Insights Into the Toxicity and Degradation Mechanisms of Imidacloprid Via Physicochemical and Microbial Approaches

Total Page:16

File Type:pdf, Size:1020Kb

Insights Into the Toxicity and Degradation Mechanisms of Imidacloprid Via Physicochemical and Microbial Approaches toxics Review Insights into the Toxicity and Degradation Mechanisms of Imidacloprid Via Physicochemical and Microbial Approaches Shimei Pang 1,2, Ziqiu Lin 1,2, Yuming Zhang 1,2, Wenping Zhang 1,2, Nasser Alansary 1,2, Sandhya Mishra 1,2 , Pankaj Bhatt 1,2 and Shaohua Chen 1,2,* 1 State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; [email protected] (S.P.); [email protected] (Z.L.); [email protected] (Y.Z.); [email protected] (W.Z.); [email protected] (N.A.); [email protected] (S.M.); [email protected] (P.B.) 2 Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China * Correspondence: [email protected]; Tel.: +86-20-8528-8229 Received: 22 July 2020; Accepted: 26 August 2020; Published: 1 September 2020 Abstract: Imidacloprid is a neonicotinoid insecticide that has been widely used to control insect pests in agricultural fields for decades. It shows insecticidal activity mainly by blocking the normal conduction of the central nervous system in insects. However, in recent years, imidacloprid has been reported to be an emerging contaminant in all parts of the world, and has different toxic effects on a variety of non-target organisms, including human beings, due to its large-scale use. Hence, the removal of imidacloprid from the ecosystem has received widespread attention. Different remediation approaches have been studied to eliminate imidacloprid residues from the environment, such as oxidation, hydrolysis, adsorption, ultrasound, illumination, and biodegradation. In nature, microbial degradation is one of the most important processes controlling the fate of and transformation from imidacloprid use, and from an environmental point of view, it is the most promising means, as it is the most effective, least hazardous, and most environmentally friendly. To date, several imidacloprid-degrading microbes, including Bacillus, Pseudoxanthomonas, Mycobacterium, Rhizobium, Rhodococcus, and Stenotrophomonas, have been characterized for biodegradation. In addition, previous studies have found that many insects and microorganisms have developed resistance genes to and degradation enzymes of imidacloprid. Furthermore, the metabolites and degradation pathways of imidacloprid have been reported. However, reviews of the toxicity and degradation mechanisms of imidacloprid are rare. In this review, the toxicity and degradation mechanisms of imidacloprid are summarized in order to provide a theoretical and practical basis for the remediation of imidacloprid-contaminated environments. Keywords: imidacloprid; toxicity; microbialdegradation; physicochemicaldegradation; degradationmechanisms 1. Introduction Imidacloprid (1-((6-chloro-3-pyridinyl) methyl)-N-nitro-2-imidazolidnimine) is a colorless crystal neonicotinoid insecticide, which belongs to the chloronitroguanidine compounds, with a melting point of 143.8 ◦C. Imidacloprid is a polar compound, chemically stable under neutral and acidic conditions, but decomposes gradually in alkaline solutions [1]. Systemic insecticide neonicotinoids are recognized as a valuable tool for pest control, especially imidacloprid. It is widely used to control pests with piercing–sucking mouthparts on crops. In addition, it is reported that imidacloprid can effectively cure many cases of cardiopulmonary parasite infection in European feral cats [2]. Toxics 2020, 8, 0065; doi:10.3390/toxics8030065 www.mdpi.com/journal/toxics Toxics 2020, 8, x FOR PEER REVIEW 2 of 35 melting point of 143.8 °C. Imidacloprid is a polar compound, chemically stable under neutral and acidic conditions, but decomposes gradually in alkaline solutions [1]. Systemic insecticide Toxicsneonicotinoids2020, 8, 0065 are recognized as a valuable tool for pest control, especially imidacloprid. It is widely2 of 31 used to control pests with piercing–sucking mouthparts on crops. In addition, it is reported that imidacloprid can effectively cure many cases of cardiopulmonary parasite infection in European feral catsImidacloprid [2]. Imidacloprid was first registeredwas first registered in the United in the States United (U.S.) States in 1992 (U.S.) by Milesin 1992 Inc., by and Miles was Inc., approved and was by approvedthe U.S. Environmental by the U.S. Environmental Protection Agency Protection (EPA) inAgency 1994 [1 (EPA)]. Although in 1994 imidacloprid [1]. Although was imidacloprid listed as one wasof the listed world’s as one best-selling of the world’s pesticides best-selling in 2000, pesticides the European in 2000, Union the European banned itsUnion use onbanned outdoor its use crops on outdoorentirely incrops 2018, entirely after suspending in 2018, after its suspending use in 2013 its [3]. use Imidacloprid in 2013 [3]. canImidacloprid be used for can leaf be spraying used for andleaf sprayingsoil and seed and treatment,soil and seed all treatment, of which have all of had whic negativeh have ehadffects negative on ecosystem effects services,on ecosystem including services, the includingkilling of non-targetthe killing organisms of non-target with organisms significant with economic significant value, economic such as pollinators, value, such honey as pollinators, providers, honeyand natural providers, insects and that natural benefit insects farmers that [4 ].benefit The pesticidefarmers [4]. toxicity The pesticide load on thetoxicity environment load on hasthe environmentincreased approximately has increased 50 approximately times in the past 50 20 times years. in Thethe negativepast 20 years. influence The onnegative related influence ecosystems on relatedis the main ecosystems cause ofis the main increase cause in of the the toxicity increase load, in the which toxicity in turnload, may which be in a turn threat may to be the a healththreat toof beesthe health and other of bees pollinators, and other resulting pollinators, in a resulting reduction in in a beneficialreduction insectin beneficial populations, insect otherpopulations, insects, otherand insect-eating insects, and birds insect-eating [5]. Imidacloprid birds [5]. damages Imidacloprid the biological damages nervous the biological system throughnervous calciumsystem throughion imbalance, calcium mitochondrial ion imbalance, dysfunction, mitochondrial oxidative dysfunction, stress, and oxidative DNA damage, stress, ultimatelyand DNA leading damage, to ultimatelybiological deathleading [6 ].to In biological recent years, death imidacloprid [6]. In recent has years, been imidacloprid reported to be has an been emerging reported contaminant to be an emergingin all parts contaminant of the world, in and all it parts has the of potentialthe world, to adverselyand it has impact the potential ecosystems to andadversely human impact health (Figureecosystems1). Therefore, and human the health removal (Figure of imidacloprid 1). Therefore, residues the removal from the of ecosystem imidacloprid is a worldwide residues from concern the ecosystemand priority. is a worldwide concern and priority. Figure 1. TheThe fate fate and occurrence of imid imidaclopridacloprid in the environment. In nature, (bio) degradation is one of the most important processes controlling the fate of and transformation from imidacloprid use. There There are are many many aspects of pesticide degradation research worldwide [7[7–10].–10]. The The current current main main methods methods of imidacloprid of imidacloprid degradation degradation include: include: (1) Physical (1) methodsPhysical methodssuch as ultrasonic such as ultrasonic technology, technology, washing, absorption, washing, andabsorption, ionizing and radiation; ionizing (2) radiation; chemical methods (2) chemical such methodsas hydrolysis, such oxidativeas hydrolysis, decomposition, oxidative anddecomposi light chemicaltion, and degradation; light chemical and (3)degradation; biological methodsand (3) biologicalsuch as microbial methods degradation such as microb enzymesial degradation and engineering enzymes bacteria and engin (Figureeering2). These bacteria degradation-related (Figure 2). These studies have made considerable progress. Facing the persistence of surface water and the high leaching potential of groundwater, many traditional methods, such as Fenton oxidation, photodegradation, catalytic oxidation, adsorption, and biodegradation, are being used to deal with these problems [1]. Toxics 2020, 8, x FOR PEER REVIEW 3 of 35 degradation-related studies have made considerable progress. Facing the persistence of surface water and the high leaching potential of groundwater, many traditional methods, such as Fenton oxidation, Toxicsphotodegradation,2020, 8, 0065 catalytic oxidation, adsorption, and biodegradation, are being used to deal3 with of 31 these problems [1]. Figure 2. Degradation methods of imidacloprid. Figure 2. Degradation methods of imidacloprid. The effects and fate of pesticides on soil depend, in part, on farming practices [11]. Pesticide residues in theThe soil effects are aff ectedand fate by the of applicationpesticides on of fertilizer,soil depend, its pH in value,part, on the farming soil type, practices and the surface[11]. Pesticide [12–15]. Underresidues natural in the conditions, soil are affected imidacloprid by the in applicatio soil or watern of canfertilizer, be degraded its pH by value, microorganisms the soil type, or throughand
Recommended publications
  • Adsorption and Degradation of Three Pesticides in a Vineyard Soil and in an Organic Biomix
    environments Article Adsorption and Degradation of Three Pesticides in a Vineyard Soil and in an Organic Biomix Costantino Vischetti 1,*, Elga Monaci 1, Cristiano Casucci 1, Arianna De Bernardi 1 and Alessandra Cardinali 2 1 Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, via Brecce Bianche 10, 60131 Ancona, Italy; e.monaci@staff.univpm.it (E.M.); c.casucci@staff.univpm.it (C.C.); [email protected] (A.D.B.) 2 Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padova, viale dell’Università 16, 35020 Legnaro, Italy; [email protected] * Correspondence: c.vischetti@staff.univpm.it; Tel.: +39-071-2204264 Received: 5 November 2020; Accepted: 14 December 2020; Published: 16 December 2020 Abstract: A soil and an organic biomix (soil/vine branch/garden compost 20/40/40) were used in this lab experiment to evaluate adsorption and degradation parameters for three pesticides (chlorpyrifos, metalaxyl and cymoxanil) used in a vineyard. Adsorption in the biomix material was higher than in the soil for the three pesticides and chlorpyrifos was the most adsorbed pesticide. The role of the organic carbon is essential for enhancing the adsortion of the three pesticides, especially for the most apolar chlorpyrifos. Degradation was generally faster in the biomix material than in the soil although the process was slower in the case of chlorpyrifos if compared with the other two chemicals, due to a more toxic effect of this pesticide on soil microflora and a larger adsorption of this pesticide on the organic biomix that reduces its availability for dissipation.
    [Show full text]
  • Material Safety Data Sheet
    Material Safety Data Sheet DANITOL 2.4 EC (WARNING Statement) This Material Safety Data Sheet (MSDS) serves different purposes than and DOES NOT REPLACE OR MODIFY THE EPA-APPROVED PRODUCT LABELING (attached to and accompanying the product container). This MSDS provides important health, safety, and environmental information for employers, employees, emergency responders and others handling large quantities of the product in activities generally other than product use, while the labeling provides that information specifically for product use in the ordinary course. Use, storage and disposal of pesticide products is regulated by the EPA under the authority of the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) through the product labeling. All necessary and appropriate precautionary, use, and storage, and disposal information is set forth on that labeling. It is a violation of federal law to use a pesticide product in any manner not prescribed on the EPA-approved label. 1. CHEMICAL PRODUCT AND COMPANY IDENTIFICATION PRODUCT NAME: DANITOL 2.4 EC (WARNING Statement) VC NUMBER(S): 1237 & 1238 & 1340 ITEM: 69625 SYNONYM(S): None EPA REGISTRATION NUMBER: 59639-35 MANUFACTURER/DISTRIBUTOR EMERGENCY TELEPHONE NUMBERS VALENT U.S.A. CORPORATION HEALTH EMERGENCY OR SPILL (24 hr): P.O. Box 8025 (800) 892-0099 1600 Riviera Avenue, Suite 200 TRANSPORTATION (24 hr.): CHEMTREC Walnut Creek, CA 94596-8025. (800) 424-9300 or (202) 483-7616. PRODUCT INFORMATION AGRICULTURAL PRODUCTS: (800) 682-5368 PROFESSIONAL PRODUCTS: (800) 898-2536 The current MSDS is available through our website or by calling the product information numbers listed above. (www.valent.com) 2. COMPOSITION/INFORMATION ON INGREDIENTS Chemical Name Weight/ ACGIH Exposure Limits OSHA Exposure Limits Manufacturer's Exposure Percent Limits Fenpropathrin (alpha-cyano-3-phenoxybenzyl 30 - 32 None.
    [Show full text]
  • Impact of Imidacloprid and Horticultural Oil on Nonâ•Fitarget
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2007 Impact of Imidacloprid and Horticultural Oil on Non–target Phytophagous and Transient Canopy Insects Associated with Eastern Hemlock, Tsuga canadensis (L.) Carrieré, in the Southern Appalachians Carla Irene Dilling University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Entomology Commons Recommended Citation Dilling, Carla Irene, "Impact of Imidacloprid and Horticultural Oil on Non–target Phytophagous and Transient Canopy Insects Associated with Eastern Hemlock, Tsuga canadensis (L.) Carrieré, in the Southern Appalachians. " Master's Thesis, University of Tennessee, 2007. https://trace.tennessee.edu/utk_gradthes/120 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Carla Irene Dilling entitled "Impact of Imidacloprid and Horticultural Oil on Non–target Phytophagous and Transient Canopy Insects Associated with Eastern Hemlock, Tsuga canadensis (L.) Carrieré, in the Southern Appalachians." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Entomology and Plant Pathology. Paris L. Lambdin, Major Professor We have read this thesis and recommend its acceptance: Jerome Grant, Nathan Sanders, James Rhea, Nicole Labbé Accepted for the Council: Carolyn R.
    [Show full text]
  • Pesticide Resistance Management an Insect Perspective
    PesticidePesticide ResistanceResistance ManagementManagement AnAn InsectInsect PerspectivePerspective FrankFrank Zalom,Zalom, Dept.Dept. ofof Entomology,Entomology, UCUC DavisDavis NickNick Toscano,Toscano, DeptDept ofof Entomology,Entomology, UCUC RiversideRiverside FrankFrank Byrne,Byrne, DeptDept ofof Entomology,Entomology, UCUC RiversideRiverside InsecticideInsecticide resistanceresistance isis duedue toto aa geneticgenetic traittrait aa pestpest inheritsinherits thatthat allowsallows itit toto survivesurvive anan applicationapplication thatthat mostmost otherother individualsindividuals inin thethe populationpopulation cannotcannot survive.survive. TheThe survivorsurvivor thenthen passespasses thethe genesgenes forfor resistanceresistance onon toto thethe nextnext generation.generation. X TheThe moremore thethe insecticideinsecticide isis used,used, thethe moremore quicklyquickly susceptiblesusceptible individualsindividuals areare eliminatedeliminated andand thethe fasterfaster thethe proportionproportion ofof resistantresistant individualsindividuals increasesincreases inin thethe population.population. X X X X X X IncreasingIncreasing pesticidepesticide ratesrates ResistanceResistance MechanismsMechanisms InsecticideInsecticide avoidanceavoidance behaviorsbehaviors -- • InsectsInsects maymay changechange theirtheir behaviorbehavior inin orderorder toto avoidavoid thethe pesticide.pesticide. BiochemicalBiochemical mechanismsmechanisms -- • ResistantResistant insectsinsects possesposses enzymesenzymes thatthat breakbreak downdown
    [Show full text]
  • INDEX to PESTICIDE TYPES and FAMILIES and PART 180 TOLERANCE INFORMATION of PESTICIDE CHEMICALS in FOOD and FEED COMMODITIES
    US Environmental Protection Agency Office of Pesticide Programs INDEX to PESTICIDE TYPES and FAMILIES and PART 180 TOLERANCE INFORMATION of PESTICIDE CHEMICALS in FOOD and FEED COMMODITIES Note: Pesticide tolerance information is updated in the Code of Federal Regulations on a weekly basis. EPA plans to update these indexes biannually. These indexes are current as of the date indicated in the pdf file. For the latest information on pesticide tolerances, please check the electronic Code of Federal Regulations (eCFR) at http://www.access.gpo.gov/nara/cfr/waisidx_07/40cfrv23_07.html 1 40 CFR Type Family Common name CAS Number PC code 180.163 Acaricide bridged diphenyl Dicofol (1,1-Bis(chlorophenyl)-2,2,2-trichloroethanol) 115-32-2 10501 180.198 Acaricide phosphonate Trichlorfon 52-68-6 57901 180.259 Acaricide sulfite ester Propargite 2312-35-8 97601 180.446 Acaricide tetrazine Clofentezine 74115-24-5 125501 180.448 Acaricide thiazolidine Hexythiazox 78587-05-0 128849 180.517 Acaricide phenylpyrazole Fipronil 120068-37-3 129121 180.566 Acaricide pyrazole Fenpyroximate 134098-61-6 129131 180.572 Acaricide carbazate Bifenazate 149877-41-8 586 180.593 Acaricide unclassified Etoxazole 153233-91-1 107091 180.599 Acaricide unclassified Acequinocyl 57960-19-7 6329 180.341 Acaricide, fungicide dinitrophenol Dinocap (2, 4-Dinitro-6-octylphenyl crotonate and 2,6-dinitro-4- 39300-45-3 36001 octylphenyl crotonate} 180.111 Acaricide, insecticide organophosphorus Malathion 121-75-5 57701 180.182 Acaricide, insecticide cyclodiene Endosulfan 115-29-7 79401
    [Show full text]
  • Genetically Modified Baculoviruses for Pest
    INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS This page intentionally left blank INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS EDITED BY LAWRENCE I. GILBERT SARJEET S. GILL Amsterdam • Boston • Heidelberg • London • New York • Oxford Paris • San Diego • San Francisco • Singapore • Sydney • Tokyo Academic Press is an imprint of Elsevier Academic Press, 32 Jamestown Road, London, NW1 7BU, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA ª 2010 Elsevier B.V. All rights reserved The chapters first appeared in Comprehensive Molecular Insect Science, edited by Lawrence I. Gilbert, Kostas Iatrou, and Sarjeet S. Gill (Elsevier, B.V. 2005). All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publishers. Permissions may be sought directly from Elsevier’s Rights Department in Oxford, UK: phone (þ44) 1865 843830, fax (þ44) 1865 853333, e-mail [email protected]. Requests may also be completed on-line via the homepage (http://www.elsevier.com/locate/permissions). Library of Congress Cataloging-in-Publication Data Insect control : biological and synthetic agents / editors-in-chief: Lawrence I. Gilbert, Sarjeet S. Gill. – 1st ed. p. cm. Includes bibliographical references and index. ISBN 978-0-12-381449-4 (alk. paper) 1. Insect pests–Control. 2. Insecticides. I. Gilbert, Lawrence I. (Lawrence Irwin), 1929- II. Gill, Sarjeet S. SB931.I42 2010 632’.7–dc22 2010010547 A catalogue record for this book is available from the British Library ISBN 978-0-12-381449-4 Cover Images: (Top Left) Important pest insect targeted by neonicotinoid insecticides: Sweet-potato whitefly, Bemisia tabaci; (Top Right) Control (bottom) and tebufenozide intoxicated by ingestion (top) larvae of the white tussock moth, from Chapter 4; (Bottom) Mode of action of Cry1A toxins, from Addendum A7.
    [Show full text]
  • Imidacloprid Does Not Enhance Growth and Yield of Muskmelon In
    HORTSCIENCE 30(5):997–999. 1995. plant growth and yield responses of muskmel- ons to imidacloprid in the presence and ab- Imidacloprid Does Not Enhance sence of whiteflies. Growth and Yield of Muskmelon in the Materials and Methods Greenhouse studies. All plants used in the Absence of Whitefly greenhouse tests were direct-seeded ‘Topmark’ muskmelons in a 3 soil : 3 perlite : 1 peat J.C. Palumbo and C.A. Sanchez mixture in 1.5-liter pots. Each pot contained 500 g of soil mixture and was planted with four University of Arizona, Yuma Valley Agricultural Center, 6425 West 8th Street, to five seeds. Seedlings were grown during Yuma, AZ 85364 Mar. and Apr. 1994 in a glasshouse under natural light with adequate water and nutrients Additional index words. Bemisia tabaci, Bemisia argentifolii, Cucumis melo, relative growth for maximum growth. Upon emergence, seed- rate, net assimilation rate ling plants were thinned to one per pot. Pots Abstract. Imidacloprid is a new, chloronicotinyl insecticide currently being used to control were then placed in wooden-frame exclusion × × sweetpotato whitefly [Bemisia tabaci Genn, also known as silverleaf whitefly (Bemisia cages (1.7 m width 1.2 m long 0.6 m high) argentifolii Bellows and Perring)]. Large growth and yield increases of muskmelon screened with fine organdy cloth to exclude (Cucumis melo L.) following the use of imidacloprid have caused some to speculate that this whitefly adults and other insects. The cages ± compound may enhance growth and yield above that expected from insect control alone. were maintained in the glasshouse at 28 4C. Greenhouse and field studies were conducted to evaluate the growth and yield response of Whitefly adults used in these studies were melons to imidacloprid in the presence and absence of whitefly pressure.
    [Show full text]
  • Large-Scale Field Trials of Imidacloprid for Control of The
    PEST MANAGEMENT HORTSCIENCE 38(4):555–559. 2003. 5 mL/100 L (half-rate), were compared with endosulfan (350 g·L–1 a.i.) at the industry standard rate of 57 mL/100 L. The higher of Large-scale Field Trials of the two rates for imidacloprid corresponds to the discriminate dose (100% kill) of the Imidacloprid for Control of the insecticide against SCB (James and Nicholas, 2000). A water-only treatment was provided as Spined Citrus Bug control in all but one trial. Applications of the treatments were made with air-blast sprayers J. Mo1 and K. Philpot at a spray volume of 10 L/tree. Yanco Agricultural Institute, PMB Yanco, NSW 2703, Australia Trial-1 was conducted from 25 Oct. to 24 Nov. 2000 in Leeton. Lemon trees from three Additional index words. endosulfan withdrawal, alternative insecticide, beneficials, lemon, neighbouring citrus farms (separated by 1–2 Biprorulus bibax km) were used in this trial. The test trees were in six separate blocks (>100 m apart) containing Abstract. Four large-scale field trials were carried out in 2001 and 2002 in lemon or- from 60 to 453 trees. Fifteen plots of 60–100 chards in south-western New South Wales to assess the suitability of imidacloprid as a trees each were set up in the six lemon blocks. replacement for endosulfan in controlling the spined citrus bug (SCB), Biprorulus bibax Where more than one plot was set up in a Breddin (Hemiptera: Pentatomidae). The results showed that imidacloprid was at least single block, the boundaries were chosen in as effective as endosulfan in controlling SCB, even when it was applied at a rate cor- such a way that each plot contained a similar responding to half of its discriminate dose (100% kill).
    [Show full text]
  • Effect of Planting Covers on Herbicide Persistence in Landscape Soils
    Environ. Sci. Technol. 2003, 37, 2775-2779 Geological Survey (USGS) have shown that 99% of the tested Effect of Planting Covers on urban streams contain at least one pesticide, with 70% con- Herbicide Persistence in Landscape taining five or more pesticides (3). The presence of pesticides at trace levels may cause short- or long-term impairments Soils to aquatic ecosystems, such as toxicity (insecticides) or phytotoxicity (herbicides) (4, 5). To protect water quality, ,² ² ³ regulations such as Total Maximum Daily Loads (TMDLs) J. GAN,* Y. ZHU, C. WILEN, are being developed for many surface waterbodies in the D. PITTENGER,§ AND D. CROWLEY² United States (6). Department of Environmental Sciences and Department of Source analysis and monitoring studies have shown that Botany and Plant Sciences, University of California, movement of pesticides from residential areas is mainly Riverside, California 92521, and University of California associated with stormwater runoff (6-8). For instance, storm Statewide Integrated Pest Management Program and flow constitutes about 80% of the water discharged to the UC Cooperative Extension, San Diego, California 92123 Newport Bay in Orange County, CA (6). In the San Diego Creek, which serves as the main drainage channel to Newport Bay, the median diazinon (445 ng L-1) and chlorpyrifos (87 -1 Recent monitoring shows that the majority of urban ng L ) concentrations in storm flow are higher than or similar -1 streams in the United States are contaminated by pesticide to those in the base flow (200 ng L for diazinon and 111 ng L-1 for chlorpyrifos). Thus, the overwhelming majority of residues, and the contamination is mainly due to runoff the pesticide load in the San Diego Creek derives from storm from residential landscapes.
    [Show full text]
  • Redalyc.MECHANISMS and STRATEGIES for PESTICIDE
    Revista Internacional de Contaminación Ambiental ISSN: 0188-4999 [email protected] Universidad Nacional Autónoma de México México ORTIZ-HERNÁNDEZ, Ma. Laura; SÁNCHEZ-SALINAS, Enrique; CASTREJÓN GODÍNEZ, María Luisa; DANTAN GONZÁLEZ, Edgar; POPOCA URSINO, Elida Carolina MECHANISMS AND STRATEGIES FOR PESTICIDE BIODEGRADATION: OPPORTUNITY FOR WASTE, SOILS AND WATER CLEANING Revista Internacional de Contaminación Ambiental, vol. 29, septiembre, 2013, pp. 85-104 Universidad Nacional Autónoma de México Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=37028958005 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Rev. Int. Contam. Ambie. 29 (Número especial sobre plaguicidas) 85-104 Septiembre 2013 MECHANISMS AND STRATEGIES FOR PESTICIDE BIODEGRADATION: OPPORTUNITY FOR WASTE, SOILS AND WATER CLEANING Ma. Laura ORTIZ-HERNÁNDEZ1*, Enrique SÁNCHEZ-SALINAS1, María Luisa CASTREJÓN GODÍNEZ2, Edgar DANTAN GONZÁLEZ3 y Elida Carolina POPOCA URSINO3 1 Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos 2 Programa de Gestión Ambiental Universitario, Universidad Autónoma del Estado de Morelos 3 Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos * Autora responsable: [email protected] (Recibido julio 2013, aceptado agosto 2013) Key words: pesticide, biodegradation, biobeds, cells immobilization ABSTRACT Pesticides are substances or mixtures of substances intended to prevent, destroy or con- trol any pest, and they are widely used mainly in agriculture, industry and the domestic sector. These compounds have been extensively used for decades and have significantly increased food production.
    [Show full text]
  • Guide to Integrated Pest Management (IPM) a Science-Based Approach for Ecologically Sound Land Management
    Guide to Integrated Pest Management (IPM) A science-based approach for ecologically sound land management The first and most By Dr. Vera Krischik, important steps of IPM are and Laurie Schneider to accept that plants can University of Minnesota, handle some pest and Entomology, Jan. 2020 disease damage, and to determine your economic threshold. INSIDE: Left: Regular inspection of plants for pests and disease. • What is IPM? photo: PFA 2020 • IPM Integrated Pest Management (IPM) is an ecosystem-based approach that employs long- Implementation term prevention of pests and pest damage through monitoring of plants, pests and weather to project ahead and plan. While pesticides simply respond to the pest, IPM addresses the source of pest problems. IPM strives to avoid chemicals harmful to • Natural pollinators and toxic to the environment. Predator Guide It's important for land managers, homeowners and farmers to learn how to implement an IPM plan. Any individual or organization can adopt an IPM plan for spaces from backyards • Insecticide to public parks to farms. IPM plans should be updated annually, and staff need to be Toxicity to trained on pesticide use and best practices. Pollinators IPM promotes multiple tactics and controls to manage pests and to suppress the population size below levels that will damage the plant. Cultural controls are practices that reduce pest establishment, reproduction, Find more on IPM dispersal and survival. For example, the pest's environment can be disrupted by turning and pollinator under garden soil, mowing, sterilizing tools and harvesting early. Composting, watering, conservation at: mulching, pruning, fertilizing and ground covers can all help improve plant health, resulting ncipmhort.cfans.umn.edu in healthier plants that can tolerate some damage.
    [Show full text]
  • Management Measure for Pesticides to Reduce Contamination of Ground and Surface Water from Pesticides: 1
    Chapter 4B: Pesticide Management 4B: Pesticide Management Management Measure for Pesticides To reduce contamination of ground and surface water from pesticides: 1. Inventory pest problems, previous pest control measures, and cropping history. 2. Evaluate the soil and physical characteristics of the site including mixing, loading, and storage areas for potential leaching or runoff of pesticides. If leaching or runoff is found to occur, steps should be taken to prevent further contamination. Six general 3. Use integrated pest management (IPM) strategies that principles guide safe pesticide apply pesticides only when an economic benefit to the producer management. will be achieved (i.e., applications based on economic thresholds) and apply pesticides efficiently and at times when runoff losses are least likely. 4. When pesticide applications are necessary and a choice of registered materials exists, consider the persistence, toxicity, runoff potential, and leaching potential of products in making a selection. 5. Periodically calibrate pesticide application equipment. 6. Use anti-backflow devices on the water supply hose, and other safe mixing and loading practices such as a solid pad for mixing and loading, and various new technologies for reducing mixing and loading risks. Management Measure for Pesticides: Description The goal of this management measure is to reduce contamination of ground and surface water from pesticides. The basic concept of the pesticide management measure is to foster effective and safe use of pesticides without causing degrada- tion to the environment. The most effective approach to reducing pesticide pollution of waters is, first, to release a lesser quantity of and/or less toxic Pesticide pesticides into the environment and, second, to use practices that minimize the management movement of pesticides to ground and surface water (Figure 4b-1).
    [Show full text]