichivirus A (AiV-A) includes human AiV-1, canine KoV-1, and murine KoV-1. Aichivirus B (AiV-B) includes bovine KoV-1 and sheep KoV-1. Aichivirus C (AiV-C) includes porcine KoV-1 (PKoV/AiV-C).1 Cleaning and Disinfection • AiV-1 is readily inactivated at 56ºC after 20 minutes. • There is no published information about the susceptibility of PKoV/AiV-C to disinfectants. Kobuviruses (KoVs) are potentially susceptible to disinfection with acids like acetic acid, aldehydes like glutaraldehyde, alkalis like sodium hydroxide, and oxidizing agents like Virkon- S®11. Epidemiology • Kobuviruses infect many different species. The AiV-C cluster contains swine viruses exclusively. • PKoV/AiV-C has been isolated from swine herds in China, Thailand, Japan, South Korea, Italy, Hungary, Czech Republic, the United States, the Netherlands, Kenya, Uganda, and Brazil. • Prevalence in domestic pigs ranges from 13–99%. One study of pigs in the United States showed that 21.7% of healthy and 21.9% of diarrheic samples were PKoV/AiV-C-positive. Transmission • Transmission is thought to be fecal-oral. • Wild boars might be a source of infection for domestic swine. Infection in Swine/Pathogenesis • PKoV/AiV-C has been implicated as the cause of an outbreak of diarrhea, dehydration, and vomiting in Chinese piglets.
    [Show full text]
  • HEPATITIS E VIRCLIA® Igm MONOTEST
    EN 1 N KIT FEATURES: HEPATITIS E VIRCLIA® IgM All reagents supplied are ready to use. Serum dilution solution and conjugate are coloured to help in MONOTEST the performance of the technique. For in vitro diagnostic use Sample predilution is not necessary. Reagents required for the run of the test are included in the VCM067: Indirect chemiluminescent immunoassay (CLIA) to monodose presentation. test IgM antibodies against hepatitis E virus in human serum/plasma. 24 tests. KIT CONTENTS: 1 VIRCLIA® HEPATITIS E IgM MONODOSE: 24 monodoses consisting of 3 reaction wells and 5 reagent wells with de INTRODUCTION: following composition : Hepatitis E virus (HEV) is the causative agent of hepatitis E. HEV Wells A, B, C: reaction wells; wells coated with anti-IgM belongs to the family Hepeviridae. Four out of seven genotypes antibodies (µ-specific). of Orthohepevirus A are known to infect humans. Genotypes 1 Well D: Conjugate: orange; containing HEV recombinant and 2 are responsible for human infections exclusively and are antigen, peroxidase conjugate dilution and Neolone and endemic in Asia, Africa and some American countries. Bronidox as preservatives. Genotypes 3 and 4 are zoonotic and present in Europe, United Well E: Serum dilution solution: blue; phosphate buffer States, Japan, China and Taiwan. HEV is transmitted via the fecal-oral route. Foodborne infection can occur from containing protein stabilizers and Neolone and Bronidox as consumption of uncooked/undercooked meat or organs from preservatives. infected animals. A wide range of clinical manifestations, from Well F: Calibrator: clear; positiveONLY serum dilution containing asymptomatic or subclinical to acute liver failure, can be Neolone and Bronidox as preservatives.
    [Show full text]
  • Viruses in Transplantation - Not Always Enemies
    Viruses in transplantation - not always enemies Virome and transplantation ECCMID 2018 - Madrid Prof. Laurent Kaiser Head Division of Infectious Diseases Laboratory of Virology Geneva Center for Emerging Viral Diseases University Hospital of Geneva ESCMID eLibrary © by author Conflict of interest None ESCMID eLibrary © by author The human virome: definition? Repertoire of viruses found on the surface of/inside any body fluid/tissue • Eukaryotic DNA and RNA viruses • Prokaryotic DNA and RNA viruses (phages) 25 • The “main” viral community (up to 10 bacteriophages in humans) Haynes M. 2011, Metagenomic of the human body • Endogenous viral elements integrated into host chromosomes (8% of the human genome) • NGS is shaping the definition Rascovan N et al. Annu Rev Microbiol 2016;70:125-41 Popgeorgiev N et al. Intervirology 2013;56:395-412 Norman JM et al. Cell 2015;160:447-60 ESCMID eLibraryFoxman EF et al. Nat Rev Microbiol 2011;9:254-64 © by author Viruses routinely known to cause diseases (non exhaustive) Upper resp./oropharyngeal HSV 1 Influenza CNS Mumps virus Rhinovirus JC virus RSV Eye Herpes viruses Parainfluenza HSV Measles Coronavirus Adenovirus LCM virus Cytomegalovirus Flaviviruses Rabies HHV6 Poliovirus Heart Lower respiratory HTLV-1 Coxsackie B virus Rhinoviruses Parainfluenza virus HIV Coronaviruses Respiratory syncytial virus Parainfluenza virus Adenovirus Respiratory syncytial virus Coronaviruses Gastro-intestinal Influenza virus type A and B Human Bocavirus 1 Adenovirus Hepatitis virus type A, B, C, D, E Those that cause
    [Show full text]
  • A Case-Study Approach to Investigate Transmission, Co-Infection, And
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 5-20-2019 A Case-study Approach to Investigate Transmission, Co-infection, and Clinical Sequelae During Epidemics of Dengue and Ebola Virus Disease Jennifer Elizabeth Giovanni [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Clinical Epidemiology Commons, Epidemiology Commons, Immunology of Infectious Disease Commons, International Public Health Commons, and the Virology Commons Recommended Citation Giovanni, Jennifer Elizabeth, "A Case-study Approach to Investigate Transmission, Co-infection, and Clinical Sequelae During Epidemics of Dengue and Ebola Virus Disease" (2019). LSU Doctoral Dissertations. 4931. https://digitalcommons.lsu.edu/gradschool_dissertations/4931 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. A CASE-STUDY APPROACH TO INVESTIGATE TRANSMISSION, CO-INFECTION, AND CLINICAL SEQUELAE DURING EPIDEMICS OF DENGUE AND EBOLA VIRUS DISEASE A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Pathobiological Sciences by Jennifer Elizabeth Giovanni B.S., Missouri
    [Show full text]
  • Evolutionary Origins of Enteric Hepatitis Viruses
    Downloaded from http://perspectivesinmedicine.cshlp.org/ on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press Evolutionary Origins of Enteric Hepatitis Viruses Anna-Lena Sander,1,2 Victor Max Corman,1,2 Alexander N. Lukashev,3,4 and Jan Felix Drexler1,2 1Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin 10117, Germany 2German Center for Infection Research (DZIF), Germany 3Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, 119991 Moscow, Russia 4Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Preparations, 142782 Moscow, Russia Correspondence: [email protected] The enterically transmitted hepatitis A (HAV) and hepatitis E viruses (HEV) are the leading causes of acute viral hepatitis in humans. Despite the discovery of HAVand HEV 40–50 years ago, their evolutionary origins remain unclear. Recent discoveries of numerous nonprimate hepatoviruses and hepeviruses allow revisiting the evolutionary history of these viruses. In this review, we provide detailed phylogenomic analyses of primate and nonprimate hepato- viruses and hepeviruses. We identify conserved and divergent genomic properties and cor- roborate historical interspecies transmissions by phylogenetic comparisons and recombina- tion analyses. We discuss the likely non-recent origins of human HAV and HEV precursors carried by mammals other than primates, and detail current zoonotic HEV infections. The novel nonprimate hepatoviruses and hepeviruses offer exciting new possibilities for future research focusing on host range and the unique biological properties of HAV and HEV. epatitis Avirus (HAV) and hepatitis E virus tions in the world are acquired through contam- H(HEV) are the most common causes of inated water and food (Sattar et al.
    [Show full text]