Alias Analysis of Executable Code

Total Page:16

File Type:pdf, Size:1020Kb

Alias Analysis of Executable Code Alias Analysis of Executable Co de Saumya Debray Rob ert Muth Matthew Weipp ert artment of Computer Science Dep University of Arizona Tucson AZ USA fdebray muth weippertgcsarizonaedu tecture such as the DEC Abstract Alpha linktime optimizers need to carry such as Spike alto and OM Recent years have seen increasing interest in systems out instruction scheduling again after linktime opti that reason ab out and manipulate executable co de mizations without p ointer alias information however Such systems can generally b enet from information the scheduler must b e conservative in its treatment of ab out aliasing Unfortunately most existing alias loads and stores and this can limit the amount of co de el language analyses are formulated in terms of highlev reordering that is p ossible As a nal example it may features and are unable to cop e with features such b e p ossible to scavenge registers at linktime eg by as p ointer arithmetic that p ervade executable pro examining the register usage of library functions but grams This pap er describ es a simple algorithm that the ability to use such scavenged registers eectively can b e used to obtain aliasing information for exe is likely to b e limited in the absence of p ointer alias cutable co de In order to b e practical the algorithm is information careful to k eep its memory requirements low sacric There is an extensive b o dy of work on p ointer alias ing precision where necessary to achieve this goal Ex analysis of various kinds see Section In almost all p erimental results indicate that it is nevertheless able cases these are high level analyses carried out on rep to provide a reasonable amount of information ab out resentations of source programs in terms of source lan memory references across a variety of b enchmark pro guage constructs and typically disregarding nast y grams features such as typ e casts p ointer arithmetic and Intro duction outofb ounds array accesses Such analyses turn out unfortunately to b e of limited utility at the machine Recent years have seen increasing interest in reason co de level b ecause at this level all we have are the ing ab out and manipulating executable les nasty features The contents of registers and mem When working with an executable ory words are untyp ed bitstrings so the issue of typ e le we typically have information ab out the entire casts is in some sense mo ot everything is p otentially programincluding p otentially library functions an address Memory accesses typically involve some that is usually not available at compile time Because address arithmetic to compute a base address into a of this co de manipulation and optimization at this register followed by the use of a displacement o the level oers b enets that are dicult or imp ossible to base address to carry out the actual memory refer with the compi obtain using traditional compilers As ence Address arithmetic may also arise due to par lation of sourcelevel programs co de transformations ticular language features eg the use of tag bits in on executable co de can b enet greatly from p ointer dynamically typ ed languages to indicate the typ e of alias information F or example inlining library rou the value p ointed at Dereferencing op erations in the tines may op en up opp ortunities for moving invariant executable co de for such programs will involve nontriv instructions out of lo ops but alias information is load ial arithmetic involving the tag bits that is invisible needed in order to identify such invariant load instruc and irrelevantat the source level at the level of ex tions To obtain the full b enets of a sup erscalar archi tell what source language ecutable programs we cant This work was supp orted in part by the Na a particular piece of co de was derived from and dier tional Science Foundation under grant CCR ent comp onents of a program might have b een written Copyright ACM To app ear in the Pro ceedings of in dierent source languages so we must b e able to the th Annual ACM SIGPLANSIGACT Symp osium on deal with all such address arithmetic in a reasonable Principles of Programming Languages January way If the numb er of arguments to a function is b e expressed in terms of these eg subtraction and large enough some of the arguments may have to b e registertoregister moves can b e mo delled in terms of passed on the stack In such a case the arguments addition we do not consider these separately In ad passed on the stack will typically reside at the top of dition to these we assume the usual complement of the callers stack frame and the callee will reach into tests conditional jumps and direct and indirect un the callers frame to access them this is nothing but an conditional jumps the only eect of these instructions outofb ounds array reference Finally executable pro is to determine the control ow graph of the program grams may include library functions in handwritten so we do not consider them explicitly in the context assembly co de that violate familiar and comfortable of alias analysis We also ignore op erations on oat sourcelevel assumptions eg that execution do es not ing p oint registers since it seems unlikely that such jump out of the middle of one function and into the op erations would b e used for address computations middle of another this happ ens for example in some Lo cal Alias Analysis Fortran library routines To illustrate some of the problems that arise consider the fragment of C co de A technique called instruction inspection commonly shown in Figure together with the corresp onding as used in compiletime instruction schedulers can b e 1 The p oint to note is the extensive use sembly co de used to reason ab out memory references within a ba of address arithmetic to access memory even in this sic blo ck Here two memory reference instructions i 1 very simple program fragment For example in order and i are taken to b e nonconicting if either of the 2 to determine whether instructions and might following conditions hold write to the same memory lo cation we need to b e able to reason ab out the contents of registers r and r they use distinct osets from the same base reg which are dened through the arithmetic op erations in ister r and r is not redened b etween i and i 1 2 instructions and As this example illustrates or p ointer arithmetic cannot b e ignored during alias anal ysis at the machine co de level one of the instructions uses a register known to p oint to the stack and the other uses a register In this pap er we describ e a lowlevel o w known to p oint to the global data area sensitive contextinsensitive interpro cedural p ointer alias analysis algorithm designed and implemented in the context of the alto link time optimizer that Unfortunately this simple approach do es not work if can handle signicant p ointer arithmetic and features information ab out address arithmetic needs to b e prop such as outofb ound references that are ignored by agated across basic blo ck b oundaries In the next sec most existing alias analysis algorithms tion we describ e a global analysis that can b e used to handle this For simplicity in the discussion that follows we as sume a more or less canonical RISC instruction set ResidueBased Global Alias Analysis Memory is accessed only through explicit load and The Basic Idea eg store instructions which have the form load r a k reg and store reg k reg where k is a con b a b An alias analysis will in general asso ciate each register stant and have the eect of reading from or writing with a set of p ossible addresses at each program p oint to the lo cation whose address is k contents of reg b so we need to abstract sets of addresses to descriptions To mo del arithmetic we assume the instructions add or abstract address sets These need to b e easy to src src dest and mult src src dest where 1 2 1 2 compute and compactly representable with op erations dest is a destination register and src and src are 1 2 such as union intersection checking containment etc source registers to simplify the discussion we abuse that are cheap enough to b e practical for the analysis of notation and allow either src or src to b e an integer 1 2 large programs A simple way to satisfy these criteria constant denoting an immediate op erand These in is to consider only some xed numb ersay m of the structions compute resp ectively the sum and pro duct low order bits of an address That is addresses are rep of src and src into dest many other op erations can 1 2 m resented by their mo dk residues where k The 1 The assembly co de shown corresp onds to that obtained us set of all mo dk residues is Z f k g An k O on a DEC Alpha workstation with some edits to ing gcc abstract address set can then b e represented as a bit the Alpha arguments to functions are enhance readability On m vector of length k since mand therefore k is typically passed in registers and register is used as the stack p ointer xed set op erations such as union intersection check Source Co de Executable Co de int f f add r r allocate stack frame store r r save return address int x x is at displacement in fs stack frame y y is at displacement in fs stack frame gy x add r r r y add r r r x bsr r g r return addr goto g g int gint x int y arg in r arg in r f add r r allocate stack frame store r r save return address x store r y store r g Figure A fragment of a C program and the corresp onding assembly co de of none indicates that the corresp onding residue set ing containment
Recommended publications
  • Using the GNU Compiler Collection (GCC)
    Using the GNU Compiler Collection (GCC) Using the GNU Compiler Collection by Richard M. Stallman and the GCC Developer Community Last updated 23 May 2004 for GCC 3.4.6 For GCC Version 3.4.6 Published by: GNU Press Website: www.gnupress.org a division of the General: [email protected] Free Software Foundation Orders: [email protected] 59 Temple Place Suite 330 Tel 617-542-5942 Boston, MA 02111-1307 USA Fax 617-542-2652 Last printed October 2003 for GCC 3.3.1. Printed copies are available for $45 each. Copyright c 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with the Invariant Sections being \GNU General Public License" and \Funding Free Software", the Front-Cover texts being (a) (see below), and with the Back-Cover Texts being (b) (see below). A copy of the license is included in the section entitled \GNU Free Documentation License". (a) The FSF's Front-Cover Text is: A GNU Manual (b) The FSF's Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU software. Copies published by the Free Software Foundation raise funds for GNU development. i Short Contents Introduction ...................................... 1 1 Programming Languages Supported by GCC ............ 3 2 Language Standards Supported by GCC ............... 5 3 GCC Command Options .........................
    [Show full text]
  • Memory Tagging and How It Improves C/C++ Memory Safety Kostya Serebryany, Evgenii Stepanov, Aleksey Shlyapnikov, Vlad Tsyrklevich, Dmitry Vyukov Google February 2018
    Memory Tagging and how it improves C/C++ memory safety Kostya Serebryany, Evgenii Stepanov, Aleksey Shlyapnikov, Vlad Tsyrklevich, Dmitry Vyukov Google February 2018 Introduction 2 Memory Safety in C/C++ 2 AddressSanitizer 2 Memory Tagging 3 SPARC ADI 4 AArch64 HWASAN 4 Compiler And Run-time Support 5 Overhead 5 RAM 5 CPU 6 Code Size 8 Usage Modes 8 Testing 9 Always-on Bug Detection In Production 9 Sampling In Production 10 Security Hardening 11 Strengths 11 Weaknesses 12 Legacy Code 12 Kernel 12 Uninitialized Memory 13 Possible Improvements 13 Precision Of Buffer Overflow Detection 13 Probability Of Bug Detection 14 Conclusion 14 Introduction Memory safety in C and C++ remains largely unresolved. A technique usually called “memory tagging” may dramatically improve the situation if implemented in hardware with reasonable overhead. This paper describes two existing implementations of memory tagging: one is the full hardware implementation in SPARC; the other is a partially hardware-assisted compiler-based tool for AArch64. We describe the basic idea, evaluate the two implementations, and explain how they improve memory safety. This paper is intended to initiate a wider discussion of memory tagging and to motivate the CPU and OS vendors to add support for it in the near future. Memory Safety in C/C++ C and C++ are well known for their performance and flexibility, but perhaps even more for their extreme memory unsafety. This year we are celebrating the 30th anniversary of the Morris Worm, one of the first known exploitations of a memory safety bug, and the problem is still not solved.
    [Show full text]
  • Statically Detecting Likely Buffer Overflow Vulnerabilities
    Statically Detecting Likely Buffer Overflow Vulnerabilities David Larochelle [email protected] University of Virginia, Department of Computer Science David Evans [email protected] University of Virginia, Department of Computer Science Abstract Buffer overflow attacks may be today’s single most important security threat. This paper presents a new approach to mitigating buffer overflow vulnerabilities by detecting likely vulnerabilities through an analysis of the program source code. Our approach exploits information provided in semantic comments and uses lightweight and efficient static analyses. This paper describes an implementation of our approach that extends the LCLint annotation-assisted static checking tool. Our tool is as fast as a compiler and nearly as easy to use. We present experience using our approach to detect buffer overflow vulnerabilities in two security-sensitive programs. 1. Introduction ed a prototype tool that does this by extending LCLint [Evans96]. Our work differs from other work on static detection of buffer overflows in three key ways: (1) we Buffer overflow attacks are an important and persistent exploit semantic comments added to source code to security problem. Buffer overflows account for enable local checking of interprocedural properties; (2) approximately half of all security vulnerabilities we focus on lightweight static checking techniques that [CWPBW00, WFBA00]. Richard Pethia of CERT have good performance and scalability characteristics, identified buffer overflow attacks as the single most im- but sacrifice soundness and completeness; and (3) we portant security problem at a recent software introduce loop heuristics, a simple approach for engineering conference [Pethia00]; Brian Snow of the efficiently analyzing many loops found in typical NSA predicted that buffer overflow attacks would still programs.
    [Show full text]
  • Aliasing Restrictions of C11 Formalized in Coq
    Aliasing restrictions of C11 formalized in Coq Robbert Krebbers Radboud University Nijmegen December 11, 2013 @ CPP, Melbourne, Australia int f(int *p, int *q) { int x = *p; *q = 314; return x; } If p and q alias, the original value n of *p is returned n p q Optimizing x away is unsound: 314 would be returned Alias analysis: to determine whether pointers can alias Aliasing Aliasing: multiple pointers referring to the same object Optimizing x away is unsound: 314 would be returned Alias analysis: to determine whether pointers can alias Aliasing Aliasing: multiple pointers referring to the same object int f(int *p, int *q) { int x = *p; *q = 314; return x; } If p and q alias, the original value n of *p is returned n p q Alias analysis: to determine whether pointers can alias Aliasing Aliasing: multiple pointers referring to the same object int f(int *p, int *q) { int x = *p; *q = 314; return x *p; } If p and q alias, the original value n of *p is returned n p q Optimizing x away is unsound: 314 would be returned Aliasing Aliasing: multiple pointers referring to the same object int f(int *p, int *q) { int x = *p; *q = 314; return x; } If p and q alias, the original value n of *p is returned n p q Optimizing x away is unsound: 314 would be returned Alias analysis: to determine whether pointers can alias It can still be called with aliased pointers: x union { int x; float y; } u; y u.x = 271; return h(&u.x, &u.y); &u.x &u.y C89 allows p and q to be aliased, and thus requires it to return 271 C99/C11 allows type-based alias analysis: I A compiler
    [Show full text]
  • Teach Yourself Perl 5 in 21 Days
    Teach Yourself Perl 5 in 21 days David Till Table of Contents: Introduction ● Who Should Read This Book? ● Special Features of This Book ● Programming Examples ● End-of-Day Q& A and Workshop ● Conventions Used in This Book ● What You'll Learn in 21 Days Week 1 Week at a Glance ● Where You're Going Day 1 Getting Started ● What Is Perl? ● How Do I Find Perl? ❍ Where Do I Get Perl? ❍ Other Places to Get Perl ● A Sample Perl Program ● Running a Perl Program ❍ If Something Goes Wrong ● The First Line of Your Perl Program: How Comments Work ❍ Comments ● Line 2: Statements, Tokens, and <STDIN> ❍ Statements and Tokens ❍ Tokens and White Space ❍ What the Tokens Do: Reading from Standard Input ● Line 3: Writing to Standard Output ❍ Function Invocations and Arguments ● Error Messages ● Interpretive Languages Versus Compiled Languages ● Summary ● Q&A ● Workshop ❍ Quiz ❍ Exercises Day 2 Basic Operators and Control Flow ● Storing in Scalar Variables Assignment ❍ The Definition of a Scalar Variable ❍ Scalar Variable Syntax ❍ Assigning a Value to a Scalar Variable ● Performing Arithmetic ❍ Example of Miles-to-Kilometers Conversion ❍ The chop Library Function ● Expressions ❍ Assignments and Expressions ● Other Perl Operators ● Introduction to Conditional Statements ● The if Statement ❍ The Conditional Expression ❍ The Statement Block ❍ Testing for Equality Using == ❍ Other Comparison Operators ● Two-Way Branching Using if and else ● Multi-Way Branching Using elsif ● Writing Loops Using the while Statement ● Nesting Conditional Statements ● Looping Using
    [Show full text]
  • User-Directed Loop-Transformations in Clang
    User-Directed Loop-Transformations in Clang Michael Kruse Hal Finkel Argonne Leadership Computing Facility Argonne Leadership Computing Facility Argonne National Laboratory Argonne National Laboratory Argonne, USA Argonne, USA [email protected] hfi[email protected] Abstract—Directives for the compiler such as pragmas can Only #pragma unroll has broad support. #pragma ivdep made help programmers to separate an algorithm’s semantics from popular by icc and Cray to help vectorization is mimicked by its optimization. This keeps the code understandable and easier other compilers as well, but with different interpretations of to optimize for different platforms. Simple transformations such as loop unrolling are already implemented in most mainstream its meaning. However, no compiler allows applying multiple compilers. We recently submitted a proposal to add generalized transformations on a single loop systematically. loop transformations to the OpenMP standard. We are also In addition to straightforward trial-and-error execution time working on an implementation in LLVM/Clang/Polly to show its optimization, code transformation pragmas can be useful for feasibility and usefulness. The current prototype allows applying machine-learning assisted autotuning. The OpenMP approach patterns common to matrix-matrix multiplication optimizations. is to make the programmer responsible for the semantic Index Terms—OpenMP, Pragma, Loop Transformation, correctness of the transformation. This unfortunately makes it C/C++, Clang, LLVM, Polly hard for an autotuner which only measures the timing difference without understanding the code. Such an autotuner would I. MOTIVATION therefore likely suggest transformations that make the program Almost all processor time is spent in some kind of loop, and return wrong results or crash.
    [Show full text]
  • Towards Restrict-Like Aliasing Semantics for C++ Abstract
    Document Number: N3988 Date: 2014-05-23 Authors: Hal Finkel, [email protected] Hubert Tong, [email protected] Chandler Carruth, [email protected], Clark Nelson, [email protected], Daveed Vandevoode, [email protected], Michael Wong, [email protected] Project: Programming Language C++, EWG Reply to: [email protected] Revision: 1 Towards restrict-like aliasing semantics for C++ Abstract This paper is a follow-on to N3635 after a design discussion with many compiler implementers at Issaquah, and afterwards by telecon, and specifically proposes a new alias_set attribute as a way to partition type-based aliasing to enable more fine grain control, effectively giving C++ a more complete restrict-like aliasing syntax and semantics. Changes from previous papers: N3988: this paper updates with syntax and semantics N3635: Outlined initial idea on AliasGroup which became alias_set. The alternative of newType was rejected as too heavy weight of a solution. 1. Problem Domain There is no question that the restrict qualifier benefits compiler optimization in many ways, notably allowing improved code motion and elimination of loads and stores. Since the introduction of C99 restrict, it has been provided as a C++ extension in many compilers. But the feature is brittle in C++ without clear rules for C++ syntax and semantics. Now with the introduction of C++11, functors are being replaced with lambdas and users have begun asking how to use restrict in the presence of lambdas. Given the existing compiler support, we need to provide a solution with well-defined C++ semantics, before use of some common subset of C99 restrict becomes widely used in combination with C++11 constructs.
    [Show full text]
  • Autotuning for Automatic Parallelization on Heterogeneous Systems
    Autotuning for Automatic Parallelization on Heterogeneous Systems Zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften von der KIT-Fakultät für Informatik des Karlsruher Instituts für Technologie (KIT) genehmigte Dissertation von Philip Pfaffe ___________________________________________________________________ ___________________________________________________________________ Tag der mündlichen Prüfung: 24.07.2019 1. Referent: Prof. Dr. Walter F. Tichy 2. Referent: Prof. Dr. Michael Philippsen Abstract To meet the surging demand for high-speed computation in an era of stagnat- ing increase in performance per processor, systems designers resort to aggregating many and even heterogeneous processors into single systems. Automatic paral- lelization tools relieve application developers of the tedious and error prone task of programming these heterogeneous systems. For these tools, there are two aspects to maximizing performance: Optimizing the execution on each parallel platform individually, and executing work on the available platforms cooperatively. To date, various approaches exist targeting either aspect. Automatic parallelization for simultaneous cooperative computation with optimized per-platform execution however remains an unsolved problem. This thesis presents the APHES framework to close that gap. The framework com- bines automatic parallelization with a novel technique for input-sensitive online autotuning. Its first component, a parallelizing polyhedral compiler, transforms implicitly data-parallel program parts for multiple platforms. Targeted platforms then automatically cooperate to process the work. During compilation, the code is instrumented to interact with libtuning, our new autotuner and second com- ponent of the framework. Tuning the work distribution and per-platform execu- tion maximizes overall performance. The autotuner enables always-on autotuning through a novel hybrid tuning method, combining a new efficient search technique and model-based prediction.
    [Show full text]
  • Program Sequentially, Carefully, and Benefit from Compiler Advances For
    Program Sequentially, Carefully, and Benefit from Compiler Advances for Parallel Heterogeneous Computing Mehdi Amini, Corinne Ancourt, Béatrice Creusillet, François Irigoin, Ronan Keryell To cite this version: Mehdi Amini, Corinne Ancourt, Béatrice Creusillet, François Irigoin, Ronan Keryell. Program Se- quentially, Carefully, and Benefit from Compiler Advances for Parallel Heterogeneous Computing. Magoulès Frédéric. Patterns for Parallel Programming on GPUs, Saxe-Coburg Publications, pp. 149- 169, 2012, 978-1-874672-57-9 10.4203/csets.34.6. hal-01526469 HAL Id: hal-01526469 https://hal-mines-paristech.archives-ouvertes.fr/hal-01526469 Submitted on 30 May 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Program Sequentially, Carefully, and Benefit from Compiler Advances for Parallel Heterogeneous Computing Mehdi Amini1;2 Corinne Ancourt1 B´eatriceCreusillet2 Fran¸coisIrigoin1 Ronan Keryell2 | 1MINES ParisTech/CRI, firstname.lastname @mines-paristech.fr 2SILKAN, firstname.lastname @silkan.com September 26th 2012 Abstract The current microarchitecture trend leads toward heterogeneity. This evolution is driven by the end of Moore's law and the frequency wall due to the power wall. Moreover, with the spreading of smartphone, some constraints from the mobile world drive the design of most new architectures.
    [Show full text]
  • Alias-Free Parameters in C Using Multibodies Medhat Assaad Iowa State University
    Computer Science Technical Reports Computer Science 7-2001 Alias-free parameters in C using multibodies Medhat Assaad Iowa State University Follow this and additional works at: http://lib.dr.iastate.edu/cs_techreports Part of the Programming Languages and Compilers Commons, and the Theory and Algorithms Commons Recommended Citation Assaad, Medhat, "Alias-free parameters in C using multibodies" (2001). Computer Science Technical Reports. 301. http://lib.dr.iastate.edu/cs_techreports/301 This Article is brought to you for free and open access by the Computer Science at Iowa State University Digital Repository. It has been accepted for inclusion in Computer Science Technical Reports by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Alias-free parameters in C using multibodies Abstract Aliasing may cause problems for both optimization and reasoning about programs. Since static alias analysis is expensive, and sometimes, even impossible, compilers tend to be conservative. This usually leads to missing some optimization opportunities. Furthermore, when trying to understand code, one must consider all possible aliasing patterns. This can make reasonning about code difficult and non-trivial. We have implemented an approach for having alias-free parameters in C. This approach allows aliasing between the arguments at the call site, but guarantees that there will be no aliasing between arguments and between arguments and globals inside procedure bodies. This is done by having multiple bodies, up to one for each aliasing pattern. Procedure calls will be dispatched to the body that matches the aliasing pattern at the call site. By having alias-free parameters in the bodies, good optimization can be achieved.
    [Show full text]
  • Aliasing Contracts, a Novel, Dynamically-Checked Alias Protection Scheme for Object- Oriented Programming Languages
    UCAM-CL-TR-880 Technical Report ISSN 1476-2986 Number 880 Computer Laboratory Access contracts: a dynamic approach to object-oriented access protection Janina Voigt February 2016 15 JJ Thomson Avenue Cambridge CB3 0FD United Kingdom phone +44 1223 763500 http://www.cl.cam.ac.uk/ c 2016 Janina Voigt This technical report is based on a dissertation submitted May 2014 by the author for the degree of Doctor of Philosophy to the University of Cambridge, Trinity College. Technical reports published by the University of Cambridge Computer Laboratory are freely available via the Internet: http://www.cl.cam.ac.uk/techreports/ ISSN 1476-2986 Abstract In object-oriented (OO) programming, variables do not contain objects directly but ad- dresses of objects on the heap. Thus, several variables can point to the same object; we call this aliasing. Aliasing is a central feature of OO programming that enables efficient sharing of objects across a system. This is essential for the implementation of many programming idioms, such as iterators. On the other hand, aliasing reduces modularity and encapsulation, making programs difficult to understand, debug and maintain. Much research has been done on controlling aliasing. Alias protection schemes (such as Clarke et al.’s influential ownership types) limit which references can exist, thus guar- anteeing the protection of encapsulated objects. Unfortunately, existing schemes are significantly restrictive and consequently have not been widely adopted by software de- velopers. This thesis makes three contributions to the area of alias protection. Firstly, it pro- poses aliasing contracts, a novel, dynamically-checked alias protection scheme for object- oriented programming languages.
    [Show full text]
  • Flexible Alias Protection
    Flexible Alias Protection James Noble1, Jan Vitek2, and John Potter1 1 Microsoft Research Institute, Macquarie University, Sydney kjx,[email protected] 2 Object Systems Group, Universit´e de Gen`eve, Geneva. [email protected] Abstract. Aliasing is endemic in object oriented programming. Because an object can be modified via any alias, object oriented programs are hard to understand, maintain, and analyse. Flexible alias protection is a conceptual model of inter-object relationships which limits the visibility of changes via aliases, allowing objects to be aliased but mitigating the undesirable effects of aliasing. Flexible alias protection can be checked statically using programmer supplied aliasing modes and imposes no run- time overhead. Using flexible alias protection, programs can incorporate mutable objects, immutable values, and updatable collections of shared objects, in a natural object oriented programming style, while avoiding the problems caused by aliasing. 1 Introduction I am who I am; I will be who I will be. Object identity is the foundation of object oriented programming. Objects are useful for modelling application domain abstractions precisely because an ob- ject's identity always remains the same during the execution of a program | even if an object's state or behaviour changes, the object is always the same object, so it always represents the same phenomenon in the application domain [30]. Object identity causes practical problems for object oriented programming. In general, these problems all reduce to the presence of aliasing | that a par- ticular object can be referred to by any number of other objects [20]. Problems arise because objects' state can change, while their identity remains the same.
    [Show full text]