Green Hydrogen in All Sectors Where It Will Accelerate a Carbon Free Energy Future

Total Page:16

File Type:pdf, Size:1020Kb

Green Hydrogen in All Sectors Where It Will Accelerate a Carbon Free Energy Future About the GHC www.ghcoalition.org Mission: Facilitate policies and practices to advance the production and use of Green Hydrogen in all sectors where it will accelerate a carbon free energy future Approach: Prioritize Green Hydrogen project deployment at scale; leverage multi- sector opportunities to simultaneously scale supply and demand *The GHC is a 501c3 Tax Exempt Non Profit Corporation What is green hydrogen? The industry is aligned. Green Hydrogen: hydrogen that is not produced from fossil fuel feedstocks Gasification & Brown Coal or lignite - 18 to 20 reformation Gasification - 10 to 12 Fossil Fuel Gray Natural gas (SMR) Feedstock Fuel to s Carbon Capture Hydrogen - 0.6 to Brown or Gray plus Sequestration 3.5 Blue CCS during gasification - 0 Gasification & Biogas or Biomass Carbon Renewabl reformation impact e Green Clean (kg CO2/kg Feedstock Electricity H ) Water Electrolysis 2 s to Hydrogen Source: GHC, 2020 – above conversion pathways commercially available pathways today – many more are under development 2 Green Hydrogen Definition Framework Focuses on the Production Pathway Each production pathway (outlined below) and application pathway has different carbon and emissions implications that should be evaluated at the program level Primary Primary Energy Primary Production Applications Feedstock Source Process Water (H2O) Electricity Electrolysis H Eligible organic Chemical Anaerobic H waste feedstocks Energy in Digestion + 1. Biomass Feedstock Reformation 2. Biogas Thermal Thermochemical Energy to conversion Power (gasification, Conversion pyrolysis) Secondary Emission Sources: Station Power Green hydrogen is commercially viable now and on trajectory for lowest cost Hydrogen production costs from solar and wind vs. fossil fuels [ [ [ Source: IRENA, 2019. Hydrogen: A Renewable Energy Perspective. International Renewable Energy Agency (IRENA). Report. 4 GHC Focus: Accelerating the green hydrogen economy Initiative 1: Intermountain Initiative 2: Western Green Initiative 3: Regional Power Project Hydrogen Initiative Demand Aggregation Demonstrate an at-scale Enable green hydrogen Achieve a comprehensive hydrogen project that demand aggregation and regulatory, policy and enables an affordable and ecosystem development for commercialization roadmap responsible transition industrial energy & chemical to advance projects at scale www.ghcoalition.org/green- buyers in strategically www.ghcoalition.org/wghi hydrogen-at-scale targeted locations 5 Green Hydrogen can repurpose existing infrastructure & jobs Source: DNV GL Source: LADWP Enabling an affordable & responsible transition Renewable Energy Storage Alternatives Intra-Day Shifting vs. Inter-Day and Seasonal Shifting Lithium Ion Suitable for “Intra-Day Shifting” H2 Storage clear solution for “Inter-Day” and longer duration 2030 LCOE ($/MWh) -42% 1,817 5,388 210 94 122 91 122 122 123 125 4 Hour Storage 8 Hour Storage 24 Hour Storage 10 day storage 30 day storage Source: E3 Consultants; MHPS Lithium Ion Green Hydrogen Battery roundtrip efficiency impacted as Gas turbine capacity factor: 40% duration need extends beyond 1-day Assumptions MHPS 2019 electrolyzer and H storage 2 LCOE includes solar cost cost with learning curve + CCGT *source: Mitsubishi Power With green H2, we can achieve 100% renewable energy affordably and reliably – at competitive costs with today’s wholesale pricing Group Variable Units Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Assumptions Hydrogen % % 100% 100% 100% 100% 100% 100% Capacity Factor1 % 65% 65% 65% 65% 65% 65% Heat Rate2 BTU/kWh 6400 6400 6400 6400 6400 6400 3 CC Units $/MWh $26 $26 $26 $26 $26 $26 a Dispatchable GH2 Greenhouse Gas (GHG) GHG Cost $/metric tons $50 $100 $50 $100 $50 $100 4 costs competitive Calculation GHG Savings $/MWh ($17) ($34) ($17) ($34) ($17) ($34) b 5 with peak spot Hydrogen Calculation Hydrogen Commodity Cost $/kg $1.00 $1.00 $1.50 $1.50 $2.00 $2.00 Hydrogen Levelized Cost6 $/MWh $58 $58 $87 $87 $116 $116 c prices Renewable Energy7 Blended Renewable Energy $/MWh $7 $7 $7 $7 $7 $7 d Blended 100% 25% x (a+b+c) renewable with BLENDED COST ($/MWh) +75% x (d) $22 $18 $29 $25 $36 $32 dispatched GH2 competitive with today’s average wholesale prices CONTACT: Janice Lin Founder and President [email protected] +1 (415) 595-8301 9 Appendix 10 Air Products Plans $5 Billion Green Fuel Plant in Saudi Arabia Air Products signed an accord with Saudi-based ACWA Power Is the hydrogen economy International and the kingdom’s planned futuristic city of Neom to develop a $5 billion hydrogen-based ammonia plant powered by finally here? renewable energy Vestas backs Toyota is pushing ahead with Coalition Aims for 25GW of world's first hydrogen-powered cars Green Hydrogen by 2026 commercial green Doubling down on its bet that ammonia plant fuel cells will help secure Seven firms join forces for GM and Honda partner to Toyota's future as the industry fiftyfold scale-up of global mass produce hydrogen fuel comes under enormous hydrogen production capacity. cells in Michigan Enel teams up on pressure to slash carbon emissions US green 2000 2020 hydrogen project New hydrogen buses hit the road Hydrogen cars join EV Initiative Seeks to Three buses powered by H2 are European nations plan Lancaster, CA Hydrogen and to be introduced on routes in models in showrooms Fuel Use of Green to use more hydrogen Becomes the First fuel cells will central London as part of a two- Hydrogen in West Hydrogen year trial for energy needs future-proof The push to develop Fuel Cells Power Up: Three Energy officials from 25 City in the US shipping green hydrogen got a Surprising Places Where countries pledged Tuesday Future Proof boost with the to increase research into Shipping is taking Hydrogen Energy Is Working announcement of a hydrogen technology and a pioneering step Hydrogen may not be fueling new program to hasten Utility of the Year accelerate its everyday by retrofitting a many cars, but it is delivering its development for NextEra Energy is use to power factories, vessel to run on clean power for warehouses, use in the Western investing in green drive cars and heat hydrogen fuel cell data centers, and Telcom towers. Interconnection hydrogen, solar energy homes. and grid resilience, propulsion 11 require multi require will penetration renewable High intermittent and variable Net Demand (GWh) -100 -200 -300 -400 500 400 300 200 100 0 1-Jan 10-Jan 19-Jan California 100%California renewable scenario 28-Jan deficit Winter 6-Feb - 15-Feb day and seasonalenergy storage 24-Feb Spring/summer 4-Mar surplus 13-Mar 22-Mar 31-Mar 9-Apr 18-Apr 27-Apr 6-May 15-May 24-May events/energy deficits Multi 2-Jun Seasonal energy 11-Jun - deficits 20-Jun weatherday 29-Jun 8-Jul 17-Jul 26-Jul 4-Aug ( 13-Aug demand)energy net Daily 22-Aug 31-Aug 9-Sep 18-Sep 27-Sep 6-Oct Autumn/winter 15-Oct 24-Oct 2-Nov Source: Strategen Consulting, 2019 Consulting, Strategen Source: 11-Nov deficit 20-Nov 29-Nov 8-Dec 17-Dec 26-Dec Excess demand Excess generation 12 Green hydrogen is the only commercially viable seasonal storage solution available today Long Duration Energy Storage Solutions Source: Green Hydrogen Coalition, 2020 13 Global hydrogen production accounts for 832 Mt CO2/year…more than the emissions of Germany 2017 CO2 emissions by country and sector (Mt CO2/year) Source: Wood Mackenzie, 2019. “CO₂ and other Greenhouse Gas Emissions 14 5% Green Hydrogen Blend in CA Natural Gas Pipeline is equivalent to removing 365,000 cars from the road each year! 2*109 MMBtu Annual natural gas use in CA 106 MMT CO2 emissions from annual CA natural gas combustion 1.77 MMT CO2 emission reduction from 5% ≈ by volume hydrogen blend 4.6 MT Average annual emissions of one car 384,826 cars Equivalent annual emissions Green electrolytic hydrogen is an excellent storage medium… and unlike batteries can address multi day and seasonal needs Energy Source Energy Storage & Conversion Energy Output Green Electrolytic Hydrogen Storage Electricity Electricity Electrolyzer H2 Storage Gas Turbine or (container, Fuel Cell pipeline, cavern) Battery Energy Storage Rectifier Battery Inverter Roadmaps and plans for green hydrogen are developing worldwideSource: 2020, Presentation: DOE Hydrogen and Fuel Cell Technologies Office and Global Perspectives, Dr. Sunita Satyapal, Director, Hydrogen and Fuel Cell technologies Office 17 Regulatory reform of existing gas and electric infrastructure is key to accelerating the green hydrogen economy Department of Energy Hydrogen Program Plan, 2020 18 Green hydrogen can achieve multi-sectoral global decarbonization Intersectoral Decarbonization Applications Source: CSIRO, 2018. National Hydrogen Roadmap 19 19 California Greenprint for Action California can lead the green hydrogen economy globally • Establish technology agnostic legal and regulatory framework 2030 • Integrate greenH2 into current gas and electric planning • Establish targets, compensation mechanisms incl. new tariffs • Think big – don’t miss out on economic development and CA export potential Establish Broad, Capitalize on Cost- Technology CAISO: local Competitive Green Agnostic area long Early At-Scale Hydrogen Definition duration Deployments: Opportunities – need, Augment CARB/CEC: Road- Convert Gas lower cost H2 fuel products for mapping, Generators to supply, target hard reliability Intersectoral 100% GH2, to abate applications CPUC: IRPs, Strategic Vision, Increase Pipeline in industry and RA, Injection Update RPS Injection and agriculture. Ready 2021 Target, New Guidebook Blending Targets CA ports for export
Recommended publications
  • A Hydrogen Roadmap for Germany
    A Hydrogen Roadmap for Germany C. Hebling, M. Ragwitz, T. Fleiter, U. Groos, D. Härle, A. Held, M. Jahn, N. Müller, T. Pfeifer, P. Plötz, O. Ranzmeyer, A. Schaadt, F. Sensfuß, T. Smolinka, M. Wietschel Fraunhofer Institute for Systems and Innovation Research ISI, Karlsruhe Fraunhofer Institute for Solar Energy Systems ISE, Freiburg under participation of Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Dresden Karlsruhe and Freiburg October 2019 Contact: Prof. Dr. Christopher Hebling, Fraunhofer ISE, [email protected] Prof. Dr. Mario Ragwitz, Fraunhofer ISI, [email protected] A hydrogen roadmap for Germany EXECUTIVE SUMMARY 1.1 MOTIVATION To meet the worldwide challenge of limiting global warming to less than 2 degrees Celsius, the proportion of fossil fuels in the global energy mix must be reduced to a minimum. Fossil energy sources must therefore be replaced by the implementation of a sustainable circular energy economy, which will be heavily based on hydrogen. Large quantities of hydrocarbons will still be used in some sectors, but these will be produced using renewable energy sources and greenhouse- gas-neutral hydrogen and carbon. Thus, energy systems cannot be decarbonized, but must instead be tailored to meet the goal of greenhouse-gas emissions neutrality. In Germany, this process began in the year 2000 with the enactment of the Renewable Energy Sources Act and continued with the adoption of the German federal government’s energy concept in 2010. This increased the proportion of renewable energy sources in the energy mix to around 38 percent (2018).
    [Show full text]
  • Innovation Insights Brief 2019
    Innovation Insights Brief 2019 NEW HYDROGEN ECONOMY - HOPE OR HYPE? ABOUT THE WORLD ENERGY COUNCIL ABOUT THIS INNOVATION INSIGHTS BRIEF The World Energy Council is the principal impartial This Innovation Insights brief on hydrogen is part of network of energy leaders and practitioners promoting a series of publications by the World Energy Council an affordable, stable and environmentally sensitive focused on Innovation. In a fast-paced era of disruptive energy system for the greatest benefit of all. changes, this brief aims at facilitating strategic sharing of knowledge between the Council’s members and the Formed in 1923, the Council is the UN-accredited global other energy stakeholders and policy shapers. energy body, representing the entire energy spectrum, with over 3,000 member organisations in over 90 countries, drawn from governments, private and state corporations, academia, NGOs and energy stakeholders. We inform global, regional and national energy strategies by hosting high-level events including the World Energy Congress and publishing authoritative studies, and work through our extensive member network to facilitate the world’s energy policy dialogue. Further details at www.worldenergy.org and @WECouncil Published by the World Energy Council 2019 Copyright © 2019 World Energy Council. All rights reserved. All or part of this publication may be used or reproduced as long as the following citation is included on each copy or transmission: ‘Used by permission of the World Energy Council’ World Energy Council Registered in England
    [Show full text]
  • The French Green Hydrogen Plan 2020-2030
    THE FRENCH GREEN HYDROGEN PLAN 2020-2030 FRANCE IS SHAPING UP TO BECOME ONE OF THE MOST COMPETITIVE, INNOVATIVE AND LOW-CARBON ECONOMIES IN THE WORLD FRANCE, A PIONEER IN THE FIELD OF CARBON-FREE HYDROGEN ENERGY TRANSITION FOR GREEN GROWTH ACT (2015) UP TO 40% OF ELECTRICITY PRODUCTION FROM RENEWABLE ENERGY IN 2030 30% REDUCTION IN FOSSIL FUEL COMSUMPTION 10% DECARBONIZATION OF GAS GOVERNMENT SUPPORT BETWEEN 2010 AND 2018 €100 MILLION TO IMPLEMENT DEMONSTRATORS AND INVEST IN HIGH POTENTIAL COMPANIES (NATIONAL INVESTMENT PROGRAM) €110 MILLION FOR R&D FROM THE NATIONAL RESEARCH AGENCY (ANR) FINANCIAL SUPPORT FROM BPIFRANCE FOR STARTUPS AND SMES €80 MILLION TO SUPPORT H2 MOBILITY FROM ADEME AND €12 MILLION FOR INDUSTRIAL PROJECTS (NATIONAL INVESTMENT PROGRAM) FINANCIAL SUPPORT FROM THE BANQUE DES TERRITOIRES (CDC GROUP) FOR THE DEVELOPMENT OF REGIONAL PROJECTS A VERY SUCCESSFUL FIRST NATIONWIDE CALL FOR EXPRESSIONS OF INTEREST (2020) 160 PROJECTS SUBMITTED BY BUSINESSES, LOCAL AUTHORITIES AND R&D CENTERS REPRESENTING A TOTAL INVESTMENT OF €32.5 BILLION FRANCE, THE 2ND MOST INNOVATIVE EUROPEAN COUNTRY FOR LOW-CARBON ENERGY WITH 17,487 PATENTS FILED BETWEEN 2000 AND 2019, AFTER GERMANY (52,684) BUT AHEAD OF THE UNITED KINGDOM (11,289) 2 STRONG GLOBAL GROWTH PROSPECTS FOR CARBON-FREE H2 2% 6% REFINERIES 30% 10% AMMONIA BASE CHEMICALS METALLURGY OTHERS 52% Worldwide H2 demand (2018) 400 MILLION CARS, 15 MILLION BUSES, ACCORDING TO THE HYDROGEN COUNCIL, 5 MILLION TRUCKS, CARBON-FREE HYDROGEN COULD MEET 20% OF TRAINS 20% OF OVERALL ENERGY DEMAND
    [Show full text]
  • Does a Hydrogen Economy Make Sense?
    INVITED PAPER Does a Hydrogen Economy Make Sense? Electricity obtained from hydrogen fuel cells appears to be four times as expensive as electricity drawn from the electrical transmission grid. By Ulf Bossel ABSTRACT | The establishment of a sustainable energy future options and identify needs for further improvements. is one of the most pressing tasks of mankind. With the They are concerned with the cost of hydrogen obtained exhaustion of fossil resources the energy economy will change from various sources, but fail to address the key question of from a chemical to an electrical base. This transition is one of the overall energy balance of a hydrogen economy. Energy physics, not one of politics. It must be based on proven is needed to synthesize hydrogen and to deliver it to the technology and existing engineering experience. The transition user, and energy is lost when the gas is converted back to process will take many years and should start soon. Unfortu- electricity by fuel cells. How much energy is needed to nately, politics seems to listen to the advice of visionaries and liberate hydrogen from water by electrolysis or high- lobby groups. Many of their qualitative arguments are not temperature thermodynamics or by chemistry? Where based on facts and physics. A secure sustainable energy future doestheenergycomefromandinwhichformisit cannot be based on hype and activism, but has to be built on harvested? Do we have enough clean water for electrolysis solid grounds of established science and engineering. In this and steam reforming? How and where do we safely deposit paper the energy needs of a hydrogen economy are quantified.
    [Show full text]
  • Green Hydrogen Opportunities in the Energy System
    GREEN HYDROGEN OPPORTUNITIES IN THE ENERGY SYSTEM Luc Graré VICE PRESIDENT SALES AND MARKETING [email protected] Early Pioneers in Each Technology Field 2 Hydrogen is key to electrify the transport sector Hydrogen as preferred future fuel alternative: ERRY − True zero emission from production to use TRAIN − Can beat fossil fuel applications on a TCO- FAST F basis PASSENGER CAR PASSENGER − Low weight (compared to e.g. batteries), especially relevant in the heavy duty segment − Fast recharging (fueling) time − Long driving range BUS − Low/no need for electric grid upgrades TRUCK DELIVERY DELIVERY CRUISE SHIP CRUISE − Not dependent on rare earth metals (e.g. cobalt, lithium) − Global standards for fueling established − Same quality fuel used for small to large applications − Cleans the surrounding air TRUCK FORKLIFT CAR FERRY 3 Fossil parity for mobility sector achievable in Norway today Centralized production close to power or heat source enables business case • Regional hydrogen production, use of low cost renewable energy • Possible to integrate with central heating grid • Parity with taxed diesel possible already from 4-8 ton per day 0.40 NOK/kWh 25 NOK/kg + 13 NOK/kg + 11 NOK/kg = 50 NOK/kg Large scale Central production High pressure Efficient dispensing distribution As conventional 20 MW / 8 tons per day 1,000 – 1,500 kg fuels /truck 4 Cost of wind and solar has dropped by 69% and 88% during the last decade – renewable hydrogen following on the same path Wind and solar is on a trajectory to become the cheapest form of electricity
    [Show full text]
  • Energy and the Hydrogen Economy
    Energy and the Hydrogen Economy Ulf Bossel Fuel Cell Consultant Morgenacherstrasse 2F CH-5452 Oberrohrdorf / Switzerland +41-56-496-7292 and Baldur Eliasson ABB Switzerland Ltd. Corporate Research CH-5405 Baden-Dättwil / Switzerland Abstract Between production and use any commercial product is subject to the following processes: packaging, transportation, storage and transfer. The same is true for hydrogen in a “Hydrogen Economy”. Hydrogen has to be packaged by compression or liquefaction, it has to be transported by surface vehicles or pipelines, it has to be stored and transferred. Generated by electrolysis or chemistry, the fuel gas has to go through theses market procedures before it can be used by the customer, even if it is produced locally at filling stations. As there are no environmental or energetic advantages in producing hydrogen from natural gas or other hydrocarbons, we do not consider this option, although hydrogen can be chemically synthesized at relative low cost. In the past, hydrogen production and hydrogen use have been addressed by many, assuming that hydrogen gas is just another gaseous energy carrier and that it can be handled much like natural gas in today’s energy economy. With this study we present an analysis of the energy required to operate a pure hydrogen economy. High-grade electricity from renewable or nuclear sources is needed not only to generate hydrogen, but also for all other essential steps of a hydrogen economy. But because of the molecular structure of hydrogen, a hydrogen infrastructure is much more energy-intensive than a natural gas economy. In this study, the energy consumed by each stage is related to the energy content (higher heating value HHV) of the delivered hydrogen itself.
    [Show full text]
  • Making Markets for Hydrogen Vehicles: Lessons from LPG
    Making Markets for Hydrogen Vehicles: Lessons from LPG Helen Hu and Richard Green Department of Economics and Institute for Energy Research and Policy University of Birmingham Birmingham B15 2TT United Kingdom Hu: [email protected] Green: [email protected] +44 121 415 8216 (corresponding author) Abstract The adoption of liquefied petroleum gas vehicles is strongly linked to the break-even distance at which they have the same costs as conventional cars, with very limited market penetration at break-even distances above 40,000 km. Hydrogen vehicles are predicted to have costs by 2030 that should give them a break-even distance of less than this critical level. It will be necessary to ensure that there are sufficient refuelling stations for hydrogen to be a convenient choice for drivers. While additional LPG stations have led to increases in vehicle numbers, and increases in vehicles have been followed by greater numbers of refuelling stations, these effects are too small to give self-sustaining growth. Supportive policies for both vehicles and refuelling stations will be required. 1. Introduction While hydrogen offers many advantages as an energy vector within a low-carbon energy system [1, 2, 3], developing markets for hydrogen vehicles is likely to be a challenge. Put bluntly, there is no point in buying a vehicle powered by hydrogen, unless there are sufficient convenient places to re-fuel it. Nor is there any point in providing a hydrogen refuelling station unless there are vehicles that will use the facility. What is the most effective way to get round this “chicken and egg” problem? Data from trials of hydrogen vehicles can provide information on driver behaviour and charging patterns, but extrapolating this to the development of a mass market may be difficult.
    [Show full text]
  • Priority Areas for a National Hydrogen Strategy for Turkey
    Priority Areas for a National Hydrogen Strategy for Turkey About SHURA Energy Transition Center SHURA Energy Transition Center, founded by the European Climate Foundation (ECF), Agora Energiewende and Istanbul Policy Center (IPC) at Sabancı University, contributes to decarbonisation of the energy sector via an innovative energy transition platform. It caters to the need for a sustainable and broadly recognized platform for discussions on technological, economic, and policy aspects of Turkey’s energy sector. SHURA supports the debate on the transition to a low-carbon energy system through energy efficiency and renewable energy by using fact-based analysis and the best available data. Taking into account all relevant perspectives by a multitude of stakeholders, it contributes to an enhanced understanding of the economic potential, technical feasibility, and the relevant policy tools for this transition. Authors Değer Saygın (SHURA Enerji Dönüşümü Merkezi), Emre Gencer (MIT Energy Initiative) and Barış Sanlı (Bilkent Energy Policy Research Center) Acknowledgements We appreciate the valuable review and feedback received from Arkın Akbay (TURCAS), Emanuele Taibi (International Renewable Energy Agency) and Matthias Deutsch (Agora Energiewnede). Draft findings of this report has been presented to the sector stakeholders at the Hydrogen Quest Conference on 15 January 2020, IRENEC 2020 on 5 June 2020 and the National Hydrogen Workshop on 25 August 2020. SHURA Energy Transition Center is grateful to the generous funding provided by the ECF. This report is available for download from www.shura.org.tr. For further information or to provide feedback, please contact the SHURA team at [email protected] Design Tasarımhane Tanıtım Ltd. Şti.
    [Show full text]
  • Green Hydrogen the Next Transformational Driver of the Utilities Industry
    EQUITY RESEARCH | September 22, 2020 | 9:41PM BST The following is a redacted version of the original report. See inside for details. Green Hydrogen The next transformational driver of the Utilities industry In our Carbonomics report we analysed the major role of clean hydrogen in the transition towards Net Zero. Here we focus on Green hydrogen (“e-Hydrogen”), which is produced when renewable energy powers the electrolysis of water. Green hydrogen looks poised to become a once-in-a-generation opportunity: we estimate it could give rise to a €10 trn addressable market globally by 2050 for the Utilities industry alone. e-Hydrogen could become pivotal to the Utilities (and Energy) industry, with the potential by 2050 to: (i) turn into the largest electricity customer, and double power demand in Europe; (ii) double our already top-of-the-street 2050 renewables capex EU Green Deal Bull Case estimates (tripling annual wind/solar additions); (iii) imply a profound reconfiguration of the gas grid; (iv) solve the issue of seasonal power storage; and (v) provide a second life to conventional thermal power producers thanks to the conversion of gas plants into hydrogen turbines. Alberto Gandolfi Ajay Patel Michele Della Vigna, CFA Mafalda Pombeiro Mathieu Pidoux +44 20 7552-2539 +44 20 7552-1168 +44 20 7552-9383 +44 20 7552-9425 +44 20 7051-4752 alberto.gandolfi@gs.com [email protected] [email protected] [email protected] [email protected] Goldman Sachs International Goldman Sachs International Goldman Sachs International Goldman Sachs International Goldman Sachs International Goldman Sachs does and seeks to do business with companies covered in its research reports.
    [Show full text]
  • Creating a Hydrogen Economy: Challenges & Opportunities
    Creating a Hydrogen Economy: Challenges & Opportunities Dr Maria Curry-Nkansah - Hydrogen Business Development Manager USAEE/IAEE Conference Washington DC, July 9, 2004 Overview Context The Hydrogen Economy BP Hydrogen Experience H2 Challenges Role of BP Role of Government Summary Lower carbon growth Reduce Flaring Energy Efficiency CO Capture & Venting 2 Energy & Emission Efficiency Gas replacing Coal Hybrids Fuel Cell Vehicles Decarbonisation of Fuels Hydrogen Economy Wind PV Solar Geothermal Renewables Past Present Future What is the hydrogen economy? Internal combustion engines are only about 15-20% efficient Fuel cells offer an efficient means of energy conversion (50- 70% efficiency) Fuel cells require hydrogen (and oxygen) Hydrogen is an energy carrier The ‘hydrogen economy’ can be defined as a scenario in which hydrogen is used as one of the world’s major energy carriers Will there be a hydrogen economy? Despite increased momentum the timing to a Hydrogen Economy is uncertain… es pushing toward Forc Hydrogen powered fuel cells promise to pr vehicles and stationary power generation. The “Hydrogen Economy” is an end state bas energy such as solar or wind. It is not ye Cost/technical hurdles to overcome to al A long transition based on hydro Local Air Quality Technological Innovation Energy Security and Supply Global Environmental Concerns Government and Industry general investment in “Hydrogen Economy” gen from hydrocarbons is likely $1.5bn/yr low mass adoption of fuel cell technology t economic to produce ovide clean and efficient energy for future ed on hydrogen produced from renewable Fuel Cell Viability / Cost Fuel Cell Vehicle reliability and durability hydrogen in this way.
    [Show full text]
  • Analysis of Hydrogen Production Potential Based on Resources Situation in China
    E3S Web of Conferences 118, 03021 (2019) https://doi.org/10.1051/e3sconf/201911803021 ICAEER 2019 Analysis of Hydrogen Production Potential Based on Resources Situation in China Yanmei Yang*, Geng Wang, Ling Lin, and Sinan Zhang China National Institute of Standardization, Beijing, China Abstract. Hydrogen energy is becoming more and more blooming because of its diversified sources, eco- friendly and green, easy storage and transportation, high-efficient utilization, etc. The use of hydrogen as an energy carrier is expected to grow over the next decades. Hydrogen, like electricity, is a secondary energy. Hydrogen production is the foundation for all kinds of applications. Based on the resources situation in China, potential of hydrogen production is analysed. China has a large potential of hydrogen production from coal, which is about 2.438 billion tons. Potential of hydrogen production from natural gas is less than that from coal, which is about 501 million tons. According to the average consumption of methanol per year, potential of hydrogen production from methanol is about 690,000 tons per year. Potential of hydrogen production from industrial gas (coking, petrochemical and chlor-alkali industries) is about 866,400 tons per year. Potential of hydrogen production from abandoned renewable energy power is about 1798.2 million tons per year. Distribution of resources in China differs among provinces. The deployment of hydrogen industry should pay attention to local hydrogen production potential. A green hydrogen production method, such as water electrolysis by renewable energy power, is a promising and environmental friendly way. 1 Introduction There are many process for hydrogen production, including conventional and alternative energy resources.
    [Show full text]
  • THE HYDROGEN ECONOMY. a Non-Technical Review
    Hydrogen holds out the promise of a truly sustainable global energy future. As a clean energy carrier that can be produced from any primary energy source, hydrogen used in highly efficient fuel cells could prove to be the answer to our growing concerns about energy security, urban pollution and climate change. This prize surely warrants For more information, contact: THE HYDROGEN ECONOMY the attention and resources currently being UNEP DTIE directed at hydrogen – even if the Energy Branch prospects for widespread 39-43 Quai André Citroën commercialisation of hydrogen in the A non-technical review 75739 Paris Cedex 15, France foreseeable future are uncertain. Tel. : +33 1 44 37 14 50 Fax.: +33 1 44 37 14 74 E-mail: [email protected] www.unep.fr/energy/ ROGRAMME P NVIRONMENT E ATIONS N NITED DTI-0762-PA U Copyright © United Nations Environment Programme, 2006 This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgement of the source is made. UNEP would appreciate receiving a copy of any publication that uses this publication as a source. No use of this publication may be made for resale or for any other commercial purpose whatsoever without prior permission in writing from the United Nations Environment Programme. Disclaimer The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the United Nations Environment Programme concerning the legal status of any country, territory, city or area or of its authorities, or concerning delimitation of its frontiers or boundaries.
    [Show full text]