Haloperidol Versus Placebo for Schizophrenia

Total Page:16

File Type:pdf, Size:1020Kb

Haloperidol Versus Placebo for Schizophrenia Haloperidol versus placebo for schizophrenia Item Type Article Authors Irving, Claire B.; Adams, Clive E. Citation Irving, C. B., Adams, C. E. & Lawrie, S. (2006). Haloperidol versus placebo for schizophrenia. Cochrane Database of Systematic Reviews, (4), pp.1-69. Download date 25/09/2021 21:20:50 Link to Item http://hdl.handle.net/20.500.12904/9860 Haloperidol versus placebo for schizophrenia (Review) Irving CB, Adams CE, Lawrie S This is a reprint of a Cochrane review, prepared and maintained by The Cochrane Collaboration and published in The Cochrane Library 2006, Issue 4 http://www.thecochranelibrary.com Haloperidol versus placebo for schizophrenia (Review) Copyright © 2012 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. TABLE OF CONTENTS HEADER....................................... 1 ABSTRACT ...................................... 1 PLAINLANGUAGESUMMARY . 2 BACKGROUND .................................... 2 OBJECTIVES ..................................... 3 METHODS ...................................... 3 RESULTS....................................... 6 DISCUSSION ..................................... 10 AUTHORS’CONCLUSIONS . 11 ACKNOWLEDGEMENTS . 11 REFERENCES ..................................... 12 CHARACTERISTICSOFSTUDIES . 25 DATAANDANALYSES. 67 Haloperidol versus placebo for schizophrenia (Review) i Copyright © 2012 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. [Intervention Review] Haloperidol versus placebo for schizophrenia Claire B Irving1, Clive E Adams1, Stephen Lawrie2 1Cochrane Schizophrenia Group, The University of Nottingham, Nottingham, UK. 2Department of Psychiatry, University of Edin- burgh, Edinburgh, UK Contact address: Claire B Irving, Cochrane Schizophrenia Group, The University of Nottingham, Institute of Mental Health, Sir Colin Campbell Building, University of Nottingham Innovation Park, Triumph Road, Nottingham, NG7 2TU, UK. [email protected]. [email protected]. Editorial group: Cochrane Schizophrenia Group. Publication status and date: Edited (no change to conclusions), published in Issue 7, 2012. Review content assessed as up-to-date: 23 August 2006. Citation: Irving CB, Adams CE, Lawrie S. Haloperidol versus placebo for schizophrenia. Cochrane Database of Systematic Reviews 2006, Issue 4. Art. No.: CD003082. DOI: 10.1002/14651858.CD003082.pub2. Copyright © 2012 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. ABSTRACT Background Haloperidol was developed in the late 1950s for use in the field of anaesthesia. Research subsequently demonstrated effects on hallucinations, delusions, aggressiveness, impulsiveness and states of excitement and led to the introduction of haloperidol as an antipsychotic. Objectives To evaluate the clinical effects of haloperidol for the management of schizophrenia and other similar serious mental illnesses compared to placebo. Search methods We initially electronically searched the databases of Biological Abstracts (1985-1998), CINAHL (1982-1998), The Cochrane Library (1998, Issue 4), The Cochrane Schizophrenia Group’s Register (December 1998), EMBASE (1980-1998), MEDLINE (1966-1998), PsycLIT (1974-1998), and SCISEARCH. We also checked references of all identified studies for further trial citations and contacted the authors of trials and pharmaceutical companies for further information and archive material. For the 2005 update we searched The Cochrane Library (2005, Issue 6). We updated this search 15 May 2012 and added the results to the awaiting classification section of the review. Selection criteria We included all relevant randomised controlled trials comparing the use of haloperidol (any oral dose) with placebo for those with schizophrenia or other similar serious, non-affective psychotic illnesses (however diagnosed). Our main outcomes of interest were death, loss to follow up, clinical and social response, relapse and severity of adverse effects. Data collection and analysis We evaluated data independently and analysed on an intention-to-treat basis, assuming that people who left the study early, or were lost to follow-up, had no improvement. Where possible and appropriate, we analysed dichotomous data using Relative Risk (RR) and calculated their 95% confidence intervals (CI). If appropriate, the number needed to treat (NNT) or number needed to harm (NNH) was estimated. For continuous data, we calculated weighted mean differences. We excluded continuous data if loss to follow up was greater than 50% and inspected data for heterogeneity. Haloperidol versus placebo for schizophrenia (Review) 1 Copyright © 2012 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. Main results Twenty-one trials randomising 1519 people are now included in this review. One new trial, Kane 2002 (n=414) has been added but it did not affect the overall results. More people allocated haloperidol improved in the first six weeks of treatment than those given placebo (3RCTs n=159, RR failing to produce a marked improvement 0.44 CI 0.3 to 0.6, NNT 3 CI 2 to 5). A further eight trials also found a difference favouring haloperidol across the 6-24 week period (8 RCTs n=308 RR no marked global improvement 0.68 CI 0.6 to 0.8 NNT 3 CI 2.5 to 5) but this may be an over estimate of effect as small negative studies were not identified. About half of those entering studies failed to complete the short trials, although, at 0-6 weeks, 11 studies found a difference that marginally favoured haloperidol (11 RCTs n=898, RR 0.8 CI 0.7 to 0.9, NNT 59 CI 38 to 200). Adverse effect data does, nevertheless, support clinical impression, that haloperidol is a potent cause of movement disorders, at least in the short term. Haloperidol promotes acute dystonia (3 RCTs n=93, RR 4.7 CI 1.7 to 44, NNH 5 CI 3 to 9), akathisia (4 RCTs n=333, RR 2.6 CI 1.4 to 4.8, NNH 7 CI 3 to 25) and parkinsonism (4 RCTs n=163, RR 11.7 CI 2.9 to 47, NNH 3 CI 2 to 5). Update search 2012: the 72 new citations in the awaiting classification section of the review may alter the results and conclusions of the review once assessed. Authors’ conclusions Haloperidol is a potent antipsychotic drug but has a high propensity to cause adverse effects. Where there is no treatment option, use of haloperidol to counter the damaging and potentially dangerous consequences of untreated schizophrenia is justified. However, where a choice of drug is available, people with schizophrenia and clinicians may wish to prescribe an alternative antipsychotic with less likelihood of adverse effects such as parkinsonism, akathisia and acute dystonias. Haloperidol should not be a control drug of choice for randomised trials of new antipsychotics. PLAIN LANGUAGE SUMMARY Haloperidol versus placebo for schizophrenia Schizophrenia is a distressing and long-term mental illness affecting 1% of the population. Medication has been available since the 1950s and Haloperidol was one of the first antipsychotics to be offered. Despite the introduction of many other antipsychotics it is still very widely used, and it is the antipsychotic most often used to judge the effectiveness of new medications. This review aims to update the knowledge on the clinical trials comparing placebo and haloperidol. This review contains 21 studies involving a total of 1519 people who were either inpatients or living in the community. Haloperidol has been found to be better than placebo in improving general functioning and some symptoms in the short term (0-6 weeks), and just general functioning in the medium term (greater than six but less than 24 weeks). None of the people in any of these trials have been followed up for longer than 24 weeks. A significant number of people on haloperidol compared to those on placebo suffered from at least one adverse effect, mainly stiffness (dystonia) and movement disorders such as shaking or restlessness (Parkinsonism). In addition six trials containing 307 people found a significant number of people suffered from sleepiness compared to the control. Overall the data from these trials are not good, with many outcomes being presented in a way that does not allow them to be used in this review. Moreover just less than half of those taking haloperidol and slightly more than half of those receiving placebo left the studies early, suggesting that the design of the trial was possibly not acceptable to these participants. In the light of these results it is therefore somewhat surprising that this medication is used so widely as a comparison for new medication. (Plain language summary prepared for this review by Janey Antoniou of RETHINK, UK www.rethink.org) BACKGROUND 1992). Central to the treatment of this disabling mental illness are antipsychotic drugs, the earliest of which, chlorpromazine Schizophrenia affects about 1% of the world’s population irrespec- and haloperidol, were formulated and introduced in the 1950’s. tive of race, gender, social class or country of origin (Jablensky Haloperidol versus placebo for schizophrenia (Review) 2 Copyright © 2012 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. This introduction caused a revolution in the care of those with While an up-to-date systematic review of chlorpromazine has been serious mental illnesses (Dally 1967, Awad 1997). Despite the undertaken (Thornley 1998b) the use of haloperidol is currently formulation of a newer generation of atypical antipsychotics, based on traditional reviews that lack methods or quantification chlorpromazine and haloperidol are still the most frequently pre- (Ayd 1972, Ayd 1978, Settle
Recommended publications
  • (12) Patent Application Publication (10) Pub. No.: US 2012/0190743 A1 Bain Et Al
    US 2012O190743A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0190743 A1 Bain et al. (43) Pub. Date: Jul. 26, 2012 (54) COMPOUNDS FOR TREATING DISORDERS Publication Classification OR DISEASES ASSOCATED WITH (51) Int. Cl NEUROKININ 2 RECEPTORACTIVITY A6II 3L/23 (2006.01) (75) Inventors: Jerald Bain, Toronto (CA); Joel CD7C 69/30 (2006.01) Sadavoy, Toronto (CA); Hao Chen, 39t. ii; C Columbia, MD (US); Xiaoyu Shen, ( .01) Columbia, MD (US) A6IPI/00 (2006.01) s A6IP 29/00 (2006.01) (73) Assignee: UNITED PARAGON A6IP II/00 (2006.01) ASSOCIATES INC., Guelph, ON A6IPI3/10 (2006.01) (CA) A6IP 5/00 (2006.01) A6IP 25/00 (2006.01) (21) Appl. No.: 13/394,067 A6IP 25/30 (2006.01) A6IP5/00 (2006.01) (22) PCT Filed: Sep. 7, 2010 A6IP3/00 (2006.01) CI2N 5/071 (2010.01) (86). PCT No.: PCT/US 10/48OO6 CD7C 69/33 (2006.01) S371 (c)(1) (52) U.S. Cl. .......................... 514/552; 554/227; 435/375 (2), (4) Date: Apr. 12, 2012 (57) ABSTRACT Related U.S. Application Data Compounds, pharmaceutical compositions and methods of (60) Provisional application No. 61/240,014, filed on Sep. treating a disorder or disease associated with neurokinin 2 4, 2009. (NK) receptor activity. Patent Application Publication Jul. 26, 2012 Sheet 1 of 12 US 2012/O190743 A1 LU 1750 15OO 1250 OOO 750 500 250 O O 20 3O 40 min SampleName: EM2OO617 Patent Application Publication Jul. 26, 2012 Sheet 2 of 12 US 2012/O190743 A1 kixto CFUgan <tro CFUgan FIG.2 Patent Application Publication Jul.
    [Show full text]
  • Appendix 13C: Clinical Evidence Study Characteristics Tables
    APPENDIX 13C: CLINICAL EVIDENCE STUDY CHARACTERISTICS TABLES: PHARMACOLOGICAL INTERVENTIONS Abbreviations ............................................................................................................ 3 APPENDIX 13C (I): INCLUDED STUDIES FOR INITIAL TREATMENT WITH ANTIPSYCHOTIC MEDICATION .................................. 4 ARANGO2009 .................................................................................................................................. 4 BERGER2008 .................................................................................................................................... 6 LIEBERMAN2003 ............................................................................................................................ 8 MCEVOY2007 ................................................................................................................................ 10 ROBINSON2006 ............................................................................................................................. 12 SCHOOLER2005 ............................................................................................................................ 14 SIKICH2008 .................................................................................................................................... 16 SWADI2010..................................................................................................................................... 19 VANBRUGGEN2003 ....................................................................................................................
    [Show full text]
  • The Effects of Antipsychotic Treatment on Metabolic Function: a Systematic Review and Network Meta-Analysis
    The effects of antipsychotic treatment on metabolic function: a systematic review and network meta-analysis Toby Pillinger, Robert McCutcheon, Luke Vano, Katherine Beck, Guy Hindley, Atheeshaan Arumuham, Yuya Mizuno, Sridhar Natesan, Orestis Efthimiou, Andrea Cipriani, Oliver Howes ****PROTOCOL**** Review questions 1. What is the magnitude of metabolic dysregulation (defined as alterations in fasting glucose, total cholesterol, low density lipoprotein (LDL) cholesterol, high density lipoprotein (HDL) cholesterol, and triglyceride levels) and alterations in body weight and body mass index associated with short-term (‘acute’) antipsychotic treatment in individuals with schizophrenia? 2. Does baseline physiology (e.g. body weight) and demographics (e.g. age) of patients predict magnitude of antipsychotic-associated metabolic dysregulation? 3. Are alterations in metabolic parameters over time associated with alterations in degree of psychopathology? 1 Searches We plan to search EMBASE, PsycINFO, and MEDLINE from inception using the following terms: 1 (Acepromazine or Acetophenazine or Amisulpride or Aripiprazole or Asenapine or Benperidol or Blonanserin or Bromperidol or Butaperazine or Carpipramine or Chlorproethazine or Chlorpromazine or Chlorprothixene or Clocapramine or Clopenthixol or Clopentixol or Clothiapine or Clotiapine or Clozapine or Cyamemazine or Cyamepromazine or Dixyrazine or Droperidol or Fluanisone or Flupehenazine or Flupenthixol or Flupentixol or Fluphenazine or Fluspirilen or Fluspirilene or Haloperidol or Iloperidone
    [Show full text]
  • The Use of Stems in the Selection of International Nonproprietary Names (INN) for Pharmaceutical Substances
    WHO/PSM/QSM/2006.3 The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances 2006 Programme on International Nonproprietary Names (INN) Quality Assurance and Safety: Medicines Medicines Policy and Standards The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 © World Health Organization 2006 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2013/0331402 A1 Lewyn-Briscoe Et Al
    US 2013 0331402A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0331402 A1 Lewyn-Briscoe et al. (43) Pub. Date: Dec. 12, 2013 (54) DOSING REGIMENASSOCATED WITH (60) Provisional application No. 61/256,696, filed on Oct. LONG-ACTING INUECTABLE 30, 2009. PALIPERDONE ESTERS (71) Applicant: Janssen Pharmaceutica NV, Beerse Publication Classification (BE) (51) Int. Cl. (72) Inventors: Peter H. Lewyn-Briscoe, Newtown, PA A 6LX3/59 (2006.01) (US); Christina Gassmann-Mayer, A619/00 (2006.01) Pennington, NJ (US); Srihari Gopal, (52) U.S. Cl. Belle Mead, NJ (US); David W. Hough, CPC ............. A6IK3I/519 (2013.01); A61 K9/0019 Wallingford, PA (US); Bart M. M. (2013.01) Remmerie, Gent (BE); Mahesh N. USPC ..................................................... S14/259.41 Samtani, Flemington, NJ (US) (73) Assignee: Janssen Pharmaceutica NV, Beerse (57) ABSTRACT (BE) Appl. No.: The present application provides a method for treating (21) 13/903,638 patients in need of psychiatric treatment, wherein said patient (22) Filed: May 28, 2013 misses a stabilized dose of a monthly maintenance regimen of paliperidone palmitate. The present application also provides Related U.S. Application Data a method for treating psychiatric patients in need of a Switch (62) Division of application No. 12/916,910, filed on Nov. ing treatment to paliperidone palmitate in a Sustained release 1, 2010, now abandoned. formulation. Patent Application Publication Dec. 12, 2013 Sheet 1 of 6 US 2013/0331402 A1 First-Orier Process Zero-Order Process Patent Application Publication Dec. 12, 2013 Sheet 2 of 6 US 2013/0331402 A1 25mg eq 50E. e e to 50mged issed dose of Wik 4, Patient feturns or k 5 issed dose of k & Patient eins of k 6 3 A 2 2024 issed dose on Wiki.
    [Show full text]
  • WO 2011/064769 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date t 3 June 2011 (03.06.2011) WO 201 1/064769 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 9/00 (2006.01) A61K 31/506 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 9/70 (2006.01) A61P 5/24 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/IL20 10/000976 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 22 November 2010 (22.1 1.2010) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (25) Filing Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, (26) Publication Language: English TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 61/264,025 24 November 2009 (24.1 1.2009) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, (71) Applicant (for all designated States except US): YIS- ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, SUM RESEARCH DEVELOPMENT COMPANY OF TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, THE HEBREW UNIVERSITY OF JERUSALEM EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, ΓΓ, LT, LU, LTD.
    [Show full text]
  • Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
    20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0
    [Show full text]
  • Basic and Clinical Aspects of Depression
    Abstracts of Poster Presentations 259 31.01.01 PHARMACOTHERAPY, PSYCHOTHERAPY, AND PSYCHOEDUCATIONAL INTERVENTIONS: EFFICACY IN RECURRENT DEPRESSION POSTER E. Frank, and D. J. Kupfer We are currently engaged in a study of maintenance treatments for PRESENTATION recurrent unipolar depression which compares the efficacy of psychotherapy, pharmacotherapy and their combination. Rather 31.01 than focusing exclusively on the number of recurrences in each of the experimental conditions, we have also been concerned with the quality of patients' lives between episodes and with the !ength of the symptom-free interval. The three-year maintenance phase of our study is still in progress; therefore, final results will not be available for another 18 months to 2 years. We can, however, discuss the information available on Basic and Clinical Aspects those 62 patients who have already experienced a recurrence of illness and for whom the blind has been broken. While the majority of Depression of recurrences have been experienced by patients in the non- medication conditions, it would appear that, with or without medication, psychotherapy has had a significant effect in delaying the onset of a new episode. At this point in time, however, we have little evidence that continued psychotherapy adds to the generally good quality of patients' social functioning in symptom-free interval. A full understanding of the additive and interactive effects of pharmacotherapy and psychotherapy in the treatment of recurrent depression must await the completion of this study
    [Show full text]
  • New Information of Dopaminergic Agents Based on Quantum Chemistry Calculations Guillermo Goode‑Romero1*, Ulrika Winnberg2, Laura Domínguez1, Ilich A
    www.nature.com/scientificreports OPEN New information of dopaminergic agents based on quantum chemistry calculations Guillermo Goode‑Romero1*, Ulrika Winnberg2, Laura Domínguez1, Ilich A. Ibarra3, Rubicelia Vargas4, Elisabeth Winnberg5 & Ana Martínez6* Dopamine is an important neurotransmitter that plays a key role in a wide range of both locomotive and cognitive functions in humans. Disturbances on the dopaminergic system cause, among others, psychosis, Parkinson’s disease and Huntington’s disease. Antipsychotics are drugs that interact primarily with the dopamine receptors and are thus important for the control of psychosis and related disorders. These drugs function as agonists or antagonists and are classifed as such in the literature. However, there is still much to learn about the underlying mechanism of action of these drugs. The goal of this investigation is to analyze the intrinsic chemical reactivity, more specifcally, the electron donor–acceptor capacity of 217 molecules used as dopaminergic substances, particularly focusing on drugs used to treat psychosis. We analyzed 86 molecules categorized as agonists and 131 molecules classifed as antagonists, applying Density Functional Theory calculations. Results show that most of the agonists are electron donors, as is dopamine, whereas most of the antagonists are electron acceptors. Therefore, a new characterization based on the electron transfer capacity is proposed in this study. This new classifcation can guide the clinical decision‑making process based on the physiopathological knowledge of the dopaminergic diseases. During the second half of the last century, a movement referred to as the third revolution in psychiatry emerged, directly related to the development of new antipsychotic drugs for the treatment of psychosis.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2010/0184806 A1 Barlow Et Al
    US 20100184806A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0184806 A1 Barlow et al. (43) Pub. Date: Jul. 22, 2010 (54) MODULATION OF NEUROGENESIS BY PPAR (60) Provisional application No. 60/826,206, filed on Sep. AGENTS 19, 2006. (75) Inventors: Carrolee Barlow, Del Mar, CA (US); Todd Carter, San Diego, CA Publication Classification (US); Andrew Morse, San Diego, (51) Int. Cl. CA (US); Kai Treuner, San Diego, A6II 3/4433 (2006.01) CA (US); Kym Lorrain, San A6II 3/4439 (2006.01) Diego, CA (US) A6IP 25/00 (2006.01) A6IP 25/28 (2006.01) Correspondence Address: A6IP 25/18 (2006.01) SUGHRUE MION, PLLC A6IP 25/22 (2006.01) 2100 PENNSYLVANIA AVENUE, N.W., SUITE 8OO (52) U.S. Cl. ......................................... 514/337; 514/342 WASHINGTON, DC 20037 (US) (57) ABSTRACT (73) Assignee: BrainCells, Inc., San Diego, CA (US) The instant disclosure describes methods for treating diseases and conditions of the central and peripheral nervous system (21) Appl. No.: 12/690,915 including by stimulating or increasing neurogenesis, neuro proliferation, and/or neurodifferentiation. The disclosure (22) Filed: Jan. 20, 2010 includes compositions and methods based on use of a peroxi some proliferator-activated receptor (PPAR) agent, option Related U.S. Application Data ally in combination with one or more neurogenic agents, to (63) Continuation-in-part of application No. 1 1/857,221, stimulate or increase a neurogenic response and/or to treat a filed on Sep. 18, 2007. nervous system disease or disorder. Patent Application Publication Jul. 22, 2010 Sheet 1 of 9 US 2010/O184806 A1 Figure 1: Human Neurogenesis Assay Ciprofibrate Neuronal Differentiation (TUJ1) 100 8090 Ciprofibrates 10-8.5 10-8.0 10-7.5 10-7.0 10-6.5 10-6.0 10-5.5 10-5.0 10-4.5 Conc(M) Patent Application Publication Jul.
    [Show full text]
  • Atypicality of Several Antipsychotics on the Basis of in Vivo Dopamine
    ELSEVIER Atypicality of Several Antipsychotics on the Basis of In Vivo Dopamine-D2 and Serotonin-SHT2 Receptor Occupancy Tomiki Sumiyoshi, M.D., Kimiko Suzuki, M.D., Hiroshi Sakamoto, M.D., Nariyoshi Yamaguchi, M.D., Hirofumi Mori, M.D., Kazuhiro Shiba, Ph.D., and Koichi Yokogawa, Ph.D. An in vivo receptor binding technique was used to were found for clozapine, RMI-81512, and tiospirone evaluate the binding profiles of typical and atypical compared to haloperiodol and pimozide. Zotepine, antipsychotic drugs to striatal dopamine-D2 and frontal mosapramine, and clocapramine produced ratios that fall serotonin-S-HT2 receptors in a rat brain using more between these two groups. Chlorpromazine was specific ligands than those previously employed. [3HJ­ exceptional as a typical antispychotic by these criteria. YM-09151-2 or {3H]-ketanserin was injected into the tail Relatively strong antagonism of S-HT2 receptors by vein 10 minutes after administration of test drugs. One atypical antipsychotics was confirmed by this in vivo hour after the ligand injection, radioactivities in the measure of receptor binding using more selective ligands striatum, frontal cortex, and cerebellum were counted to than those used in previous studies. obtain receptor occupancies by the test drugs. Higher [Neuropsychopharmacology 12:57-64, 1995] ratios of potency in occupying 5-HT2 versus D2 receptors KEY WORDS: Atypical antipsychotic drugs; D2 receptors; likely to produce disturbances of EPS or elevation of S-HT2 receptors; Receptor binding study; In vivo serum prolactin (Young and Meltzer 1980; Porsolt and Jafre 1981; Neale et al. 1983), and demonstrate favor­ positive and negative The mode of action of antipsychotic drugs has been dis­ able clinical efficacy for both are resistant to treatment cussed in relation to their potency to block central symptoms of patients who et al.
    [Show full text]
  • Serotonin Receptors and Drugs Affecting Serotonergic Neurotransmission R ICHARD A
    Chapter 11 Serotonin Receptors and Drugs Affecting Serotonergic Neurotransmission R ICHARD A. GLENNON AND MAŁGORZATA DUKAT Drugs Covered in This Chapter* Antiemetic drugs (5-HT3 receptor • Rizatriptan • Imipramine antagonists) • Sumatriptan • Olanzapine • Alosetron • Zolmitriptan • Propranolol • Dolasetron Drug for the treatment of • Quetiapine • Granisetron irritable bowel syndrome (5-HT4 • Risperidone • Ondansetron agonists) • Tranylcypromine • Palonosetron • Tegaserod • Trazodone • Tropisetron Drugs for the treatment of • Ziprasidone Drugs for the treatment of neuropsychiatric disorders • Zotepine migraine (5-HT1D/1F receptor agonists) • Buspirone Hallucinogenic agents • Almotriptan • Citalopram • Lysergic acid diethylamide • Eletriptan • Clozapine • 2,5-dimethyl-4-bromoamphetamine • Frovatriptan • Desipramine • 2,5-dimethoxy-4-iodoamphetamine • Naratriptan • Fluoxetine Abbreviations cAMP, cyclic adenosine IBS-C, irritable bowel syndrome with nM, nanomoles/L monophosphate constipation MT, melatonin CNS, central nervous system IBS-D, irritable bowel syndrome with MTR, melatonin receptor 5-CT, 5-carboxamidotryptamine diarrhea NET, norepinephrine reuptake transporter DOB, 2,5-dimethyl-4-bromoamphetamine LCAP, long-chain arylpiperazine 8-OH DPAT, 8-hydroxy-2-(di-n- DOI, 2,5-dimethoxy-4-iodoamphetamine L-DOPA, L-dihydroxyphenylalanine propylamino)tetralin EMDT, 2-ethyl-5-methoxy-N,N- LSD, lysergic acid diethylamide PMDT, 2-phenyl-5-methoxy-N,N- dimethyltryptamine MAO, monomaine oxidase dimethyltryptamine GABA, g-aminobutyric acid MAOI,
    [Show full text]