Updated Distributions of Three Species of Yellow Bat (Dasypterus) in Texas Based on Specimen Records
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lasiurus Ega (Southern Yellow Bat)
UWI The Online Guide to the Animals of Trinidad and Tobago Ecology Lasiurus ega (Southern Yellow Bat) Family: Vespertilionidae (Vesper or Evening Bats) Order: Chiroptera (Bats) Class: Mammalia (Mammals) Fig. 1. Southern yellow bat, Lasiurus ega. [http://www.collett-trust.org/uploads/Dasypterus%20ega5.jpg, downloaded 16 February 2016] TRAITS. Lasiurus ega is medium sized with relatively long ears and dull yellow/orange fur (Fig. 1). The span of its wing is approximately 35cm. Its mean body length is 11.8cm; tail length, 5.1cm; foot length, 0.90cm and forearm length 4.7cm and its mass ranges from 10-18g; however, the males are smaller in length and size than the females. They have a short body with a lateral projection of the upper lip and short, rounded ears (Fig. 2). The digits shorten from the 3rd to the 5th finger. Each female possesses 4 mammae whereas the males have a distally spiny penis (Kurta and Lehr, 1995). DISTRIBUTION. Found from the southwestern United States to northern Argentina and Uruguay; also can be found in Mexico and Central America (Fig. 3). The southern yellow bat is native to Trinidad. It has a seasonal migratory pattern in which it moves from the north to avoid the harsh/cold conditions (Encyclopedia of Life, 2016). UWI The Online Guide to the Animals of Trinidad and Tobago Ecology HABITAT AND ACTIVITY. The habitat of the southern yellow bat is forest which has a lot of wooded surroundings, foliage as well as palms. The bat is nocturnal in nature. Sometimes it inhabits thatched roofing and corn stalks that are dried, however they avoid entering mountainous areas. -
Lasiurus Egregius (Peters, 1870) (Chiroptera, Vespertilionidae) in Paraná State, Southern Brazil
15 6 NOTES ON GEOGRAPHIC DISTRIBUTION Check List 15 (6): 1099–1105 https://doi.org/10.15560/15.6.1099 First record of Lasiurus egregius (Peters, 1870) (Chiroptera, Vespertilionidae) in Paraná state, southern Brazil Fernando Carvalho1, 2, Daniela Aparecida Savariz Bôlla3, Karolaine Porto Supi1, Luana da Silva Biz1, 2, Beatriz Fernandes Lima Luciano1, 2, 4, Jairo José Zocche2, 4 1 Universidade do Extremo Sul Catarinense, Laboratório de Zoologia e Ecologia de Vertebrados, Av. Universitária n.1105, Bairro Universitário, Criciúma, SC, CEP: 80806-000, Brazil. 2 Universidade do Extremo Sul Catarinense, Programa de Pós-Graduação em Ciências Ambientais, Av. Universitária n.1105, Bairro Universitário, Criciúma, SC, CEP: 80806-000, Brazil. 3 National Institute for Amazonian Research (INPA), Post Graduation Program in Ecology, Av. André Araújo, n.2936, Bairro Petrópolis, Manaus, AM, CEP: 69.067-375, Brazil. 4 Universidade do Extremo Sul Catarinense, Laboratório de Ecologia de Paisagem e de Vertebrados Av. Universitária n.1105, Bairro Universitário, Criciúma, SC, CEP: 80806-000, Brazil. Corresponding author: Fernando Carvalho e-mail: [email protected] Abstract Lasiurus egregius (Peters, 1870) is an insectivorous bat species known from Central and South America. This species has few confirmed records throughout its distribution. Here we report the first record of L. egregius from the northern coast of Paraná state, southern Brazil. We captured a female individual of L. egregius using an ultrathin mist-net installed over a river knee, at Salto Morato Natural Reserve, municipality of Guaraqueçaba. This is the fourteenth locality with confirmed occurrence of L. egregius, being eight of them in Brazil. The knowledge on the bat fauna in Paraná has been increasing in recent decades, mainly due to the new studies in coast areas of this state. -
Bats of the Savannah River Site and Vicinity
United States Department of Agriculture Bats of the Forest Service Savannah River Site and Vicinity Southern Research Station Michael A. Menzel, Jennifer M. Menzel, John C. Kilgo, General Technical Report SRS-68 W. Mark Ford, Timothy C. Carter, and John W. Edwards Authors: Michael A. Menzel,1 Jennifer M. Menzel,2 John C. Kilgo,3 W. Mark Ford,2 Timothy C. Carter,4 and John W. Edwards5 1Graduate Research Assistant, Division of Forestry, Wildlife and Fisheries, West Virginia University, Morgantown, WV 26506; 2Research Wildlife Biologist, Northeastern Research Station, USDA Forest Service, Parsons, WV 26287; 3Research Wildlife Biologist, Southern Research Station, USDA Forest Service, New Ellenton, SC 29809; 4Graduate Research Assistant, Department of Zoology, Southern Illinois University, Carbondale, IL 62901; and 5Assistant Professor, Division of Forestry, Wildlife and Fisheries, West Virginia University, Morgantown, WV 26506, respectively. Cover photos: Clockwise from top left: big brown bats (photo by John MacGregor); Rafinesque’s big-eared bat (photo by John MacGregor); eastern red bat (photo by John MacGregor); and eastern red bat (photo by Julie Roberge). September 2003 Southern Research Station P.O. Box 2680 Asheville, NC 28802 Bats of the Savannah River Site and Vicinity Michael A. Menzel, Jennifer M. Menzel, John C. Kilgo, W. Mark Ford, Timothy C. Carter, and John W. Edwards Abstract The U.S. Department of Energy’s Savannah River Site supports a diverse bat community. Nine species occur there regularly, including the eastern pipistrelle (Pipistrellus subflavus), southeastern myotis (Myotis austroriparius), evening bat (Nycticeius humeralis), Rafinesque’s big-eared bat (Corynorhinus rafinesquii), silver-haired bat (Lasionycteris noctivagans), eastern red bat (Lasiurus borealis), Seminole bat (L. -
Bats of the Tropical Lowlands of Western Ecuador
Special Publications Museum of Texas Tech University Number 57 25 May 2010 Bats of the Tropical Lowlands of Western Ecuador Juan P. Carrera, Sergio Solari, Peter A. Larsen, Diego F. Alvarado, Adam D. Brown, Carlos Carrión B., J. Sebastián Tello, and Robert J. Baker Editorial comment. One extension of this collaborative project included the training of local students who should be able to continue with this collaboration and other projects involving Ecuadorian mammals. Ecuador- ian students who have received or are currently pursuing graduate degrees subsequent to the Sowell Expeditions include: Juan Pablo Carrera (completed M.A. degree in Museum Science at Texas Tech University (TTU) in 2007; currently pursuing a Ph.D. with Jorge Salazar-Bravo at TTU); Tamara Enríquez (completed M.A. degree in Museum Science at TTU in 2007, Robert J. Baker (RJB), major advisor); René M. Fonseca (received a post- humous M.S. degree from TTU in 2004, directed by RJB); Raquel Marchán-Rivandeneira (M.S. degree in 2008 under the supervision of RJB; currently pursuing a Ph.D. at TTU directed by Richard Strauss and RJB); Miguel Pinto (M.S. degree at TTU in 2009; currently pursuing a Ph.D. at the Department of Mammalogy and Sackler Institute for Comparative Genomics at the American Museum of Natural History, City University of New York); Juan Sebastián Tello (completed a Licenciatura at Pontificia Universidad Católica del Ecuador (PUCE) in 2005 with Santiago Burneo; currently pursuing a Ph.D. at Louisiana State University directed by Richard Stevens); Diego F. Alvarado (pursuing a Ph.D. at University of Michigan with L. -
Lasiurus Borealis (Müller, 1776) Taxonomy Follows Simmons and Cirranello (2021) Call Shape
Guide for Acoustic Identification of Florida bats Family: Vespertilionidae Database species code Lasbor or Labo See glossary for explanation of codes Scientific name Lasiurus borealis (Müller, 1776) Taxonomy follows Simmons and Cirranello (2021) Call shape To view call graphics click on the camera icon on the right. You can then move through all images by using the left or right arrow keys. A left mouse click returns to the fact sheet. Typical North American Vespertilionid pulses with FM reversed J broadband pulses of short duration. However, distinctive for the genus Lasiurus the Fmin shifts up and down. Note that commute calls are longer duration, have a lower frequency and are narrow band. Vocal signature parameters Parameters N Min Max Mean St.Dev 10% 25% 75% 90% Dur 379 2.01 8.99 5.46 1.87 2.87 4.08 7.04 7.91 TBC 354 2.8 3255.4 316.7 394.7 69.4 105.5 341.7 761.8 Fmin 379 37.04 44.20 39.98 1.78 37.74 38.46 41.35 42.55 Fmax 379 39.80 81.63 55.87 8.90 44.15 49.08 61.54 67.80 BW 379 1.34 41.72 15.88 8.82 4.70 8.90 21.23 27.95 Fmean 379 39.02 48.96 44.03 2.62 40.36 41.89 46.16 47.40 Fk 379 37.74 49.69 42.57 2.44 39.41 40.61 44.20 45.98 FcH1 379 18.52 22.47 20.28 0.90 19.14 19.61 20.94 21.62 Fc 379 37.04 44.94 40.56 1.80 38.28 39.22 41.88 43.24 FcH3 379 55.56 67.41 60.84 2.71 57.42 58.83 62.82 64.86 Sc 379 -41.80 169.43 35.10 28.81 5.33 14.57 50.35 71.13 Pmc 379 1.70 107.80 37.87 22.28 10.66 20.35 50.40 68.92 Reported by Szewczak (2018) Lasbor Fc Fmax Fmin FmaxE dur uppr slp lwr slp slp @ Fc total slp Mean 40.4 67.6 40.2 43.8 6.8 10.0 2.0 0.6 4.4 Max 44.0 81.0 43.0 49.0 9.1 16.0 3.2 1.6 7.1 Min 37.0 54.0 37.0 39.0 4.6 4.4 0.7 -0.4 1.7 Source of acoustic data Chris Corben Known counties of distribution Alachua Lee Baker Leon Bay Levy Bradford Liberty Brevard Madison Broward Manatee Calhoun Marion Charlotte Martin Citrus Miami-Dade Clay Monroe Collier Nassau Columbia Okaloosa De Soto Okeechobee Dixie Orange Duval Osceola Escambia Palm Beach Flagler Pasco Franklin Pinellas Gadsden Polk Gilchrist Putnam Glades Santa Rosa Gulf Sarasota Hamilton Seminole Hardee St. -
Patagonian Bats
Mammalia 2020; 84(2): 150–161 Analía Laura Giménez* and Mauro Ignacio Schiaffini Patagonian bats: new size limits, southernmost localities and updated distribution for Lasiurus villosissimus and Myotis dinellii (Chiroptera: Vespertilionidae) https://doi.org/10.1515/mammalia-2019-0024 (i.e. intra and interspecific interactions) and abiotic Received March 10, 2019; accepted June 7, 2019; previously published factors (i.e. temperature, altitude, precipitation and pro- online July 16, 2019 ductivity), together with dispersal ability capacities and the evolutionary history of each lineage (Gaston 2003, Cox Abstract: Vespertilionid species are widely distributed and Moore 2005, Soberón and Peterson 2005). As abiotic in South America. They are highly diverse, with physio- factors are not evenly distributed in space or time, they logical and behavioral adaptations which allow them to shape the borders of species’ distributions trough extreme extend their distributions into temperate areas. In Patago- values (e.g. minimum or maximum temperatures, dry or nia, this family is represented by seven species in three humid areas), which in turn influence resource availabil- genera (Histiotus, Lasiurus and Myotis). In this study, we ity and impose limits to reproduction and survival (Mackey analyzed the distribution of two vespertilionid species, and Lindenmayer 2001, Gaston 2003). In this way, those Lasiurus villosissimus and Myotis dinellii, including new areas with more favorable abiotic (and biotic) conditions southernmost records, and their relationship with envi- will show the highest relative abundance, while records ronmental variables. Two different spatial scales were will become more scarce and more far away from each analyzed: a continental approach for species distribu- other toward the borders of a species’ distribution (Brown tion analyses (South America), and local trapping of bats 2003 and references therein). -
North American Bat Monitoring Program (Nabat) in South Carolina: Acoustic Detection and Landscape Occupancy of Bats Benjamin D
Clemson University TigerPrints All Theses Theses 12-2017 North American Bat Monitoring Program (NABat) in South Carolina: Acoustic Detection and Landscape Occupancy of Bats Benjamin D. Neece Clemson University Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Recommended Citation Neece, Benjamin D., "North American Bat Monitoring Program (NABat) in South Carolina: Acoustic Detection and Landscape Occupancy of Bats" (2017). All Theses. 2780. https://tigerprints.clemson.edu/all_theses/2780 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. NORTH AMERICAN BAT MONITORING PROGRAM (NABAT) IN SOUTH CAROLINA: ACOUSTIC DETECTION AND LANDSCAPE OCCUPANCY OF BATS A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Wildlife and Fisheries Biology by Benjamin D. Neece December 2017 Accepted by: David S. Jachowski, Committee Chair Catherine M. Bodinof Jachowski Yoichiro Kanno Susan C. Loeb 1 ABSTRACT Bats are under threat from habitat loss, energy development, and the disease white-nose syndrome. The North American Bat Monitoring Program (NABat) suggests standardized, large scale monitoring to benefit ecologists and managers. Our first objective was to determine the efficacy of NABat in South Carolina. Detection probabilities differ within and among species and among survey conditions. Thus, our second objective was to determine factors affecting detection probabilities. Finally, effective management strategies addressing large scale threats require landscape scale analyses. Thus, our third objective was to conduct state-wide assessments of environmental factors influencing landscape occupancy and generate predicted distributions. -
Chiroptera: Vespertilionidae)
THERYA, 2021, Vol. 12(2): 283-289 DOI:10.12933/therya-21-1117 ISSN 2007-3364 On the utility of taxonomy to reflect biodiversity: the example of Lasiurini (Chiroptera: Vespertilionidae) AMY B. BAIRD1, JANET K. BRAUN2, MARK D. ENGSTROM3, BURTON K. LIM3, MICHAEL A. MARES2, JOHN C. PATTON4, AND JOHN W. BICKHAM5 * 1 Department of Natural Sciences, University of Houston - Downtown, 77002, Houston. Texas, USA. Email: [email protected] (ABB). 2 Sam Noble Oklahoma Museum of Natural History, University of Oklahoma, 73072, Norman. Okahoma, USA. Email: [email protected] (JKB) [email protected] (MAM). 3 Royal Ontario Museum, M5S 2C6, Toronto. Ontario, Canada. Email: [email protected] (BKL) [email protected] (MDE). 4 5000 Quartz Lane, 79707, Midland. Texas, USA. Email: [email protected] (JCP). 5 Department of Ecology and Conservation Biology, Texas A&M University, 77843, College Station. Texas, USA. Email: [email protected] (JWB). *Corresponding author The taxonomic history of bats of the tribe Lasiurini (Chiroptera: Vespertilionidae) has undergone significant changes over time. Authors at different times have recognized various numbers of genera and subgenera within the tribe. The most recent proposed change to generic level taxonomy (that there should be three genera recognized instead of a single genus) has been debated in the literature. We reviewed papers that commented on the recent changes to lasiurine generic taxonomy, as well as those that have adopted the new taxonomy and the ones that have not. We also reviewed the relevant taxonomic literature from 1942 to the present that shows the fluid taxonomic history of these bats. The literature review shows that the recently proposed taxonomic change recognizing the three groups of lasiurine bats as distinct genera is the only taxonomy that differentiates the tribe from the genera. -
Fire, Land Cover, and Temperature Drivers of Bat Activity in Winter Marcelo H
Jorge et al. Fire Ecology (2021) 17:19 Fire Ecology https://doi.org/10.1186/s42408-021-00105-4 ORIGINAL RESEARCH Open Access Fire, land cover, and temperature drivers of bat activity in winter Marcelo H. Jorge1, Sara E. Sweeten1, Michael C. True1, Samuel R. Freeze1, Michael J. Cherry2, Elina P. Garrison3, Hila Taylor1, Katherine M. Gorman1 and W. Mark Ford4* Abstract Background: Understanding the effects of disturbance events, land cover, and weather on wildlife activity is fundamental to wildlife management. Currently, in North America, bats are of high conservation concern due to white-nose syndrome and wind-energy development impact, but the role of fire as a potential additional stressor has received less focus. Although limited, the vast majority of research on bats and fire in the southeastern United States has been conducted during the growing season, thereby creating data gaps for bats in the region relative to overwintering conditions, particularly for non-hibernating species. The longleaf pine (Pinus palustris Mill.) ecosystem is an archetypal fire-mediated ecosystem that has been the focus of landscape-level restoration in the Southeast. Although historically fires predominately occurred during the growing season in these systems, dormant-season fire is more widely utilized for easier application and control as a means of habitat management in the region. To assess the impacts of fire and environmental factors on bat activity on Camp Blanding Joint Training Center (CB) in northern Florida, USA, we deployed 34 acoustic detectors across CB and recorded data from 26 February to 3 April 2019, and from 10 December 2019 to 14 January 2020. -
The Evolution of Echolocation in Bats: a Comparative Approach
The evolution of echolocation in bats: a comparative approach Alanna Collen A thesis submitted for the degree of Doctor of Philosophy from the Department of Genetics, Evolution and Environment, University College London. November 2012 Declaration Declaration I, Alanna Collen (née Maltby), confirm that the work presented in this thesis is my own. Where information has been derived from other sources, this is indicated in the thesis, and below: Chapter 1 This chapter is published in the Handbook of Mammalian Vocalisations (Maltby, Jones, & Jones) as a first authored book chapter with Gareth Jones and Kate Jones. Gareth Jones provided the research for the genetics section, and both Kate Jones and Gareth Jones providing comments and edits. Chapter 2 The raw echolocation call recordings in EchoBank were largely made and contributed by members of the ‘Echolocation Call Consortium’ (see full list in Chapter 2). The R code for the diversity maps was provided by Kamran Safi. Custom adjustments were made to the computer program SonoBat by developer Joe Szewczak, Humboldt State University, in order to select echolocation calls for measurement. Chapter 3 The supertree construction process was carried out using Perl scripts developed and provided by Olaf Bininda-Emonds, University of Oldenburg, and the supertree was run and dated by Olaf Bininda-Emonds. The source trees for the Pteropodidae were collected by Imperial College London MSc student Christina Ravinet. Chapter 4 Rob Freckleton, University of Sheffield, and Luke Harmon, University of Idaho, helped with R code implementation. 2 Declaration Chapter 5 Luke Harmon, University of Idaho, helped with R code implementation. Chapter 6 Joseph W. -
Genic Studies of Lasiurus (Chiroptera: Vespertilionidae)
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Mammalogy Papers: University of Nebraska State Museum Museum, University of Nebraska State 1-22-1988 Genic Studies of Lasiurus (Chiroptera: Vespertilionidae) Robert J. Baker Texas Tech University, [email protected] John C. Patton Washington University in St Louis Hugh H. Genoways University of Nebraska - Lincoln, [email protected] John W. Bickham Texas A & M University - College Station Follow this and additional works at: https://digitalcommons.unl.edu/museummammalogy Part of the Genetics Commons, and the Zoology Commons Baker, Robert J.; Patton, John C.; Genoways, Hugh H.; and Bickham, John W., "Genic Studies of Lasiurus (Chiroptera: Vespertilionidae)" (1988). Mammalogy Papers: University of Nebraska State Museum. 97. https://digitalcommons.unl.edu/museummammalogy/97 This Article is brought to you for free and open access by the Museum, University of Nebraska State at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Mammalogy Papers: University of Nebraska State Museum by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. OCCASIONAL PAPERS THE MUSEUM TEXAS TECH UNIVERSITY NUMBER 117 22 JANUARY 1988 GENIC STUDIES OF LASIURUS (CHIROPTERA: VESPERTILIONIDAE) Bats of the genus Lasiurus present a number of interesting systematic problems that are difficult to resolve by traditional techniques. Members of the genus share a suite of derived morphological (Hall and Jones, 1961; Handley , 1960) and karyotypic (Bickham 1979, 1988) characteristics. However, until 1960 (Handley, 1960), members were placed in two genera- Lasiurus and Dasypterus-based primarily upon the presence or absence of the small, first upper premolar. Handley (1960) analyzed the differences and similarities among these two genera and concluded they were not distinct even at a subgeneric level. -
SC Bat Conservation Plan CH 3: Species Accounts 49
Chapter 3: Species Accounts In this chapter are individual accounts of the 14 species commonly found in South Carolina. They are arranged in alphabetical order by common name and provide information on identification, taxonomy, distribution, population status, habitat, behavior, reproduction, food habits, seasonal movements, longevity, survival, threats, and conservation measures. The current known distribution of each species is shown in the range maps and indicated by shaded South Carolina counties. Additionally, a summer and winter range are provided for the migratory silver-haired bat, a suspected range for the little brown bat is shown with crosshatching, and an asterisk indicates incidental records for the southeastern bat. This range map information is based on museum records, capture records maintained by the SCDNR, records from rabies testing maintained by the state’s epidemiology lab, and captures recorded in published and unpublished literature such as reports and scientific literature (Menzel et al. 2003a, Mary Bunch, SCDNR, pers. comm.). Size measurements based off of Menzel et al. (2003b) are shown in Table 5. Incidental records exist of the big free-tailed bat (Nyctinomops macrotis) and the federally endangered Indiana bat (Myotis sodalis) (DiSalvo et al. 1992, NatureServe 2017). However, these species are not addressed in this document due to their rarity in the state. Table 5: Size measurements of bat species in the southeastern US. Modified from Menzel et al. (2003b). SC Bat Conservation Plan CH 3: Species Accounts 49 Big Brown Bat (Eptesicus fuscus) head with a broad nose and powerful jaw. The pelage is dark above and light below and varies from glossy dark brown to pale.