Stellar Populations of Bulges of Disc Galaxies in Clusters

Total Page:16

File Type:pdf, Size:1020Kb

Stellar Populations of Bulges of Disc Galaxies in Clusters Astronomical Science Stellar Populations of Bulges of Disc Galaxies in Clusters Lorenzo Morelli1, 5 brightness radial profile of large bulges is assembly. We present a photometric and Emanuela Pompei 2 well described by the de Vaucouleurs spectroscopic study of the bulge-domi- Alessandro Pizzella1 law, although this law can be drastically nated region of a sample of spiral galax- Jairo Méndez-Abreu1, 3 changed taking into account the small- ies in clusters. Our aim is to estimate the Enrico Maria Corsini1 scale inner structures, smoothed by the age and metallicity of the stellar popula- Lodovico Coccato 4 seeing in ground-based observations. tion and the efficiency and timescale of Roberto Saglia 4 Some bulges are rotationally-flattened the last episode of star formation in order Marc Sarzi 6 oblate spheroids with little or no anisot- to disentangle early rapid assembly from Francesco Bertola1 ropy. But, the intrinsic shape of a large late slow growth of bulges. fraction of early-type bulges is triaxial, as shown by the isophotal misalignment 1 Dipartimento di Astronomia, Università with respect to their host discs and non- Sample, photometry, and spectroscopy di Padova, Italy circular gas motions. The bulk of their 2 ESO stellar population formed between red- In order to simplify the interpretation of 3 INAF-Osservatorio Astronomico di shifts 3 and 5 (~ 12 Gyr ago) over a short the results, we selected a sample of disc Padova, Italy timescale. The enrichment of the inter- galaxies, which do not show any mor- 4 Max-Planck-Institut für Extraterres- stellar medium is strongly related to the phological signature of having undergone trische Physik, Garching, Germany time delay between type II and type Ia a recent interaction event. All the ob- 5 Department of Astronomy, Pontificia supernovae, which contributed most of served galaxies are classified as non- Universidad Católica de Chile, Santiago, the A elements and iron, respectively. barred or weakly barred galaxies. They Chile are bright (BT ≤ 13.5) and nearby (D < 6 Centre for Astrophysics Research, On the contrary, the bulges of late-type 50 Mpc) lenticulars and spirals with a University of Hertfordshire, Hatfield, spiral galaxies are reminiscent of discs. low-to-intermediate inclination (i ≤ 65˚ ). United Kingdom They are flat components with exponen- Twelve of them were identified as mem- tial surface brightness radial profiles bers of the Fornax, Eridanus and and rotate as fast as discs. Moreover, the Pegasus clusters and a further two are Photometry and long-slit spectroscopy stellar population in late-type bulges members of the NGC 7582 group. are presented for 14 S0 and spiral is younger than in early-type bulges. They galaxies of the Fornax, Eridanus and appear to have lower metallicity and The photometric and spectroscopic ob- Pegasus clusters and the NGC 7582 lower A /Fe enhancement with respect to servations of the sample galaxies were group. The age, metallicity and A /Fe early-type galaxies. carried out in three runs at ESO La Silla enhancement of the stellar population in in 2002 (run 1), 2003 (run 2) and 2005 the centres and their gradients are In the current paradigm, early-type (run 3). We imaged the galaxies with obtained using stellar population mod- bulges were formed by rapid collapse the Bessel R-band filter. In runs 1 and 2 els with variable element abundance and merging events, while late-type spectra were taken at the 3.6-m tele- ratios. Most of the sample bulges dis- bulges have been slowly assembled by scope with EFOSC2; in run 3 spectra play solar A /Fe enhancement, no gra- internal and environmental secular were obtained with EMMI on the NTT in dient in age, and a negative gradient of processes (Kormendy & Kennicutt, 2004). red medium-dispersion mode. metallicity. One of the bulges, that of But many questions are still open. For NGC 1292, is a pseudobulge and the instance, the monolithic collapse scenario In order to derive the photometric param- properties of its stellar population are cannot explain the presence in bulges of eters of the bulge and disc, we fitted iter- consistent with a slow build-up within a kinematically-decoupled components. atively a model of the surface brightness scenario of secular evolution. Moreover, the environment plays a role in to the pixels of the galaxy image using a defining the properties of galaxies. Re- non-linear least-squares minimisation. We cent studies of early-type galaxies in dif- adopted the technique for photometric The relative importance of dissipative ferent environments have shown that age, decomposition developed in GASP2D by collapse (Gilmore & Wyse, 1998), major metallicity, and A /Fe enhancement are Méndez-Abreu et al. (2008, see Figure 1). and minor merging events (Aguerri, more correlated with the total mass of the We measured the stellar kinematics from Balcells & Peletier, 2001), and redistribu- galaxy than local environment. the galaxy absorption features present tion of disc material due to the pres- in the wavelength range and centred on ence of a bar or environmental effects To investigate the formation and evolu- the Mg line triplet at 5 200 Å by applying (Kormendy & Kennicutt, 2004) drives tion of bulges, there are two possible the Fourier correlation quotient method the variety of observed properties in approaches: going back in redshift and (Bender et al., 1994). We also measured bulges. The bulges of lenticulars and looking at the evolution of galaxies the Mg, Fe, and HB line-strength indices early-type spirals are similar to low-lumi- through cosmic time; or analysing nearby from the flux-calibrated spectra. We indi- nosity elliptical galaxies and their photo- galaxies in detail to understand the cate the average iron index with <Fe> = metric and kinematic properties satisfy properties of their stellar population in (Fe5270 + Fe5335)/2, and the magne- the same fundamental plane (FP) cor- terms of the dominant mechanism at sium-iron index with [MgFe] = Mgb (0.72 relation found for ellipticals. The surface- the epochs of star formation and mass × Fe5270 + 0.28 × Fe5335) (see Fig- The Messenger 133 – September 2008 31 Astronomical Science Morelli L. et al., Stellar Populations of Bulges of Disc Galaxies in Clusters NGC 1351 Model Residuals 26.0 26.0 0.4 10 0 10 0 10 0 ) ) ) 2 2 2 c c c e e e ) 50 ) 50 ) 50 s s s c c c c c c e e e r r r s s s a a a c c c / / / r r r 20.5 20.5 0.0 g g g a a a ( ( ( 0 0 a 0 a a Y m Y m Y m ( ( ( R R R µ µ –50 –50 –50 µ 15.0 15.0 –0.4 –100 –500 50 –100 –500 50 –100 –500 50 X (arcsec) X (arcsec) X (arcsec) 14 1.0 150 16 0.8 10 0 ) 2 c e 18 0.6 s c r a A / 50 P g a m ( 20 0.4 R µ 0 22 0.2 0.4 0.4 0.4 0.2 0.2 A 0.2 P R / / µ 0.0 0.0 A 0.0 ∆ ∆ P –0.2 –0.2 ∆ –0.2 –0.4 –0.4 –0.4 0 20 40 60 80 10 0 0 20 40 60 80 10 0 0 20 40 60 80 10 0 R (arcsec) R (arcsec) R (arcsec) Figure 1 (above). Two-dimensional photometric de- NGC 1351 composition of a sample galaxy, NGC 1351. Upper r (kpc) panels (from left to right): Map of the observed, 00.5 1 1.5 2 modelled and residual (observed-modelled) surface- 4 brightness distribution of the galaxy. Lower panels ) 3 Å ( (from left to right): Ellipse-averaged radial profile 2 of surface-brightness, position angle, and ellipticity H 1 measured in the observed (dots with error-bars) 0 6 and modelled image (solid line). Residuals on the ob- ) Å 5 ( served model are shown in the bottom plots. ] 4 e F g 3 M [ 2 5 ure 2). The HB line-strength index was ) 4 Å ( measured from the resulting HB absorp- 3 > e tion line, after the emission line was F 2 < 1 subtracted from the observed spectrum. 6 ) Å ( 5 b g 4 Age, metallicity, and A /Fe enhancement: M 3 Figure 2. The line-strength indices central values 2 0.3 measured along the major axes of one ) g of the sample galaxies, NGC 1351. a 0.25 m ( From top to bottom: East-west folded From the central line-strength indices we 2 0.2 g radial profiles of HB , [MgFe] , <Fe>, derived the mean ages, total metallici- M 0.15 Mg , and Mg . Asterisks and dots refer ties and total /Fe enhancements of the 0.1 b 2 A 02468101214161820 22 24 to the two sides (east/west) of the gal- stellar populations in the centre of the r (arcsec) axy. 32 The Messenger 133 – September 2008 4.0 [/Fe] = 0.0 dex T < 0 4.0 = [/Fe] = 0.5 dex T > 0 3.0 1 Gyr 3.0 (Z/H) = 0.35 ) ) Å ( Å ( > ` ( 2 Gyr e F H Z (Z/H) = 0.00 / < 2.0 H 0 2.0 ) 3 = . 0 – 3 Gyr – 1 = 0 (Z/H) = –0.33 .3 ] 0 e . 5 (Z 5 Gyr F 0 0 / / = .3 H ( [ ] 0 0 ) Z e .5 = / F = 0 H (Z 10 Gyr / ] – ) [ e = 0 = /H F ] . 1.0 / e 1.0 3 0 ) ( 15 Gyr F . = Z [ / 3 0 / 0 0 H [ T < 0 . Age = 3 Gyr = 3 ) 5 = (Z/H) = –1.35 T > 0 0 Age = 12 Gyr .6 (Z/H) = –2.25 7 1.02.0 3.04.0 5.0 1.0 2.03.0 4.0 5.0 6.0 [MgFe] (Å) Mgb (Å) Figure 3 (above).
Recommended publications
  • Kinematics of Nearby Active Galactic Nucleus Host Ngc 7582
    KINEMATICS OF NEARBY ACTIVE GALACTIC NUCLEUS HOST NGC 7582 Item Type Electronic Thesis; text Authors Walla, Emily Citation Walla, Emily. (2020). KINEMATICS OF NEARBY ACTIVE GALACTIC NUCLEUS HOST NGC 7582 (Bachelor's thesis, University of Arizona, Tucson, USA). Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 07/10/2021 08:31:34 Item License http://rightsstatements.org/vocab/InC/1.0/ Link to Item http://hdl.handle.net/10150/651409 KINEMATICS OF NEARBY ACTIVE GALACTIC NUCLEUS HOST NGC 7582 By EMILY CATHERINE WALLA ____________________ A Thesis Submitted to The Honors College In Partial Fulfillment of the Bachelor’s degree With Honors in Astronomy THE UNIVERSITY OF ARIZONA MAY 2020 Approved by: ______________________ Dr. Stephanie Juneau NSF National Optical-Infrared Astronomy Research Lab, The Astro Data Lab Dr. Susan Ridgway, NSF National Optical-Infrared Astronomy Research Laboratory, served as a secondary advisor for this project. She provided extensive scientific background for the project. Madison Walder, undergraduate student in the University of Arizona Class of Spring 2020, worked on a project adjacent to mine and as such, provided some small modifications to the code eventually used to complete my project. Leah Fulmer, PhD candidate at the University of Washington, worked with Stephanie Juneau before me and completed some initial analyses and wrote code that was foundational in the first year of the project but was ultimately not implemented in the project’s final form.
    [Show full text]
  • The Extragalactic Distance Scale
    The Extragalactic Distance Scale Published in "Stellar astrophysics for the local group" : VIII Canary Islands Winter School of Astrophysics. Edited by A. Aparicio, A. Herrero, and F. Sanchez. Cambridge ; New York : Cambridge University Press, 1998 Calibration of the Extragalactic Distance Scale By BARRY F. MADORE1, WENDY L. FREEDMAN2 1NASA/IPAC Extragalactic Database, Infrared Processing & Analysis Center, California Institute of Technology, Jet Propulsion Laboratory, Pasadena, CA 91125, USA 2Observatories, Carnegie Institution of Washington, 813 Santa Barbara St., Pasadena CA 91101, USA The calibration and use of Cepheids as primary distance indicators is reviewed in the context of the extragalactic distance scale. Comparison is made with the independently calibrated Population II distance scale and found to be consistent at the 10% level. The combined use of ground-based facilities and the Hubble Space Telescope now allow for the application of the Cepheid Period-Luminosity relation out to distances in excess of 20 Mpc. Calibration of secondary distance indicators and the direct determination of distances to galaxies in the field as well as in the Virgo and Fornax clusters allows for multiple paths to the determination of the absolute rate of the expansion of the Universe parameterized by the Hubble constant. At this point in the reduction and analysis of Key Project galaxies H0 = 72km/ sec/Mpc ± 2 (random) ± 12 [systematic]. Table of Contents INTRODUCTION TO THE LECTURES CEPHEIDS BRIEF SUMMARY OF THE OBSERVED PROPERTIES OF CEPHEID
    [Show full text]
  • Lopsided Spiral Galaxies: Evidence for Gas Accretion
    A&A 438, 507–520 (2005) Astronomy DOI: 10.1051/0004-6361:20052631 & c ESO 2005 Astrophysics Lopsided spiral galaxies: evidence for gas accretion F. Bournaud1, F. Combes1,C.J.Jog2, and I. Puerari3 1 Observatoire de Paris, LERMA, 61 Av. de l’Observatoire, 75014 Paris, France e-mail: [email protected] 2 Department of Physics, Indian Institute of Science, Bangalore 560012, India 3 Instituto Nacional de Astrofísica, Optica y Electrónica, Calle Luis Enrique Erro 1, 72840 Tonantzintla, Puebla, Mexico Received 3 January 2005 / Accepted 15 March 2005 Abstract. We quantify the degree of lopsidedness for a sample of 149 galaxies observed in the near-infrared from the OSUBGS sample, and try to explain the physical origin of the observed disk lopsidedness. We confirm previous studies, but for a larger sample, that a large fraction of galaxies have significant lopsidedness in their stellar disks, measured as the Fourier amplitude of the m = 1 component normalised to the average or m = 0 component in the surface density. Late-type galaxies are found to be more lopsided, while the presence of m = 2 spiral arms and bars is correlated with disk lopsidedness. We also show that the m = 1 amplitude is uncorrelated with the presence of companions. Numerical simulations were carried out to study the generation of m = 1viadifferent processes: galaxy tidal encounters, galaxy mergers, and external gas accretion with subsequent star formation. These simulations show that galaxy interactions and mergers can trigger strong lopsidedness, but do not explain several independent statistical properties of observed galaxies. To explain all the observational results, it is required that a large fraction of lopsidedness results from cosmological accretion of gas on galactic disks, which can create strongly lopsided disks when this accretion is asymmetrical enough.
    [Show full text]
  • Presentazione Standard Di Powerpoint
    Challenges to the AGN Unified Model Stefano Bianchi The X-ray view of Black Hole activity in the local Universe – Zurich – February 18th 2016 The Geometry of Absorption The absorber: The Unification Model view NLR The absorber must break the symmetry of the polarization angles: a “torus” is the most BLR natural configuration BLR Torus The size of the torus was postulated to be on the parsec scale (Krolik & Begelman, 1986, 1988) Large enough to obscure the BLR Small enough not to obscure the NLR From Galactic to Sub-Pc Scale: Absorption at Different Scales The presence of nonspherically symmetric absorbers at the origin of the type 1/type 2 dichotomy remains a valid scenario, but several new observations and models suggest that multiple absorbers are present, on quite different physical scales Absorption within the Sublimation Radius Absorption from pc-scale Tori Absorption by Gas in the Host Galaxy Absorption within the Sublimation Radius X-ray absorption variability is common in AGN: the circumnuclear X-ray absorber (or, at least, one component of it) must be clumpy and located at subparsec distance Risaliti et al. 2007 NH variations on scales from months to NGC 7582 hours are found in a growing number of sources: NGC 1365 (Risaliti et al. 2005, 2007, 2009), NGC 4388 (Elvis et al. 2004), NGC 4151 (Puccetti et al. 2007), NGC 7582 (Bianchi et al. 2009), Mrk 766 (Risaliti et al. 2011) 23 -2 DNH~10 cm See also the exceptional case of DT~20 hours NGC1068! (Marinucci’s talk) Bianchi et al. 2009 NGC 1365 shows absorption variability down to ∼10 hours: absorption is 3 −1 4 due to clouds with velocity >10 km s , at distances of ~10 rg.
    [Show full text]
  • Seyfert 1 Mutation of the Classical Seyfert 2 Nucleus NGC 7582
    Seyfert 1 mutation of the classical Seyfert 2 nucleus NGC 75821 Itziar Aretxaga Instituto Nacional de Astrof´ısica, Optica´ y Electr´onica, Apdo. Postal 25 y 216, 72000 Puebla, Pue., Mexico E-mail: [email protected] B. Joguet European Southern Observatory, Alonso de Cordova 3107, Vitacura, Casilla 19001, Santiago 19, Chile Institut d’Astrophysique de Paris, 98 bis Boulevard Arago, F-75014 Paris, France E-mail:[email protected] D. Kunth Institut d’Astrophysique de Paris, 98 bis Boulevard Arago, F-75014 Paris, France E-mail: [email protected] J. Melnick European Southern Observatory, Alonso de Cordova 3107, Vitacura, Casilla 19001, Santiago 19, Chile E-mail: [email protected] arXiv:astro-ph/9905147v1 12 May 1999 and R. J. Terlevich2 Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, U.K. E-mail: [email protected] 1 Based on observations collected at the European Southern Observatory at La Silla (Chile) 2Visiting Professor at INAOE, Puebla, Mexico –2– Received ; accepted Submitted to Astrophysical Journal Letters –3– ABSTRACT We report the transition towards a type 1 Seyfert experienced by the classical type 2 Seyfert nucleus in NGC 7582. The transition, found at most 20 days from its maximum peak, presents a unique opportunity to study these rare events in detail. At maximum the Hα line width is of about 12000 km s−1. We examine three scenarios that could potentially explain the transition: capture of a star by a supermassive black hole, a reddening change in the surrounding torus, and the radiative onset of a type IIn supernova exploding in a compact nuclear/circumnuclear starburst.
    [Show full text]
  • Parsec-Scale Dust Distributions in Seyfert Galaxies
    Astronomy & Astrophysics manuscript no. 11607mas © ESO 2018 October 26, 2018 Parsec-scale dust distributions in Seyfert galaxies⋆ Results of the MIDI AGN snapshot survey K. R. W. Tristram1, D. Raban2, K. Meisenheimer3, W. Jaffe2, H. R¨ottgering2, L. Burtscher3, W. D. Cotton4, U. Graser3, Th. Henning3, Ch. Leinert3, B. Lopez5, S. Morel6, G. Perrin7, M. Wittkowski8 1 Max-Planck-Institut f¨ur Radioastronomie, Auf dem H¨ugel 69, 53121 Bonn, Germany email: [email protected] 2 Leiden Observatory, Leiden University, Niels-Bohr-Weg 2, 2300 CA Leiden, The Netherlands 3 Max-Planck-Institut f¨ur Astronomie, K¨onigstuhl 17, 69117 Heidelberg, Germany 4 NRAO, 520 Edgemont Road, Charlottesville, VA 22903-2475, USA 5 Laboratoire H. Fizeau, UMR 6525, Universit´ede Nice-Sofia et Obs. de la Cˆote d’Azur, BP 4229, 06304 Nice Cedex 4, France. 6 European Southern Observatory, Casilla 19001, Santiago 19, Chile 7 LESIA, UMR 8109, Observatoire de Paris-Meudon, 5 place Jules Janssen, 92195 Meudon Cedex, France 8 European Southern Observatory, Karl-Schwarzschild-Strasse 2, 85748 Garching bei M¨unchen, Germany Received 30 December 2008 / Accepted 5 May 2009 ABSTRACT Aims. The emission of warm dust dominates the mid-infrared spectra of active galactic nuclei (AGN). Only interferometric observa- tions provide the necessary angular resolution to resolve the nuclear dust and to study its distribution and properties. The investigation of dust in AGN cores is hence one of the main science goals for the MID-infrared Interferometric instrument MIDI at the VLTI. As the first step, the feasibility of AGN observations was verified and the most promising sources for detailed studies were identified.
    [Show full text]
  • The Iso Handbook
    THE ISO HANDBOOK Volume I: ISO – Mission & Satellite Overview Martin F. Kessler1,2, Thomas G. M¨uller1,4, Kieron Leech 1, Christophe Arviset1, Pedro Garc´ıa-Lario1, Leo Metcalfe1, Andy M. T. Pollock1,3, Timo Prusti1,2 and Alberto Salama1 SAI-2000-035/Dc, Version 2.0 November, 2003 1 ISO Data Centre, Science Operations and Data Systems Division Research and Scientific Support Department of ESA, Villafranca del Castillo, P.O. Box 50727, E-28080 Madrid, Spain 2 ESTEC, Science Operations and Data Systems Division Research and Scientific Support Department of ESA, Keplerlaan 1, Postbus 299, 2200 AG Noordwijk, The Netherlands 3 Computer & Scientific Co. Ltd., 230 Graham Road, Sheffield S10 3GS, England 4 Max-Planck-Institut f¨ur extraterrestrische Physik, Giessenbachstraße, D-85748 Garching, Germany ii Document Information Document: The ISO Handbook Volume: I Title: ISO - Mission & Satellite Overview Reference Number: SAI/2000-035/Dc Issue: Version 2.0 Issue Date: November 2003 Authors: M.F. Kessler, T. M¨uller, K. Leech et al. Editors: T. M¨uller, J. Blommaert & P. Garc´ıa-Lario Web-Editor: J. Matagne Document History The ISO Handbook, Volume I: ISO – Mission & Satellite Overview is mainly based on the following documents: • The ISO Handbook, Volume I: ISO – Mission Overview, Kessler M.F., M¨uller T.G., Arviset C. et al., earlier versions, SAI-2000-035/Dc. • The ISO Handbook, Volume II: ISO – The Satellite and its Data, K. Leech & A.M.T. Pollock, earlier versions, SAI-99-082/Dc. • The following ESA Bulletin articles: The ISO Mission – A Scientific Overview, M.F. Kessler, A.
    [Show full text]
  • 190 Index of Names
    Index of names Ancora Leonis 389 NGC 3664, Arp 005 Andriscus Centauri 879 IC 3290 Anemodes Ceti 85 NGC 0864 Name CMG Identification Angelica Canum Venaticorum 659 NGC 5377 Accola Leonis 367 NGC 3489 Angulatus Ursae Majoris 247 NGC 2654 Acer Leonis 411 NGC 3832 Angulosus Virginis 450 NGC 4123, Mrk 1466 Acritobrachius Camelopardalis 833 IC 0356, Arp 213 Angusticlavia Ceti 102 NGC 1032 Actenista Apodis 891 IC 4633 Anomalus Piscis 804 NGC 7603, Arp 092, Mrk 0530 Actuosus Arietis 95 NGC 0972 Ansatus Antliae 303 NGC 3084 Aculeatus Canum Venaticorum 460 NGC 4183 Antarctica Mensae 865 IC 2051 Aculeus Piscium 9 NGC 0100 Antenna Australis Corvi 437 NGC 4039, Caldwell 61, Antennae, Arp 244 Acutifolium Canum Venaticorum 650 NGC 5297 Antenna Borealis Corvi 436 NGC 4038, Caldwell 60, Antennae, Arp 244 Adelus Ursae Majoris 668 NGC 5473 Anthemodes Cassiopeiae 34 NGC 0278 Adversus Comae Berenices 484 NGC 4298 Anticampe Centauri 550 NGC 4622 Aeluropus Lyncis 231 NGC 2445, Arp 143 Antirrhopus Virginis 532 NGC 4550 Aeola Canum Venaticorum 469 NGC 4220 Anulifera Carinae 226 NGC 2381 Aequanimus Draconis 705 NGC 5905 Anulus Grahamianus Volantis 955 ESO 034-IG011, AM0644-741, Graham's Ring Aequilibrata Eridani 122 NGC 1172 Aphenges Virginis 654 NGC 5334, IC 4338 Affinis Canum Venaticorum 449 NGC 4111 Apostrophus Fornac 159 NGC 1406 Agiton Aquarii 812 NGC 7721 Aquilops Gruis 911 IC 5267 Aglaea Comae Berenices 489 NGC 4314 Araneosus Camelopardalis 223 NGC 2336 Agrius Virginis 975 MCG -01-30-033, Arp 248, Wild's Triplet Aratrum Leonis 323 NGC 3239, Arp 263 Ahenea
    [Show full text]
  • Making a Sky Atlas
    Appendix A Making a Sky Atlas Although a number of very advanced sky atlases are now available in print, none is likely to be ideal for any given task. Published atlases will probably have too few or too many guide stars, too few or too many deep-sky objects plotted in them, wrong- size charts, etc. I found that with MegaStar I could design and make, specifically for my survey, a “just right” personalized atlas. My atlas consists of 108 charts, each about twenty square degrees in size, with guide stars down to magnitude 8.9. I used only the northernmost 78 charts, since I observed the sky only down to –35°. On the charts I plotted only the objects I wanted to observe. In addition I made enlargements of small, overcrowded areas (“quad charts”) as well as separate large-scale charts for the Virgo Galaxy Cluster, the latter with guide stars down to magnitude 11.4. I put the charts in plastic sheet protectors in a three-ring binder, taking them out and plac- ing them on my telescope mount’s clipboard as needed. To find an object I would use the 35 mm finder (except in the Virgo Cluster, where I used the 60 mm as the finder) to point the ensemble of telescopes at the indicated spot among the guide stars. If the object was not seen in the 35 mm, as it usually was not, I would then look in the larger telescopes. If the object was not immediately visible even in the primary telescope – a not uncommon occur- rence due to inexact initial pointing – I would then scan around for it.
    [Show full text]
  • Ngc Catalogue Ngc Catalogue
    NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39
    [Show full text]
  • The Black Hole Mass Function Derived from Local Spiral Galaxies
    PUBLISHED IN THE ASTROPHYSICAL JOURNAL, 789:124 (16PP),2014 JULY 10 Preprint typeset using LATEX style emulateapj v. 12/16/11 THE BLACK HOLE MASS FUNCTION DERIVED FROM LOCAL SPIRAL GALAXIES BENJAMIN L. DAVIS1 , JOEL C. BERRIER1,2,5,LUCAS JOHNS3,6 ,DOUGLAS W. SHIELDS1,2, MATTHEW T. HARTLEY2,DANIEL KENNEFICK1,2, JULIA KENNEFICK1,2, MARC S. SEIGAR1,4 , AND CLAUD H.S. LACY1,2 Published in The Astrophysical Journal, 789:124 (16pp), 2014 July 10 ABSTRACT We present our determination of the nuclear supermassive black hole mass (SMBH) function for spiral galax- ies in the local universe, established from a volume-limited sample consisting of a statistically complete col- lection of the brightest spiral galaxies in the southern (δ< 0◦) hemisphere. Our SMBH mass function agrees well at the high-mass end with previous values given in the literature. At the low-mass end, inconsistencies exist in previous works that still need to be resolved, but our work is more in line with expectations based on modeling of black hole evolution. This low-mass end of the spectrum is critical to our understanding of the mass function and evolution of black holes since the epoch of maximum quasar activity. A limiting luminos- ity (redshift-independent) distance, DL = 25.4 Mpc (z =0.00572) and a limiting absolute B-band magnitude, MB = −19.12 define the sample. These limits define a sample of 140 spiral galaxies, with 128 measurable pitch angles to establish the pitch angle distribution for this sample. This pitch angle distribution function may be useful in the study of the morphology of late-type galaxies.
    [Show full text]
  • Study of the Relation Between the Spiral Arm Pitch Angle and the Kinetic Energy of Random Motions of the Host Spiral Galaxies, a I
    Journal of the Arkansas Academy of Science Volume 68 Article 7 2014 Study of the Relation between the Spiral Arm Pitch Angle and the Kinetic Energy of Random Motions of the Host Spiral Galaxies, A I. Al-Baidhany University of Arkansas at Little Rock, [email protected] M. Seigar University of Arkansas at Little Rock P. Treuthardt University of Arkansas at Little Rock A. Sierra University of Arkansas at Little Rock B. Davis University of Arkansas, Fayetteville See next page for additional authors Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Physical Processes Commons Recommended Citation Al-Baidhany, I.; Seigar, M.; Treuthardt, P.; Sierra, A.; Davis, B.; Kennefick, D.; Kennefick, J.; Lacy, C.; Toma, Z. A.; and Jabbar, W. (2014) "Study of the Relation between the Spiral Arm Pitch Angle and the Kinetic Energy of Random Motions of the Host Spiral Galaxies, A," Journal of the Arkansas Academy of Science: Vol. 68 , Article 7. Available at: http://scholarworks.uark.edu/jaas/vol68/iss1/7 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK.
    [Show full text]