Ichnoentomology Insect Traces in Soils and Paleosols Topics in Geobiology

Total Page:16

File Type:pdf, Size:1020Kb

Ichnoentomology Insect Traces in Soils and Paleosols Topics in Geobiology Topics in Geobiology 37 Jorge Fernando Genise Ichnoentomology Insect Traces in Soils and Paleosols Topics in Geobiology Series Editors Neil Landman Peter J. Harries More information about this series at http://www.springer.com/series/6623 Jorge Fernando Genise Ichnoentomology Insect Traces in Soils and Paleosols Jorge Fernando Genise Principal Researcher National Research Council of Argentina Founder, National Ichnological Collection and Division Icnología of the Museo Argentino de Ciencias Naturales President of the First International Congress on Ichnology (Ichnia 2004) ISSN 0275-0120 Topics in Geobiology ISBN 978-3-319-28208-4 ISBN 978-3-319-28210-7 (eBook) DOI 10.1007/978-3-319-28210-7 Library of Congress Control Number: 2016946484 © Springer International Publishing Switzerland 2017 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Printed on acid-free paper This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG Switzerland Dedicated to (in order of appearance): Diego, Nahuel, Sofía, Federico, Ivan, and Santiago Foreword In 1993, a mere year after fi nishing our Ph.D. theses, we traveled from Northwest Argentina to the city of Santa Rosa in the central part of the country to attend the First Argentinean Meeting of Ichnology. During the conference, we met an ento- mologist from the Natural Sciences Museum in Buenos Aires by the name of Jorge Genise. This person seemed to be quite an interesting character; somebody told us that he had spent days inside a mammal-produced cave near the coastal city of Mar del Plata, looking at its scratch-ornamented walls. Jorge was essentially an ento- mologist by training, but his interests were clearly far and beyond insect systemat- ics. At that time, one of our research lines was freshwater ichnology with a focus on lake systems from a geologic perspective, and Jorge was working on terrestrial ich- nofaunas from a biologic standpoint. The two research lines were in perfect coordi- nation, but the interesting point is that it was by pure chance; neither Jorge knew about our existence, nor did any of us know about him. And, to make things even more curious, it happened in a remote area of the South American continent, a place away from the leading centers of ichnology in the Northern Hemisphere. Since then, the three of us have been lucky to be part of a group of researchers who started to revitalize the fi eld of continental ichnology. In fact, Jorge has been fundamental in “injecting some fresh blood” into research on insect trace fossils, and in reminding us that these structures are close relatives to modern ones; not just ancient objects but they provide real and reliable testimony of the activities of animals. During the last two decades, Jorge and his group of students accomplished a huge and highly signifi cant task, i.e., providing ichnologists, paleobiologists, sedi- mentologists, and stratigraphers with a conceptual and taxonomic framework to understand and classify continental trace fossils. Please note that for a scientist, it is critical to fi rst improve the understanding (i.e., the careful examination of data, detailed analysis, and fi nal synthesis based on solid observations) and only then focus on the classifi cation that is essential to provide tools of comparison and com- munication among scientists. vii viii Foreword Jorge and his team have carefully crafted a patchwork of pieces of information that ranges from a description of individual elements of trace fossils themselves as well as the larger scale ichnofacies model. Before Jorge started his ichnological research, general knowledge of paleosol ichnology was rather patchy and poorly articulated. A fair number of ichnotaxa had been defi ned, but there was limited understanding of their paleobiologic and paleoethologic meaning. The ichnofacies model was also heavily biased towards interpreting marine environments. Twenty years later, the picture of the whole fi eld is radically different. It is rather commend- able that a single working group has accomplished so much and been at the fore- front and center of such an impressive transformation. This book is the result of Jorge’s many years of intense and fruitful work. It is a book with personality, and discusses ichnological concepts in detail without losing sight of the big picture. The reader will discover details about the micromorphology of nest walls as well as the broader applications of ichnology to understand the evo- lution of insect behavior. Only seldom does one have the opportunity of reading a book that opens a whole new fi eld. This is one of those rare cases because the book represents the foundation of a novel area of research—ichnoentomology—connecting with blood the living to the fossil. Initiating such a fi eld requires the toolbox of an entomologist and the vision of a paleobiologist. Jorge has successfully combined these two facets. Readers will not only discover Jorge’s rigorous research practices, but also his unique sense of humor. We invite the readers to pay special attention to the epigraphs of each chapter which are delightful to explore, and help us connect science to other fi elds of intellectual endeavors. Who knows? While trying to under- stand how to classify enigmatic structures found during the last fi eld season, the reader may just end up discovering Borges or Cortazar—it is not just about science. Luis A. Buatois M. Gabriela Mángano Pref ace In a preface, an author generally briefl y explains what inspired him to write a book. I cannot do this without providing a brief history of discoveries and ideas that have fuelled the fi re of the South American tradition of research on insect fossils, and how I came across these traditions and some of its pioneering representatives. Whether or not it has been recognized, there is a South American school on con- tinental ichnology, that is responsible for the development of pioneer work on paleosols and their trace fossils. The origins of this school can be traced back to the nineteenth century. Contemporary representatives include Eduardo Bellosi, Luis Buatois, Gabriela Mángano, Ricardo Melchor, Renata Netto, Mariano Verde, and myself among others, who organized the First International Congress on Ichnology (Ichnia 2004) in Trelew, Argentina. Surely, this book and my embracing of insect trace fossils research, either consciously or unconsciously, has something to do with that tradition. It is a tradition that in the past lacked any direct connection between masters and disciples. This fi eld has developed under a “pick up the gauntlet” style. We are not sure if the Uruguayan Lucas Roselli had read Serafi n Rivas’s fi rst men- tion of insect fossil nests in 1884 when he wrote his fi rst paper on insect paleoich- nology in 1939. Serafín Rivas (1838–1913) was a Spanish physician who lived in Uruguay and mentioned for the fi rst time (to my knowledge) insect (hymenopteran) nests, from paleosols worldwide. They were from the red sandstones of the Asencio Formation of Uruguay. His work had been signed on February 1881, but it was actu- ally published by 1884. It seems like a very simple discovery or interpretation today, but in the nineteenth century to even think that insect nests could be fossilized and found preserved in rocks was an impressive intellectual advance. Even when Asencio’s nests look very much as extant ones just transformed in rock, their com- plexity leaves few doubts on their origin. It is also unclear whether the Italian- Argentinian geologist and paleontologist Joaquin Frenguelli (1883–1958) knew of Rivas’s note when he described fossil bee cells from the limestone formations of Uruguay for the fi rst time in 1930 (Chap. 10 ). Frenguelli went on to publish pioneer works on insect fossil nests from hymenopterans, coleopterans, rhizoliths, and paleosols from Patagonia and other localities of Argentina (Chap. 20 ). While these works might seem simple, they were groundbreaking and inspirational achievements ix x Preface of their time. The phrases nidos de véspidos solitarios meaning solitary wasps nests, and nidos de escarabeidos meaning scarab nests or dung beetle nests have been used in the South American geological literature until now. We do know, however, that Frenguelli was aware of Roselli’s work because of an article published in 1946, in which the former argued against the use of naming trace fossils as Roselli did, and also criticized his interpretations of some insect nests. Francisco Lucas Roselli (1902–1987), a self-taught Uruguayan paleontologist, naturalist, blacksmith, and professor of natural sciences in Nueva Palmira fi rst described and named what is still the largest number of insect trace fossils from paleosols. In 1939, Roselli named four ichnogenera and fi ve ichnospecies of insect nests and pupation chambers from the Asencio Formation of Uruguay and almost half a century later described 13 ichnogenera and 15 ichnospecies of trace fossils attributed to bees, dung beetles, cicadas, and chafers right before he passed away.
Recommended publications
  • A Remarkable Caddisfly with Bipectinate Antennae in Cretaceous
    Cretaceous Research 69 (2017) 198e203 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes Short communication A remarkable caddisfly with bipectinate antennae in Cretaceous Burmese amber (Insecta, Trichoptera) * Wilfried Wichard a, Bo Wang b, c, a Institute of Biology, University of Koeln, Gronewaldstr. 2, D 50931 Koeln, Germany b State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China c Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Science, Beijing 100101, China article info abstract Article history: A new caddisfly (Trichoptera), Palaeopsilotreta xiai gen. et sp. nov. is described based on three well- Received 8 August 2016 preserved male specimens from mid-Cretaceous Burmese amber. It is assigned to the extant family Received in revised form Odontoceridae. Palaeopsilotreta is similar to the extant genus Psilotreta but differs from the latter by 19 September 2016 partially bipectinate antennae which are unknown among living Trichoptera. Our fossils are not only the Accepted in revised form 28 September only Mesozoic Odontoceridae, but also hitherto the earliest record of this family. 2016 © Available online 29 September 2016 2016 Elsevier Ltd. All rights reserved. Keywords: Taxonomy Fossil caddisfly Palaeopsilotreta xiai Psilotreta Odontoceridae 1. Introduction insights into the evolution of this lineage. In this paper, we describe a new extinct genus and species placed in the family Odontocer- Burmese amber (from northern Myanmar) contains the most idae: Palaeopsilotreta xiai gen. et sp. nov., based on three well- diverse biota in amber from the mid-Cretaceous and more than 250 preserved male specimens.
    [Show full text]
  • Minutes of the January 25, 2010, Meeting of the Board of Regents
    MINUTES OF THE JANUARY 25, 2010, MEETING OF THE BOARD OF REGENTS ATTENDANCE This scheduled meeting of the Board of Regents was held on Monday, January 25, 2010, in the Regents’ Room of the Smithsonian Institution Castle. The meeting included morning, afternoon, and executive sessions. Board Chair Patricia Q. Stonesifer called the meeting to order at 8:31 a.m. Also present were: The Chief Justice 1 Sam Johnson 4 John W. McCarter Jr. Christopher J. Dodd Shirley Ann Jackson David M. Rubenstein France Córdova 2 Robert P. Kogod Roger W. Sant Phillip Frost 3 Doris Matsui Alan G. Spoon 1 Paul Neely, Smithsonian National Board Chair David Silfen, Regents’ Investment Committee Chair 2 Vice President Joseph R. Biden, Senators Thad Cochran and Patrick J. Leahy, and Representative Xavier Becerra were unable to attend the meeting. Also present were: G. Wayne Clough, Secretary John Yahner, Speechwriter to the Secretary Patricia L. Bartlett, Chief of Staff to the Jeffrey P. Minear, Counselor to the Chief Justice Secretary T.A. Hawks, Assistant to Senator Cochran Amy Chen, Chief Investment Officer Colin McGinnis, Assistant to Senator Dodd Virginia B. Clark, Director of External Affairs Kevin McDonald, Assistant to Senator Leahy Barbara Feininger, Senior Writer‐Editor for the Melody Gonzales, Assistant to Congressman Office of the Regents Becerra Grace L. Jaeger, Program Officer for the Office David Heil, Assistant to Congressman Johnson of the Regents Julie Eddy, Assistant to Congresswoman Matsui Richard Kurin, Under Secretary for History, Francisco Dallmeier, Head of the National Art, and Culture Zoological Park’s Center for Conservation John K.
    [Show full text]
  • Amphiesmeno- Ptera: the Caddisflies and Lepidoptera
    CY501-C13[548-606].qxd 2/16/05 12:17 AM Page 548 quark11 27B:CY501:Chapters:Chapter-13: 13Amphiesmeno-Amphiesmenoptera: The ptera:Caddisflies The and Lepidoptera With very few exceptions the life histories of the orders Tri- from Old English traveling cadice men, who pinned bits of choptera (caddisflies)Caddisflies and Lepidoptera (moths and butter- cloth to their and coats to advertise their fabrics. A few species flies) are extremely different; the former have aquatic larvae, actually have terrestrial larvae, but even these are relegated to and the latter nearly always have terrestrial, plant-feeding wet leaf litter, so many defining features of the order concern caterpillars. Nonetheless, the close relationship of these two larval adaptations for an almost wholly aquatic lifestyle (Wig- orders hasLepidoptera essentially never been disputed and is supported gins, 1977, 1996). For example, larvae are apneustic (without by strong morphological (Kristensen, 1975, 1991), molecular spiracles) and respire through a thin, permeable cuticle, (Wheeler et al., 2001; Whiting, 2002), and paleontological evi- some of which have filamentous abdominal gills that are sim- dence. Synapomorphies linking these two orders include het- ple or intricately branched (Figure 13.3). Antennae and the erogametic females; a pair of glands on sternite V (found in tentorium of larvae are reduced, though functional signifi- Trichoptera and in basal moths); dense, long setae on the cance of these features is unknown. Larvae do not have pro- wing membrane (which are modified into scales in Lepi- legs on most abdominal segments, save for a pair of anal pro- doptera); forewing with the anal veins looping up to form a legs that have sclerotized hooks for anchoring the larva in its double “Y” configuration; larva with a fused hypopharynx case.
    [Show full text]
  • Explore the Caddisfly Go.Wisc.Edu/89Z9gt Answer These Before You Watch the Video
    WISCONSIN SEA GRANT ANSWER KEY Explore the Caddisfly go.wisc.edu/89z9gt Answer these before you watch the video... Answer this after you watch... Something I already KNOW about the Something I am CURIOUS about and The most interesting fact Caddisfly want to know I LEARNED FIELD NOTES As you watch the video, jot down observations (what you notice) and new facts in the spaces below. 1 June 2020 Helpful Vocabulary adaptation: modification of an organism or its parts that makes it more fit for living under the conditions of its environment; a heritable physical or behavioral trait that serves a specific function and improves an organism's fitness or survival community: all the living things existing in the same place at the same time dichotomous key: a resource used to identify a species using characteristics and differences between similar species ecosystem: the communities of living and nonliving things interacting in the same space habitat: where an individual organism exists hatch: group of young born at the same time in the same place macroinvertebrate: any animal lacking a backbone and large enough to see without the aid of a microscope. Macroinvertebrates are exothermic (or cold- blooded) and may be aquatic or terrestrial. substrate: the base on which an organism lives 2 June 2020 Field Notes: A Protective Case An unusual thing about the caddisfly is its ability to create a protective case for shelter and protection, using items found in its habitat. Draw a caddisfly in its case. 3 June 2020 Personalize It: A Protective Case Draw or describe (in scientific narrative or in poetry) your own ideal protective case for shelter, using whatever you find or see in your habitat.
    [Show full text]
  • Diversity and Ecosystem Services of Trichoptera
    Review Diversity and Ecosystem Services of Trichoptera John C. Morse 1,*, Paul B. Frandsen 2,3, Wolfram Graf 4 and Jessica A. Thomas 5 1 Department of Plant & Environmental Sciences, Clemson University, E-143 Poole Agricultural Center, Clemson, SC 29634-0310, USA; [email protected] 2 Department of Plant & Wildlife Sciences, Brigham Young University, 701 E University Parkway Drive, Provo, UT 84602, USA; [email protected] 3 Data Science Lab, Smithsonian Institution, 600 Maryland Ave SW, Washington, D.C. 20024, USA 4 BOKU, Institute of Hydrobiology and Aquatic Ecology Management, University of Natural Resources and Life Sciences, Gregor Mendelstr. 33, A-1180 Vienna, Austria; [email protected] 5 Department of Biology, University of York, Wentworth Way, York Y010 5DD, UK; [email protected] * Correspondence: [email protected]; Tel.: +1-864-656-5049 Received: 2 February 2019; Accepted: 12 April 2019; Published: 1 May 2019 Abstract: The holometabolous insect order Trichoptera (caddisflies) includes more known species than all of the other primarily aquatic orders of insects combined. They are distributed unevenly; with the greatest number and density occurring in the Oriental Biogeographic Region and the smallest in the East Palearctic. Ecosystem services provided by Trichoptera are also very diverse and include their essential roles in food webs, in biological monitoring of water quality, as food for fish and other predators (many of which are of human concern), and as engineers that stabilize gravel bed sediment. They are especially important in capturing and using a wide variety of nutrients in many forms, transforming them for use by other organisms in freshwaters and surrounding riparian areas.
    [Show full text]
  • First Record of a Fungus Weevil (Coleoptera; Anthribidae) from the Upper Cretaceous Arzamazovskaya Formation, Primorsky Krai, Russian Far East
    Cretaceous Research 106 (2020) 104246 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes Short communication First record of a fungus weevil (Coleoptera; Anthribidae) from the Upper Cretaceous Arzamazovskaya Formation, Primorsky Krai, Russian Far East Andrei A. Legalov a, b a Institute of Systematics and Ecology of Animals of the Siberian Branch of Russian Academy of Sciences, Frunze Street, 11, Novosibirsk, 630091, Russia b Altai State University, Lenina Street, 61, Barnaul, 656049, Russia article info abstract Article history: A new fungus weevil, Arzamazorhinus neli gen. et sp. nov. belonging to the subfamily Anthribinae is Received 13 May 2019 described from Primorsky Krai, Upper Cretaceous, Turonian e Coniacian. The new genus differs from Received in revised form other genera of the tribe Ecelonerini in the ventral antennal scrobes and rather long rostrum. It is 8 August 2019 distinguished from the genus Cretanthribus Legalov, 2009 (tribe Cretanthribini) fungus weevil described Accepted in revised form 9 September 2019 from Cretaceous deposits of Khetana in the Russian Far East, by the pronotum possessing transverse Available online 16 September 2019 carina, a rather long subparallel rostrum not sagittate at apex, and lacking transverse eyes. This is the first record of Anthribidae from the late Cretaceous and the first coleopteran described from the Arzama- Keywords: Curculionoidea zovskaya Formation in the Russian Far East. © Anthribinae 2019 Elsevier Ltd. All rights reserved. New taxa Primorsky Krai Late Cretaceous Turonian e Coniacian 1. Introduction Cretaceous and the first Coleoptera described from the Turonian e Coniacian of the Arzamazovskaya Formation (Russian Far East). Fungus weevils (family Anthribidae Billberg, 1820) are a very diverse group of primitive weevils adapted for development in 2.
    [Show full text]
  • The Fluctuating Asymmetry of the Butterfly Wing Pattern Does Not Change Along an Industrial Pollution Gradient
    S S symmetry Article The Fluctuating Asymmetry of the Butterfly Wing Pattern Does Not Change along an Industrial Pollution Gradient Vitali Zverev and Mikhail V. Kozlov * Department of Biology, University of Turku, 20014 Turku, Finland; vitzve@utu.fi * Correspondence: mikoz@utu.fi Abstract: The rapid and selective responses to changes in habitat structure and climate have made butterflies valuable environmental indicators. In this study, we asked whether the decline in butterfly populations near the copper-nickel smelter in Monchegorsk in northwestern Russia is accompanied by phenotypic stress responses to toxic pollutants, expressed as a decrease in body size and an increase in fluctuating asymmetry. We measured the concentrations of nickel and copper, forewing length, and fluctuating asymmetry in two elements of wing patterns in Boloria euphrosyne, Plebejus idas, and Agriades optilete collected 1–65 km from Monchegorsk. Body metal concentrations increased toward the smelter, confirming the local origin of the collected butterflies. The wings of butterflies from the most polluted sites were 5–8% shorter than those in unpolluted localities, suggesting adverse effects of pollution on butterfly fitness due to larval feeding on contaminated plants. However, fluctuating asymmetry averaged across two hindwing spots did not change systematically with pollution, thereby questioning the use of fluctuating asymmetry as an indicator of habitat quality in butterfly conservation projects. Keywords: copper-nickel smelter; fluctuating asymmetry; Kola Peninsula; Lepidoptera; phenotypic Citation: Zverev, V.; Kozlov, M.V. stress responses; wing length The Fluctuating Asymmetry of the Butterfly Wing Pattern Does Not Change along an Industrial Pollution Gradient. Symmetry 2021, 13, 626. https://doi.org/10.3390/sym13040626 1.
    [Show full text]
  • Some Ecological Relationships of Mayflies, Caddisflies, and Fish in the Mississippi River Near Keokuk, Iowa " (1965)
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1965 Some ecological relationships of mayflies, caddisflies, nda fish in the Mississippi River near Keokuk, Iowa Thomas Lee Wenke Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Zoology Commons Recommended Citation Wenke, Thomas Lee, "Some ecological relationships of mayflies, caddisflies, and fish in the Mississippi River near Keokuk, Iowa " (1965). Retrospective Theses and Dissertations. 2845. https://lib.dr.iastate.edu/rtd/2845 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been micioiihned exactly as received 66-3909 WENKEi Thomas Lee, 1935- SOME ECOLOGICAL RELATIONSHIPS OF MAYFLIES, CADDISFLIES, AND FISH IN THE MISSISSIPPI RIVER NEAR KEOKUK, IOWA. Iowa State University of Science and Technology Ph.D., 1965 Zoology University Microfilms, Inc., Ann Arbor, Michigan SOME ECOLOGICAL RELATIONSHIPS OF MAYFLIES, CADDISFLIES, AND FISH IN THE MISSISSIPPI RIVER NEAR KEOKUK, IOWA by Thomas Lee Wenke A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Zoology Approved: Signature was redacted for privacy. Signature was redacted for privacy. Head of Major Department Signature was redacted for privacy. ramlate College Iowa State University Of Science and Technology Ames, Iowa 1965 PLEASE NOTE: Figure pages are not original copy.
    [Show full text]
  • Caddisfly by Ian Cox Caddis Belong to the Order Trichoptera Which Translates from the Original Greek As Hair Wing. So When We Ta
    Caddisfly By Ian Cox Caddis belong to the order Trichoptera which translates from the original Greek as hair wing. So when we talk of an elk hair caddis we are committing the sin of tautology. Sedge is another name for caddis. They are found throughout South Africa and in all waters, from still to very fast flowing. For more on the caddis and its lifecycle see Caddis Fly. Most of the Caddis’ life is spent underwater as a larvae. Caddis larvae are either cased (which is when the larvae build a protective casing of debris around them) or the free living soft and squidgy larvae which don’t. Cased Caddis larvae are confined largely to the acidic streams of the Western and Southern Cape. In fact only one family of cased Caddis larvae is found outside these streams. They are the Pisuliidae and they construct a case out of twigs. They are also by far the largest member of the caddis having a case of some 2 to 2.5cm in length. Pisuliidae are found throughout South Africa in shady conditions generally where water is slow moving. It is unlikely that you are going to spend much time imitating cased Caddis larvae. For the most part when we imitate Caddis larvae we go for the soft squidgy ones. These do not get very big. They average around the 1 to 1.5 cm mark. South African’s are no strangers to fishing larvae imitations. Put simply the Czech Nymph much loved by those who pursue yellows on the Vaal, while originally a shrimp imitation, has morphed into a case-less caddis larvae.
    [Show full text]
  • Dichotomous Key to Orders
    FRST 307 Introduction to Entomology KEY TO COMMON INSECT ORDERS What is a Key? In biological sciences a “key” is a written tool used to determine the taxonomic identification of plants, animals, soils, etc. For this lab, a key will be used to identify insects to Order. More detailed identifications to family, genus and species are beyond the scope of this course, but can be accomplished using appropriate guides available from the library. Taking a Closer Look Because insects are so small, differentiating among species, families and even orders is often difficult. However, examination beneath a hand lens or microscope will allow you to see many of the characters mentioned in the key. Why Use a Key? Sometimes, you can identify an insect quickly by comparing it to pictures in field guides or on the internet. Pictures are a great tool, but the use of a key is essential to guarantee that your identification is accurate. Why? Because some insects, even ones from separate orders, can look almost exactly alike. For example, many flies (order Diptera) look almost exactly like wasps (order Hymenoptera). Using your key, you will find that a fly has 1 pair of wings, whereas wasps have 2 pairs of wings. Key to Adult Insects Only Remember - immature insects and adult insects are often very different. This is especially true for holometabolous (complete metamorphosis) insects where the immature stages are larvae and pupae. The key included in this guide is only useful for keying adult insects to order. Also, this key does not cover other creatures related to insects, like spiders, sowbugs, and centipedes.
    [Show full text]
  • CADDISFLIES: Six Legs, Often in a Hardened Case of Mineral Or Organic Matter, 11
    CADDISFLIES: Six legs, often in a hardened case of mineral or organic matter, 11. 12. may be ‘free living’ and not in a case. Head distinctly hardened and often patterned, hooks at the end of body, may or may not have gills along abdomen. FREE LIVERS 11. Net Spinning Caddisflies: ‘C’ shaped in the pan, bushy gills underneath body and at tail, builds a retreat to hide in (commonly silken nets with wood or gravel anchors). Net spinners have a head as wide as the thorax of the body. 12. Small Head Caddisflies: These insects resemble net spinners, but have no gills under the body 13. 14. and a much narrower head. They may be white, green or brown, with a fat body and rapid ‘inch-worm’ movement. ORGANIC CASE 13. Stick Bait Caddisflies: 1” – 3” including case, dark brown spots on their yellowish heads. These caddis may be distinguished from other wood and stick cased caddis by the prominent ‘ballast’ pieces of sticks that are attached to the sides of the case. 15. 16. 14. Square Log Cabin Caddisflies: Cases are stouter than other square cases, constructed from wound strips of wood fibers, as opposed to fragments of leaves. Insects greenish or cream colored, prominent brushes of seta on the first pair of legs. 15. Sand and Stick Case Caddisflies: Cases constructed from both mineral and organic materials 17. 18. belong in this category and may be a variety of shapes and sizes. 16. Vegetated Case Caddisflies: This category is for all caddisflies with organic cases that do not fit the other categories above.
    [Show full text]
  • Species (Hymenoptera, Formicidae, Formicinae) in Late Eocene Rovno Amber
    JHR 82: 237–251 (2021) doi: 10.3897/jhr.82.64599 RESEARCH ARTICLE https://jhr.pensoft.net Formica species (Hymenoptera, Formicidae, Formicinae) in late Eocene Rovno amber Alexander G. Radchenko1, Evgeny E. Perkovsky1, Dmitry V. Vasilenko2,3 1 Schmalhausen Institute of zoology of National Academy of Sciences of Ukraine, Kiev, 01030, Ukraine 2 Bo- rissiak Paleontological Institute, Russian Academy of Sciences, Moscow, 117647, Russia 3 Cherepovets State University, Cherepovets, 162600, Russia Corresponding author: Alexander G. Radchenko ([email protected]) Academic editor: F.H. Garcia | Received 18 February 2021 | Accepted 7 April 2021 | Published 29 April 2021 http://zoobank.org/D68193F7-DFC4-489E-BE9F-4E3DD3E14C36 Citation: Radchenko AG, Perkovsky EE, Vasilenko DV (2021) Formica species (Hymenoptera, Formicidae, Formicinae) in late Eocene Rovno amber. Journal of Hymenoptera Research 82: 237–251. https://doi.org/10.3897/ jhr.82.64599 Abstract A new species, Formica ribbeckei Radchenko & Perkovsky, sp. nov., is described based on four workers from late Eocene Rovno amber (Ukraine). It most resembles F. flori Mayr, 1868 but differs from the latter mainly by the 5-segmented maxillary palps with the preapical segment subequal in length to the apical one, and by the shorter first funicular segment. Fossil F. luteola Presl, 1822, F. trigona Presl, 1822, F. mac- rognatha Presl, 1822 and F. quadrata Holl, 1829 are considered incertae sedis in Formicidae. Thus, ten valid Formica Linnaeus, 1758 species (including F. ribbeckei) are known now from late Eocene European ambers. The diversity of Formica in the early and middle Eocene deposits of Eurasia and North America is considered. It is assumed that the genus Formica most likely arose in the early Eocene.
    [Show full text]