Moby: a Mobile Benchmark Suite for Architectural Simulators

Total Page:16

File Type:pdf, Size:1020Kb

Moby: a Mobile Benchmark Suite for Architectural Simulators Moby: A Mobile Benchmark Suite for Architectural Simulators Yongbing Huang∗y, Zhongbin Zha∗y, Mingyu Chen∗, Lixin Zhang∗ ∗State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China yUniversity of Chinese Academy of Sciences, Beijing, China Email:fhuangyongbing, zhazhongbin, cmy, [email protected] Abstract—Mobile devices such as smartphones and tablets Snapdragon [6] are more prevalent than processors like Intel’s have become the primary consumer computing devices, and Atom [7]. Generally, as the performance of these mobile their rate of adoption continues to grow. The applications that processors improves, their microarchitectures become more run on these mobile platforms vary in how they use hardware complicated. For example, mobile processors with four-cores, resources, and their diversity is increasing. Performance and an out-of-order execution model, and two-level caches have be- power limitations also vary widely across mobile platforms. Thus come the mainstream. Mobile system designers must consider there is a growing need for tools to help computer architects design systems to meet the needs of mobile workloads. Full-system how application and OS diversity affect their design choices simulators are invaluable tools for designing new architectures, in this increasingly complex design space. but we still need appropriate benchmark suites that capture the Benchmarking and architectural simulation are two im- behaviors of emerging mobile applications. Current benchmark portant tools for processor design and computer architecture suites cover only a small range of mobile applications, and many cannot run directly in simulators due to their user interaction research. To be relevant, a benchmark suite for architectural requirements. research must satisfy at least two properties. First, work- loads in the benchmark suite should be diverse enough to In this paper, we introduce and characterize Moby, a bench- exhibit the range of behaviors of the target applications. mark suite designed to make it easier to use full-system architec- Second, all the applications should be portable to architec- tural simulators to evaluate microarchitectures for mobile pro- tural simulators. However, most of current mobile benchmark cessors. Moby contains popular Android applications, including a web browser, a social networking application, an email client, a suites represent only a small subset of mobile application- music player, a video player, a document processing application, s [8], [9], [10], [11], [12], [13], and some cannot be run directly and a map program. To facilitate microarchitectural exploration, in simulators due to user-interaction requirements (e.g., the we port the Moby benchmark suite to the popular gem5 simulator. interactive games and audio player of Gutierrez et al. [14]. We characterize the architecture-independent features of Moby Meanwhile, existing benchmarks such as SPEC CPU2006 applications on the simulator and analyze the architecture- exhibit significantly different behaviors from interactive mobile dependent features on a current-generation mobile platform. Our applications [13], [14]. results show that mobile applications exhibit complex instruction execution behaviors and poor code locality, but current mobile In this paper, we develop Moby, a benchmark suite de- platforms especially instruction-related components cannot meet signed to evaluate microarchitectures of mobile platforms in their requirements. full-system architectural simulators. Generally, there are two design issues that drive our benchmark suite. First, mobile I. INTRODUCTION applications on different operating systems are incompatible. Since Android is the commonly used operating system for Mobile devices, especially smartphones and tablets, have mobile devices, Moby contains only mobile applications that become an important world-wide market. From the application run on the Android OS. Second, most popular mobile ap- point of view, a wide variety of mobile applications are now plications are commercial, and thus their source codes are widely used; these include web browsers, social networks, e- not generally available. We choose only applications that can mail clients, audio and video players, document processing be freely downloaded, in order to avoid licensing issues. In systems, and map programs, to name a few. Different types of total, Moby contains 10 mobile applications spanning nine applications present different requirements for the hardware categories, including a web browser, a social networking components of mobile platforms. From the mobile operating application, email, audio, video, document, map and game. system point of view, Android [1] and iOS [2] have the highest Except the web browser application BBench [14], all the other market occupancy and growth speed. Android adoption has applications are selected from Google Play Store [15]. ramped up quickly, gaining in popularity six times faster than iOS. Android and iOS use different programming languages Since our benchmark suite is intended to drive architec- and execution models, and they differ in their utilization of tural simulators, all applications should be executable without hardware resources. Therefore, the requirements placed on manual user inputs. Although AutoGUI [13] provides a user hardware resources for different mobile applications vary. interface automation tool to record and deterministically replay user actions, we use an alternative method to bypass user As for mobile platforms, ARM [3] based mobile proces- interaction by executing only typical representative operations sors such as Apple’s Ax [4], TI’s OMAP [5], Qualcomm’s for these mobile applications. While Moby can be executed on many simulators that support Android OS, we take the Benchmark suites intended to support architectural design commonly used gem5 simulator [16] as an example to test space exploration and system research should make it pos- and characterize Moby. The gem5 disk image for Moby has sible to instrument, manipulate, and model the constituent already become public [17]. applications in detail. However, most popular mobile appli- cations are commercial, which complicates instrumentation We measure microarchitecture-independent features on the because their source codes are unavailable. Although most gem5 simulator with the ARM ISA and microarchitecture- Moby applications lack source codes, all can be downloaded dependent features on the ARM-based Pandaboard develop- for free. Note that most mobile applications involve user ment board [18]. The microarchitecture-independent features interaction and require a network connection, both of which are include instruction mix, working set size, data and instruc- difficult to implement or model in architectural simulators. The tion locality, and binary execution behaviors. The instruction dependence on networks can easily be removed by buffering features show that the representative operations for all applica- any required remote data in local storage. tions execute several billion instructions and that nearly 70% of branches are conditional. Furthermore, most applications 2) User Interaction: A major difficulty in analyzing inter- spawn about 20 processes and invoke more than 20 libraries. active mobile applications is generating reproducible results On the Pandaboard, measured microarchitecture-dependent without manual user inputs. Moreover, the slow execution features mainly include CPI and the behaviors of the branch speed of full-system simulators makes it impractical to incor- predictor, cache, TLB, and memory components. Experimental porate user-action inputs in experiments. There are two main results demonstrate that all applications present high CPIs, solutions to cope with user interaction in simulators. Tools like which implies that these mobile applications and current ARM- AutoGUI [13] and Xnee [19] provide automation capabilities based mobile platforms are not well matched. In particular, to record and replay user inputs. Using similar tools, we are the instruction-related resources (branch predictor, instruction working to identify representative code pieces that suffer from cache, and TLB) suffer from serious miss rates. large response latencies. However, most current automation tools still suffer from shortcomings like nondeterministic re- In summary, we make three contributions: play. • We present Moby, a new mobile benchmark suite that The other simple solution is to avoid user interaction contains a diverse set of applications and is appropriate in simulators. We find that most main activities of mobile for simulation-based design space exploration. applications can be executed as separate processes, and user • We extract typical representative operations of interactive interactions mainly used specify inputs for these activities. By applications in Moby and automatically execute them on executing these activities by specifying their inputs manually full-system architectural simulators. in command lines, user interactions are no longer required. • We describe both microarchitecture-independent and Compared to using automation tools, this method is both microarchitecture-dependent characteristics of all Moby simple and efficient, and thus we adopt this approach for Moby. applications. The main activities illustrated above are considered to be The rest of this paper is organized as follows. Section representative operations of mobile applications, and they
Recommended publications
  • CMSC 411: Computer Architecture
    CMSC 411: Computer Architecture Spring 2019 Jason Tang "1 About Your Friendly Instructor • Jason Tang (just call me Jason!)! • UMBC adjunct faculty member since 2012! • Taught CMSC 104, 202, 421, and 411! • Work full-time at a nearby mega-corporation as a software engineer "2 Contact Information • Email me at [email protected]! • O$ce in ITE 201C! • Tuesday / Thursday, 7:00 pm - 8:00 pm, right after class! • Teaching Assistant:! • TBA! • "3 Am I in the Right Class? • Prerequisites are:! • CMSC 313, or! • CMPE 212 + CMPE 310! • Must be able to read hexadecimal notation! • Should already by familiar with C/C++ and some assembly code! • This does not mean Java, Python, or other scripting language "4 Required Programming Knowledge • Know how (or research on Stack Overflow) to do these things:! • Read the very fantastic man pages! • Call a function and pass values in and out! • Di%erence between an in parameter, out parameter, and in/out parameter! • Know what a C++ reference technically is! • Understand basic boolean logic "5 Topics Covered • Instruction Sets! • Performance Measurements! • Machine Arithmetic! • Processor Design! • Memory Systems! • I/O Design! • Computer Buses "6 Course Information • http://www.csee.umbc.edu/~jtang/cs411.s19! • Grades will be posted on Blackboard! • Discussion forums are also on Blackboard! • All assignments submitted via submit system at linux.gl.umbc.edu! • Ensure you have a way to transfer files between your development machine and UMBC server (scp, PuTTy, Cyberduck, or equivalent)! • Using the clipboard to
    [Show full text]
  • Geekbench 3 License Keygen 26
    1 / 5 Geekbench 3 License Keygen 26 Geekbench 3 License Keygen 26 > http://fancli.com/19xvdd 1a8c34a149 Geekbench 3 is Primate Labs' cross-platform processor benchmark, .... Call of duty 4 Serial key Included For Pc Only free · [P3D] - Beech B200 ... full hd Don 2 movies free download 720p torrent ... geekbench 3 license keygen 26. 5960x cpu cache voltage, Intel Core i7-5960X - Benchmark, Geekbench 5, Cinebench R20, ... The Intel XScale processor supports a range of frequencies and voltages in order to allow the user to save power [3]. Instead ... Serial number to imei converter free ... Vcenter 7 keygen ... Jobsmart 26 gallon air compressor specs.. Geekbench 3 License Keygen 26 DOWNLOAD: http://cinurl.com/1ff2qd geekbench keygen, geekbench 4 keygen, geekbench 3 keygen 608fcfdb5b 3 Crack 61 .... ... work with our system. 3. Ready for kiosk ... II gaming platform. Novomatic(Gaminator) offline casino system ... geekbench 3 license keygen 26. Coverage setting aviation 4 audio hijack pro keygen. ... Download Crack Archicad 19 4006 Ita: Audio hijack pro 2.10.5 keygen ... Geekbench 3.. I told them that I wasn't expecting that and have adobe cs5 keygen mac 2020 reason to do so given that CS3 is serving me. ... To or adobe mindjet 26 adobe. ... These Geekbench 3 benchmarks are in bit mode and are for a single processor .... Crack Data Glitch 2 0 1. 3 Juin 2020 0. data glitch, data ... Rowbyte Data Glitch 2.0; Data Glitch 2 Serial Serial Numbers. Con . ... geekbench 3 license keygen 26 Increase benchmark scores (Antutu, Geekbench, Quadrant) Use App ... PlayerPro Music Player v4.2 APK Is Here [LATEST] Driver Magician 5.0 Keygen Is Here! ..
    [Show full text]
  • Geekbench 5 Compute Workloads
    Geekbench 5 Compute Workloads Introduction 3 Platform Support 4 API Support 4 Runtime 5 Scores 6 Comparing Scores 6 Compute Workloads 7 Sobel 7 Canny 7 Stereo Matching 7 Histogram Equalization 7 Gaussian Blur 8 Depth of Field 8 Face Detection 8 Horizon Detection 8 Feature Matching 9 Particle Physics 9 SFFT 9 September 2019 "2 Introduction This document outlines the workloads included in the Geekbench 5 Compute Benchmark suite. Compute Benchmark scores are used to evaluate and optimize GPU Compute performance using workloads that include image processing, computational photography, computer vision, and machine learning. Performance in these workloads is important for a wide variety of applications including cameras, image editors, and real-time renderers. September 2019 "3 Platform Support Platform Minimum Version Comment Android Android 7 “Nougat” iOS iOS 12 Linux Ubuntu 16.04 LTS macOS macOS 10.13 Windows Windows 10 API Support Geekbench 5 supports the following GPU Compute APIs: API Version Comment CUDA CUDA 9.0 Compute Capability 3.0 or later. Metal Metal 2.0 Metal 2.1 if available. OpenCL OpenCL 1.1 Vulkan Vulkan 1.0 September 2019 "4 Runtime Geekbench 5 runs Compute workloads in the order listed here as the Compute Benchmark. Each workload is run for 20 iterations by default. September 2019 "5 Scores Geekbench 5 provides one overall score for the Compute Benchmark. The overall score is the geometric mean of the scores of the individual Compute workloads. Comparing Scores Each Compute workload has an implementation for each supported Compute API. While it is possible to compare scores across APIs (e.g., a OpenCL score with a Metal score) it is important to keep in mind that due to the nature of Compute APIs, the performance difference can be due to more than differences in the underlying hardware (e.g., the GPU driver can have a huge impact on performance).! September 2019 "6 Compute Workloads Sobel The Sobel operator is used in image processing and computer vision for finding edges in images.
    [Show full text]
  • Geekbench Browser
    MAcPro7,1 - Geekbench Browser https://browser.geekbench.com/v4/cpu/15449062 Geekbench Browser Geekbench 5 Top Single-Core Results Top Multi-Core Results Recent Results Search Results Recent Compute Results Search Compute Results Geekbench 4 Top Single-Core Results Top Multi-Core Results Recent Results Search Results Recent Compute Results Search Compute Results Benchmark Charts Android Benchmark Chart iOS Benchmark Chart Mac Benchmark Chart Processor Benchmark Chart CUDA Benchmark Chart Metal Benchmark Chart OpenCL Benchmark Chart Vulkan Benchmark Chart Search Account Profile Settings Log Out This result has been added to your account. MAcPro7,1 Single-Core Score Multi-Core Score 6567 38907 Geekbench 4.4.2 Tryout for Mac OS X x86 (64-bit) Result Information User foster2005 Upload Date May 01 2020 07:27 AM Views 1 System Information System Information Operating System macOS 10.15.5 (Build 19F72f) Model MAcPro7,1 Motherboard Acidanthera Mac-EE2EBD4B90B839A8 MacBook10,1 Memory 32.00 GB 3200 MHz DDR4 Northbridge 1 of 6 5/1/20, 1:33 AM MAcPro7,1 - Geekbench Browser https://browser.geekbench.com/v4/cpu/15449062 System Information Southbridge BIOS Acidanthera 185.0.0.0.0 Processor Information Name Intel Core i9-9900K Topology 1 Processor, 8 Cores, 16 Threads Identifier GenuineIntel Family 6 Model 158 Stepping 12 Base Frequency 3.60 GHz Package Codename L1 Instruction Cache 32.0 KB x 8 L1 Data Cache 32.0 KB x 8 L2 Cache 256 KB x 8 L3 Cache 16.0 MB x 1 Single-Core Performance Single-Core Score 6567 Crypto Score 4285 Integer Score 6545 Floating Point
    [Show full text]
  • Cache Design for Future Large Scale Chips
    UC Irvine UC Irvine Electronic Theses and Dissertations Title Data Shepherding: Cache design for future large scale chips Permalink https://escholarship.org/uc/item/4bq2t8q5 Author Jang, Ganghee Publication Date 2016 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, IRVINE Data Shepherding: Cache design for future large scale chips DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Electrical and Computer Engineering by Ganghee Jang Dissertation Committee: Professor Jean-Luc Gaudiot, Chair Professor Alexander Veidenbaum Professor Nader Bagherzadeh 2016 c 2016 Ganghee Jang DEDICATION To my wife, Jiyoung. Her courage led me in the right direction of this journey. To my kids, Miru and Hechan. I felt re-energized whenever I saw them throughout the course of my study. ii TABLE OF CONTENTS Page LIST OF FIGURES v LIST OF TABLES vii ACKNOWLEDGMENTS viii CURRICULUM VITAE ix ABSTRACT OF THE DISSERTATION x 1 Introduction 1 1.1 Background and motivation . 1 1.2 Problem definition . 2 1.3 Goal of this work . 3 2 Background Research 5 2.1 System designs from the view point of design goals . 6 2.1.1 Power wall problem and system design goals . 6 2.1.2 System designs with dynamic change of goals . 12 2.2 New technologies and system design goals . 13 2.2.1 3D technologies and Non-Volatile Memory technologies . 14 2.2.2 Reliability and design issues with other goals . 18 3 Problem Definition 22 3.1 Logical addressing mechanism to combine the multiple design goals .
    [Show full text]
  • Kurt Uwe Stoll Using Existing Structured Data As a Learning Set
    Kurt Uwe Stoll Using Existing Structured Data as a Learning Set for Web Information Extraction in E-Commerce Doctoral Thesis Fakultät für Wirtschafts- und Organisationswissenschaften Using Existing Structured Data as a Learning Set for Web Information Extraction in E-Commerce Kurt Uwe Stoll Univ.-Prof. Dr. Hans A. Wüthrich Univ.-Prof. Dr. Martin Hepp Univ.-Prof. Dr. Claudius Steinhardt Univ.-Prof. Dr. Stephan Kaiser Univ.-Prof. Dr. Karl Morasch 12.7.2016 Dr. rerum politicarum (Dr. rer. pol.) 1. November 2016 Doctoral Thesis Using Existing Structured Data as a Learning Set for Web Information Extraction in E-Commerce Author: Supervisor: Kurt Uwe Stoll Prof. Dr. Martin Hepp A thesis submitted in partial fulfillment of the requirements for the degree of Dr. rer. pol. at the UNIVERSITÄT DER BUNDESWEHR MÜNCHEN November 1, 2016 “I checked it very thoroughly,” said the computer, “and that quite definitely is the answer. I think the problem, to be quite honest with you, is that you’ve never actually known what the question is.” “But it was the Great Question! The Ultimate Question of Life, the Universe and Everything,” howled Loonquawl. “Yes,” said Deep Thought with the air of one who suffers fools gladly, “but what actually is it?” A slow stupefied silence crept over the men as they stared at the computer and then at each other. “Well, you know, it’s just Everything ... Everything ...” offered Phouchg weakly. “Exactly!” said Deep Thought. “So once you know what the question actually is, you’ll know what the answer means.” Douglas Adams - The Hitchhiker’s Guide to the Galaxy Abstract Using Existing Structured Data as a Learning Set for Web Information Extraction in E-Commerce by Kurt Uwe Stoll In the last years, e-commerce has grown massively and evolved into a main driver of technological innovation on the Web.
    [Show full text]
  • BEE WP 10 Reasons Why Ipa
    1 10 REASONS WHY APPLE IPAD WILL BECOME THE NEW GOLD STANDARD FOR YOUR SALES TEAM Everyone at Beehivr is very excited. During this year’s 2019 WWDC last month, Apple announced hundreds of new technology advancements across devices, laptops, and workstations, including updates to their flagship Apple iPad, a full nine years since its launch. The new iPad now boasts many new capabilities and features that definitely put it on level ground with many mid-range laptops and promises to boost mobile productivity and efficiency for every field sales team. For corporate IT teams who may still wonder if investing in iPads for their employees makes good business sense, here are 10 reasons that will likely convince you to change your mind! 2 1 MOUSE AND TRACKPAD FUNCTIONALITY At last, with the launch of iPad OS 13, users will for the first time be able to use a mouse and a trackpad on their iPad! By eliminating these barriers, corporate IT teams can feel confident that sales professionals can reach new heights of productivity in the field and leverage the power of new software applications such as spreadsheets like never before. We see a new era of corporate adoption of iPads with the addition of the new iPad mouse and trackpad features! Oh, and did we mention that using the Microsoft Office suite is now a walk in the park on iPad? 3 2 NEW GESTURES FOR AN EASIER TYPING EXPERIENCE iPadOS will enable users with new gestures to cut, copy, paste and more. Edit your documents in a snap without having to use a laptop.
    [Show full text]
  • Surface Go 2 Product FAQ
    Surface Go 2 Product FAQ Microsoft Internal & Partner Use Only Although the information contained in this document is considered public and may be used in discussions with customers, please do not share this document in its entirety. This documentation is proprietary information of Microsoft Corporation, provided for internal and/or partner use, for informational purposes only. Microsoft makes no warranties, either express or implied, in this document. Although the information contained in this document is considered public and may be used in discussions with customers, please do not share this document in its entirety. © 2020. Microsoft Corporation. All rights reserved. Contents Introduction ............................................................................................................................................................................................................ 2 Ready to get it done ........................................................................................................................................................................... 2 Meet the needs of your business .................................................................................................................................................. 3 Connect and collaborate with customers and colleagues ................................................................................................... 3 Surface for Business unlocks more value ..................................................................................................................................
    [Show full text]
  • Challenges and Future Directions in Benchmarking Smartphone Performance
    Freeze It If You Can: Challenges and Future Directions in Benchmarking Smartphone Performance Yao Guo, Yunnan Xu, Xiangqun Chen Key Laboratory of High-Confidence Software Technologies (Ministry of Education) School of Electronics Engineering and Computer Science, Peking University {yaoguo, xuyn14, cherry}@pku.edu.cn ABSTRACT Benchmarking the performance of a computer system is Benchmarking the performance of mobile devices such as important for many tasks, ranging from hardware design, Android-based smartphones is important in understanding OS optimization, to minimizing the overhead of security and comparing the performance of different devices. Per- approaches. Many studies have focused on the performance formance benchmarking tools such as Antutu have been measurement and optimization on traditional computers widely used in both academia and industry. However, one such as Windows and Linux based devices, including var- of the main difficulties when benchmarking smartphone per- ious benchmarks [8], measurement studies and optimization formance is due to the fact that the performance cannot be methods. measured accurately and steadily. This paper investigates However, there are few research focused on the per- the challenges on performance benchmarking for Android- formance benchmarking of mobile devices, compared to based smartphones. We identify key factors affecting much enthusiasm from the energy perspective. Nonetheless, performance benchmarking, which include frequency scaling performance of mobile devices is still an important issue.
    [Show full text]
  • System Manufacturer System Product Name
    Geekbench Browser Geekbench 4 Top Single-Core Results Top Multi-Core Results Recent Results Search Results Recent Compute Results Search Compute Results Geekbench 3 Top Single-Core Results Top Multi-Core Results Recent Results Search Results Top Battery Results Longest Battery Results Recent Battery Results Search Battery Results Benchmark Charts Android Benchmark Chart iOS Benchmark Chart Mac Benchmark Chart Processor Benchmark Chart CUDA Benchmark Chart OpenCL Benchmark Chart RenderScript Benchmark Chart Battery Benchmark Chart Account Sign Up Log In System manufacturer System Product Name Single-Core Score Multi-Core Score 5314 33714 Geekbench 4.3.1 Tryout for Windows x86 (64-bit) Result Information Upload Date July 15 2019 03:26 AM Views 1 System Information System Information Operating System Microsoft Windows 10 Pro (64-bit) Model System manufacturer System Product Name Motherboard ASUSTeK COMPUTER INC. ROG CROSSHAIR VII HERO (WI-FI) Memory 16384 MB DDR4 SDRAM 1803MHz Northbridge AMD Ryzen SOC 00 Southbridge AMD Carrizo FCH 51 BIOS American Megatrends Inc. 0068 Processor Information Name AMD Ryzen 7 2700X Topology 1 Processor, 8 Cores, 16 Threads Identifier AuthenticAMD Family 23 Model 8 Stepping 2 Base Frequency 3.70 GHz Maximum Frequency 4.36 GHz Package Codename Summit Ridge L1 Instruction Cache 64.0 KB x 8 L1 Data Cache 32.0 KB x 8 L2 Cache 512 KB x 8 L3 Cache 8.00 MB x 2 Single-Core Performance Single-Core Score 5314 Crypto Score 7182 Integer Score 4752 Floating Point Score 4780 Memory Score 6914 7182 AES 5.41 GB/sec 5193 LZMA
    [Show full text]
  • Energy Efficiency Analysis of Arm Big.Little Global Task Scheduling
    ENERGY EFFICIENCY ANALYSIS OF ARM BIG.LITTLE GLOBAL TASK SCHEDULING Bachelor Degree Project in Informatics with Specialization towards Network and System Administration Level G2E, 15hp Spring term 2015 Sigurd Israelsson Supervisor: Thomas Fischer Examiner: Jonas Mellin ABSTRACT In this paper an ARM big.LITTLE system with Global Task Scheduling is evaluated in terms of its energy efficiency and performance measured in execution time. The big.LITTLE system is evaluated against the same system but with only the big or LITTLE processor active. The evaluation is done by performing experiments that target three different levels of load: full load, varying load and low load. The benchmarking software PARSEC Blackscholes and BBench are used to put the system under a synthetic workload in the tests. The results show that overall big.LITTLE achieves an improvement in execution time for all test scenarios, although very slim for varying load, and is more energy efficient than the big processor with the possible exception of a low load scenario. However, the LITTLE processor by itself is found to be the most energy efficient system even though it showed the slowest execution time. Keywords: ARM big.LITTLE, Global Task Scheduling, PARSEC Blackscholes, BBench, Energy efficiency Table of Contents 1. Introduction ............................................................................................................................ 1 2. Background ...........................................................................................................................
    [Show full text]
  • Workload Automation Documentation Release 2.7.0
    Workload Automation Documentation Release 2.7.0 WA Mailing List <[email protected]>,Sergei Trofimov <sergei.trofi[email protected]>, Vasilis Flouris <vasilis.fl[email protected]>, Mohammed Binsabbar <[email protected]> Jul 06, 2018 Contents 1 What’s New 3 2 Usage 23 3 Extensions 55 4 In-depth 163 5 API Reference 199 6 Indices and tables 385 Python Module Index 387 i ii Workload Automation Documentation, Release 2.7.0 Workload Automation (WA) is a framework for running workloads on real hardware devices. WA supports a number of output formats as well as additional instrumentation (such as Streamline traces). A number of workloads are included with the framework. Contents • Welcome to Documentation for Workload Automation – What’s New – Usage – Extensions – In-depth – API Reference – Indices and tables Contents 1 Workload Automation Documentation, Release 2.7.0 2 Contents CHAPTER 1 What’s New 1.1 What’s New in Workload Automation 1.1.1 Version 2.6.0 Note: Users who are currently using the GitHub master version of WA should uninstall the existing version before upgrading to avoid potential issues. Additions: Workloads • AdobeReader: A workload that carries out following typical productivity tasks. These include opening a file, performing various gestures and zooms on screen and searching for a predefined set of strings. • octaned8: A workload to run the binary (non-browser) version of the JS benchmark Octane. • GooglePlayBooks: A workload to perform standard productivity tasks with Google Play Books. This workload performs various tasks, such as searching for a book title online, browsing through a book, adding and removing notes, word searching, and querying information about the book.
    [Show full text]