<<

2ND EUROPEANCONFERENCEFORAEROSPACESCIENCES(EUCASS)

Component Analysis of TBCC Propulsion for a Mach 4.5 Supersonic Cruise KeiichiOKAI *+andMartinSIPPEL * *SpaceLauncherSystemsAnalysis(SART),DLR,LinderHoehe,51147Cologne,Germany, +VisitingResearcherfromJapanAerospaceExplorationAgency(JAXA),1828522Tokyo,Japan okai.keiichi@.jp

Abstract ThispaperdescribesthestatusofthestudyoncomponentanalysisforthedifferentVariableTBCC cycleconfigurations.ThepaperinvestigatesdifferentVariableCycleTBCCconfigurationsandcom paresthemwithanadvancedturbojetforthegenericconfigurationofaMach4.5supersonicpassenger airliner. One VCE engine variant and the turbojet are preliminarily designed and their mass including air intakeandisestimated.Theairintakehasbeenpreliminarilysizedandpressurerecoveryand massflowindesignandoffdesignconditionsisestimated.The intake's dimension and airflow data havebeensubsequentlydeliveredforfurtheranalyses.Engineweightanalysisisalsoconductedboth forexistingenginesandproposedLAPCATturboengines. Nomenclature

D2 Diameterofdiffuseexit Isp (mass)specificimpulse L Lengthofsubsonicdiffuserpart M Machnumber T Thrust W Weight m Mass sfc Specificfuelconsumption ρ Density Subscripts, Abbreviations BPR Bypassratio(1forfront2forrearside) FEM FiniteElementMethod HP Highpressure HPC Highpressurecompressor HPT Highpressure HSCT Highspeedciviltransport JP Jetpropellant LAPCAT LongTermAdvancedPropulsionConceptsand LP Lowpressure LPCLowpressurecompressor LPT Lowpressureturbine OPR Overallpressureratio RTA RevolutionaryTurbineAccelerator SST Supersonictransport TBCC Turbinebasedcombinedcycle TET Turbineentrytemperature TSTO Twostagetoorbit VCE Variablecycleengine 0,0 Seelevelstatic

Copyright  2007byDLRSART. PublishedbytheEUCASSassociationwithpermission. 5.08LAPCAT

1. Introduction TheEUsponsoredLAPCATstudyinvestigatesdifferenttypesofadvancedpropulsionsystemsforsupersonic andhypersoniccruise[1].Oneofthemostpromisingreferencevehiclesisasupersonicairlinerwithcruise velocityofMach4.5calledLAPCATM4. Aturbinebasedcombinedcycle(TBCC)isthenaturalpropulsionsystemforhighspeedpassengertransport, because one can exploit the tremendous experience in aircraft jet engines. A combination of turboengines with andkerosenepropellantisforeseenastheLAPCATM4propulsionsystem.Turbojetaswellas cycleengineshadbeeninoperationwiththefirstgenerationofsupersonicpassengerairplanes,theandthe Tu144.However,theseengineswithafixedcyclehadinsufficientefficienciesforoperationinthefullflight regimeandthuslimitedflightrange.Thedemandsofsubsonictosupersonicflightatveryhighspeedrequireadapta tionsofthethermodynamiccycleinordertoimproveoperationalefficiency.VariableCycleEngines(VCE)might offeragoodcompromiseforsuchapplications.Therefore,VCEshavebeenunderstudyformorethanadecade.The USstartedinvestigationsalreadyinthe1970iesandrecentlypushedthisformilitaryandspacefunctions (RTA,RevolutionaryTurbineAccelerator)[2]. ThepreliminarydesignofLAPCATM4[3]isbasedonacriticalrecalculationofa1990NASALangleyand Lockheedstudy[4]ofa250passenger,Mach4highspeedciviltransportwithadesignrangeof6500nauticalmiles (12045.8km).TheLAPCATmissionrangeBrusselstoSydneyishighlyambitiousandbyalmost40%largerthan NASA’s12000km,whichrequiresaredesign. ThenewsupersoniccruisehastobeconsiderablyenlargedcomparedtotheearlierNASAdesignto meetitsambitiousrangerequirement.Tokeepthewingloadinginanacceptablerangethewingsizehasbeenin creasedto1600m 2(+36%).Thespangrowsalmostproportionallyby16%,whilethetotallengthreaches102.78m whichisonlyslightlylonger(+8.8%)thantheearlierHSCTproposal. The general arrangement of the generic airplane geometry is illustrated in Figure 1. Four advanced turbo RAMjetenginesaremountedintwoonthewinglowersurfaceadjacenttothe.Thelocationofthe engineandnacellesisstillopenforadaptationifrequiredbytrimaslongastheyremainunderthewing.Theaxial symmetricgeometryandthesizeoftheairintakes,nacellesandasshowninFigure1arenotrepresentative oftheactualLAPCATdesign.Arectangularshapeoftheairintakewithverticalrampsasin[4]isthepreferredde signoption. Thelarge,slightlyinclinedwingmighthelptoachieveagoodmaximumL/Dof7.8atasmallangleofattack andcruiseMachnumber4.5accordingtopreliminaryDLRanalysis.Actually,ahighL/Disessentialtoachievethe ambitiousrangerequirement. Thetotaltakeoffmassofthesupersoniccruiseairplanehasbeeniteratedinatwoloopapproachtothehuge valueof720Mg,whichiswellbeyondanysupersonicpassengeraircraftbuilttodate.Thedrymassisestimatedat 184.5Mgandthestructuralindexisataforairplaneslow36.8%.Asampletrajectorycalculationhasbeencon ductedwithouttheenginemasstakenintoaccountusingthe VCE214 engine configuration as propulsion device. Figure2showsvariationofcalculatedfuelconsumptionperrangewithtime.Fromthefigure,therearetwoaccelera tionphaseswithsucceedingquasiplateauforeachcase.Theformerisinitialaccelerationwithsubsoniccruise,and 102.78 m

54.15 m

Figure1:GenericMach4.5supersoniccruiseairplaneofLAPCATstudy(designnotrepresentative)

2 K.OKAIandM.SIPPEL,ComponentAnalysisofTBCCPropulsionforaMach4.5SupersonicCruiseAirliner

Figure2:LAPCATM4fuelconsumptionperrangeasafunctionofflighttime[3] thelatterislitaccelerationwithsupersonicramcruise.Thisformersubsoniccruisetimeisscheduled duetopreventnoiseproblemabovedenselypopulatedarea,andifthenoiseconcernistobeignoredbettersolutionis possible.Oneimportantnotificationisthatoperationtimeofturbineengineatsupersonicspeedisrelativelysmall, comparedtotheratioofabouthalf(supersoniccruisingtimeisabouthalfoftheflighttime)fortheConcordecase. Mostoftheflighttimeareoccupiedeithersubsoniccruiseorsupersonicramcruise.Accordingtocurrentdatathe HSCTwouldbeabletotransportabout200passengerswiththeirluggage.MoredataontheLAPCATM4airliner designispublishedinreference[3].

2. Analysis

Construction ThroughtheTBCCengineanalyses,theDLRairbreathingpropulsionanalysiscomputerprogramabp[5]has beenutilized.Theabphasthecapabilityofanalysesonsimplecycledescriptionandofgeometricaldesignfeatures bothintakeandturboengineincludingnozzle.Theabpisafairlyintegratedtool,andspecificcompositioncanbe separatelyused.Inthismeaning,theabpcanbesubdividedintothreecategories;abp(main)(orsimplyabp),abpi andabpw. Intake analysis tool - abpi Theabpiisahighlygeneralizedpurposecodefortwodimensionalsupersonicintakeandthesizeandperform ancearecalculatedalmostautomatically.Aerodynamicflowpathinthecompressionpartiscalculatedusingwedge shockrelationships.Bygivinganappropriatelossfactors,theleadingedgeseparationshockandotherfeaturesin troducinglossesareestimated.Thefunctionforthegeometricalconfigurationdesignautomaticallygeneratesflow pathwhichisadequatebothinaerodynamicandstructuralmeaning.Forweightestimation,amaterialcanbespeci fiedforeachsection,andseverallimitingvaluessuchasmaximumallowabledisplacementaretobespecified.To fulfillthegeometricaldesigning,structuralfeaturessuchasmaterialsandallowabledeformationratearetobeinput. Theabpihasafunctiontogenerateatransitionductfromtherectangular shape to circular shape, but abpi needs informationsuchasoffset,lengthscaleandexitareaasinputparameters. Therefore,theinformationfordiffuserdesigninthispaperisintroducedindependentlyreferencingareportby Murakami [6]. Murakami [6] obtained a set of empirical expressions on the effect of geometry on pressure loss throughthesubsonicdiffusersectiontoconfigurethepreliminaryductdesign.Theexpressionsobtainedhavebeen verifiedbyapplyingtoexistingexperimentaldata.Throughtheanalysis,coreengineentrysectiondimensionand thustheMachnumberarealsoevaluatedincomparisonwithexistingenginedata.Theisolatorsectionscaleisesti matedwiththeexpressionusingtheexperimentaldatain[7]. Cycle analysis tool – abp(-main) Byusingabp(main),engineperformanceiscalculatedforamodulararrangementofcomponentsbyfast,one dimensional analysis. Therefore a method based on known component efficiencies (e.g. generalized compressor maps),andknownturbine,andcompressorentrytemperatures,aswellasaerodynamicrelationsisadaptedforhigh speedairbreathingengines.

3 5.08LAPCAT

Core engine geometry and weight estimation tool - abpw Abpwisanindependentweightandgeometrydesigntoolforturboengines.Theinputarrangementsuchas componentnumberingandconnectingbetweentherelatedcomponentssuchashighpressureturbineandcompressor aresimilartothatofabp(main).Theabpwrequirestheinputofasequentialthermodynamicdatafilederivedfrom theaboveabp(main)andotherspecificparameterstodealwithstructuralfeatures.Thisapproachresembleswith [31]inthepointthatindetailcomponentanalysiswillbedonepassingbysimplecycleanalysisresult.Theevalua tionoftherotatingpartscanbedoneforanyselectedoperatingconditions,butisusuallyperformedforthesealevel static case. In contrast, the nozzle configuration is usually determined as for the supersonic cruising conditions. Designofthecombustorparts(coreenginecombustorandramcombustor)isalsoatarbitraryconditionsandisdone forLAPCATatmaximumsealevelflightspeedcase(M=0.8),wherethemassflowandfuelflowtakemaximum values[32].Generalsizedeterminationisdonebythevelocitydiagramestimationforrotationparts,spray,mixing, combustion and cooling empirical evaluation for combustor parts, and flow field evaluation for the nozzle. The methodforthestructuralweightanalysisisquitestraightforwardwithasmallnumberofvariables.Sincethetool onlydealswithsimplevelocityflowdiagrams,thelimitationofthecascadeflowssuchassurgemargincannotbe estimated,insteadthepresenttoolcalculatesthemeanflowcharacteristicssuchasloadingcoefficient,flowcoeffi cient,diffusionfactor,generalizedvelocitydiagrams,shaftpowersandrelevantstressesonrotatingparts.Theseflow andstructuralparametersareusedtoconvincethedesignwellnessreferencingthegeneraltrends. Approach Inthispaper,analysisofseveralexistingSSTenginecomponentsareconductedwiththesameanalysistool abptoconfirmthevalidityofthepresenttoolandtoattainseveraltechnicalfeatureswhichareuniqueforhighspeed propulsion systems compared to the propulsion systems for conventional and subsonic . Especially on Olympusenginethebackgroundofeachspecificdesignarelookedbackandtheexpectedconfigurationforfuture highspeedpropulsionsystemwillbepresented.IntheLAPCATenginestructuralconfigurationestimation,newly developedmaterialsareaggressivelyappliedtohavelighterweight.

3. Analysis of historical SST engine components

Intake analysis Toevaluatethevalidityoftheintakeanalysistoolabpiandtoobtainthegeneralrulesinthespecificconditions appliedtotheexistinginflightormodelintakes,thefollowingintakesareinvestigatedwithabpi: Concordeintake XB70intake JapaneseHYPRscaledintake JapaneseSengineintakeforhypersonicprecooledturbojetenginepropulsion Alltheintakesabove are rectangular, variable geometry intakes. This configuration corresponds to the ex pectedselectionoftheintaketypetotheLAPCATM4intake. Following [8], the supersonic intakes applicable subsonic induct configuration, which means excluding SCRamconfiguration,areclassifiedintothree;Mach2+,Mach3andMach46intakes. TheMach2+classintakesusuallydealwithexternalcompressionintakebecauseofhighperformanceandhigh stability.AnexampleintakeistheConcordeintake.ThesolutionadoptedontheConcordeisrelevanttoexternal compression,inthesensethatitpresentsnostartingproblemassociatedwithmixedcompression;however,itallows asmallamountofinternalcompression,duetoawideinternalboundarybleedslot. TheMach3classintakeessentiallyneedsthemixedcompressionintakeconfiguration,inordertoattainahigh pressurerecoverywithanacceptableintakecowl.Anotherparticularaspectistheintakecaptureareaoffaster thanthisspeedregimeisobviouslylargerthanthecompressorfacefrontareaoftheturboengine,offeringanoppor tunityofmultiplecycleenginearrangementswithoutanacelledragpenalty.Anexampleintakeofthisspeedregime istheXB70intake. TheMach46classintakecontinuestohavealltheproblemsofslowerspeedintakeconfiguration,andmajor problemarisesistheoperationintermsofvariousmassflowrangematchingandofcombinedcycleinstallation.For theenginesystemsofthisspeedregime,enginecyclewillbeacombinedcycleconfigurationmostlythecombination ofturboengineandramjetengine.Thelargeflightspeedvariationandenginecycletransitionbringstheconditionof mismatchbetweenintakeswallowprovisionandengineoperationandnozzlecoolingrequirements.Theotherimpor tantfeatureisthatheattreatmentbecomesofmoreimportance.Thereisnoexistingexample,andinthiscasetwo experimentalintakes,HYPRandSengineintakesareinvestigated.

4 K.OKAIandM.SIPPEL,ComponentAnalysisofTBCCPropulsionforaMach4.5SupersonicCruiseAirliner

TheHYPRintakeisarectangularmixedcompressionintakewith4rampsandtheenginecruiseMachnumber is5.HYPR(HypersonicTransportPropulsionSystemResearch)projectisaJapaneseprojectheldbetween1989 and1998todevelopthetechnologiesforthefutureMachHST(HypersonicTransport)airplanepropulsionsystem. TheJAXASengineintakeisdesignedatMach6with7obliqueshockwavesandanormalshockwavesystem. Thisistobeusedforahypersonicscaledairbreathingenginemodelwhoseenginecycleisprecooledturbojeten gineusingliquidhydrogenasthefuel.Thehypersonicflowisdeceleratedthrough7obliqueshockwavesandfinally becometosubsonicspeedthroughaweaknormalshockwave.Theratiobetweenexternalcompressionandinternal compressionis2:8attheMach6designpoint.Pressurerecoveryanalysisisperformedusingobliqueshockwave equationsandnormalshockwaveequations. Figure3showsthecomparisononpressurerecoverydatabetweeninflightorwindtunnelexperimentsandthe presentabpicalculations.Thefigureclearlyshowsthattheabpiresultsrathermatchwithcorrespondingexperimen taldata.TheSengineintakeresultdefersfromthegeneraltrendandMILE5000B8,whichisregardedaspractical expectedvalueoftheintakes,andthepresentabpicorrectlycapturesevenforthecase.Theprimarilyreasonofrela tivelysmallpressurerecoveryfortheSengineconfigurationcomesfromdirectscaleddownoftheactualsizeintake design, and the problems from low Reynolds number introducing thick boundary layer have some effects. The HYPRintakeisalsoascaledintakeactually,butthetestintakeisindependentlydesignedforeachMachnumberto achievethebestperformance.ThesimpleanalysistoolabpiisfoundtobeusefulforwiderangeMachnumberrange fromtheresult. Thesecondmostimportantcharacteristicismasscaptureratioofanintake.Theactualexperimentaldatais onlyavailablefortheConcordeintakeandtheSengineintake.Theabpioverestimatethemasscaptureratioforthe wholerangeofConcordeandunderestimatesforSengine.Thefactcomesfromthebleedingscheduleandthatfor abpiisfullboundarylayerbleeding.IntheSengineconfiguration,thebleedingisdonenotonlyfromthethroatbut alsofromthesmallholesontherampsurface,andtheamountofbleedingisdeterminedassmallaspossibleforde pletingtheharmfulamountofboundarylayergrowth.IntheConcordeintake,bleedingscheduleisdeterminedbythe pressurebalanceoftheintakesectionsandbythenozzleejectorflowscheduling.Itcanbesaidatthismomentthat theassumptionoffullboundarylayerdepletionisadequatefortheinitialphaseofpreliminarydesign.However,the recalculationasthepresenttimemayrequireabitmorerobustandpreciousbleedingexpressions.Asforhypersonic engineintakes,airpartitioninginbetweencoreengineandbleedductsareveryimportantduetowiderangeofspeed operationfortheseengines.Thebleedingairwouldflowcircumferentiallythroughthesideduct,utilizedascooling airforafterburnerandnozzles,finallyisthrowntonozzleflowinejectorconfiguration.Theschedulingoftheair flowdistributionwouldberatedeterminingprocessforthewholeenginecontrolling.

Figure3:Pressurerecoverydataforexistingintakes(dashedlineshowsMILE5000B8).

5 5.08LAPCAT

Inthestructuralpointofview,anairintakeisregardedasathinlightweightpressureduct.Therefore,thepre liminarydesignoftheintakeshouldtakeintoaccountthepressuredistribution,allowableamountofdeformationand the supporting struts arranging so as to have smallest weight. The abpi has a function to estimate the structural weightofanintake.Onereferenceempiricalweightestimationequationavailableisprovidedin[27]asfollowing: .0 294 Wintake = .4 345β +117.35η [lb] where β=(lengthofduct[ft]*numberofinlets) 0.5 *(totalinletcapturearea[ft 2]/numberofinlets) 0.3334 *(engineinletpressure[psia]) 0.6667 *outofroundfactor*machnumberfactor, η=(totallengthoflamp[ft])*(numberofinlets)*(totalinletcapturearea[ft 2]/numberofinlets) 0.5 *temperaturecorrectionfactor Thereisalmostnoavailableintakeweightdatafrompublications.Therefore,usingtheavailableweightesti mationdataofJAXASengineintake(exceptthesubsonicdiffuserpart)withFEManalysisandaccompanyingsim plestructuralanalysis,thevalidityofthepresentabpianalysisisconfirmed[9].Figure4showsthecomparisonof thepresentabpiestimationofintakeweightwithavailabledata.Thereareseveralplotsinvariationofintakesize, andEFMdataandWAATSdataarealsoshownfortheactualflightmodel(largescale)intake.Theintakeusescar boncompositematerialstokeeptheweightlight.ThefigureshowsthattheWAATSdataoverestimatestheresult. ThepresentabpidataiscorrespondingtotheFEMandaccompanyingsimplestructuralanalysisdata.TheWAATS hasnoinputparameterforthevariationofmaterialandtheempiricalexpressionistakenfrommostlymilitaryair craftsof1950s.StilltheWAATSdataisusedinmanypreliminarydesigns,butitisclearlyseenthattheseanalysis wouldnotbeapplicableforfutureaircrafts. Figure5showstheestimatesofintakeweightofexistingintakesoflargeSSTsbothbyabpiandWAATS.In contrarytothepreviouscase,WAATSdataismuchsmallerthanthepresentabpicalculations.Theprimarydiffer encecomesfromthediffuserpart.TheestimatedweightoftheXB70weightseemsheavierasactualcomparing withtotaldrymass(93,000kg),resultinginmorethanonethirdofthetotalaircraftweightfortheintakesystem. Consideringthelargenessofthe,thisestimationmaybesomewhatoverestimating.Atleast,itcanbesaid thattheWAATSestimationsareclearlyunderestimateweightforlargeintakesandthecalibratedpresentabpigive moreprecisedataatleastforcompressionpart.TheWAATSdataaretakenmostlyintegratedintaketotheairframe, andthespeedrangeisrelativelylow(forapproximately1950stechnology airplanes as F4111, F101A, A3J, F 106B,F101B,F8U3,T38A,F11F1,F9F8,A4D2N,A2FandF841[27]).Therefore,subsonicdiffuserweight estimationwouldnotbepreciseforthepresentcasesanditseemstheWAATSisonlyapplicableforrelativelysmall Machnumberandsmallscalecases.

Figure4:ValidationofweightestimationtoolbyJAXASengineintakeconfiguration

6 K.OKAIandM.SIPPEL,ComponentAnalysisofTBCCPropulsionforaMach4.5SupersonicCruiseAirliner

Figure5:Estimatedweightofseveralexistingintakes(abpiandWAATS) Forsomeintakes,structuralarrangementoftheintakeisavailable.ThestructureoftheConcordeintakeisex plainedin[35].TheoperatingtemperatureofunderMach2.0cruiseconditionsisapproximately400[K]andalumi numalloyisusedforthestructure.Theforwardlip,theforwardandcenterductskinsandtheintakeframesare mostlymachinedfromthickplatematerial.AtypicalframeisshowninFigure6(left).StructureoftheXB70in takeisdescribedin[36].Figure7showsthematerialsandtheconstructionofthelowerfuselagepartoftheXB70, includingdescriptionontheintakepart.Thelowerfuselageisahybridstructureconsistingofavarietyofdifferent constructiontechniques.Multipleshallowdepthcrossbeamsareusedtoformtheupperoftheunit.Thesideand lowertransverseframessupportedtheengineaccessdoorsandwereusedtocompletetheunit.Thesparswerema chinedfromH11steelandusedwebs.Atthesideofthefuselage,thehoneycombsandwichwingstubwas joinedtotheH11frameswithhighstrengthmechanicalfasteners.Theskincoveringthetopandsidesofthelower fuselageis6A14Vtitaniumalloyrivetedinplace.Theconfigurationofthediffuserpartisdifferentwithusualrec tangularintakes,becauseoneintakeoftheXB70involvesthreeengines.OnthedevelopmentphaseofXB70,a onethirdflowintakemodelcombinedwithoneenginewastested.Thisstructureisrathersimilartothepresentabpi calculationcondition.Reference[36]displayedthatthemodelofthelowerfuselageweighed210000poundsandis 75feetlong.Intheabpicalculation,similarvaluewasacquiredbyapplyingthemoststeelmaterialsandthe20times stricterbendingallowance(referencevaluewassubscribedbytheengineweightbeforehand). Althoughthereissomeinformationabouttheintakestructureofexistingengines,thepresentestimatedweight resultsarestillobscurebecausetheamountofdeformationallowanceintheactualintakeisnotknown,whichisvery importantinthestructuralweightdetermination.Therefore,furthercomparisonwithobtainableactualdatashouldbe made.

Figure6:Theconcordeintakestructure[35]

7 5.08LAPCAT

Figure7:MaterialsandconstructionusedintheupperandlowerintermediatefuselageofXB70[36]

Core engine analysis Inthepreviousreport[17],cycleanalyseswithabp(main)areconductedforthefollowingexistingengines: Olympus593Mk610turbojetofConcorde. KuznwetsovNK144turbofanofTu144 KuznwetsovRD3651AturbojetofTu144 SamaraNK321turbofanofTu144 GeneralElectricGE4,originallyforeseenforthecancelledB2707project Thefiveturboenginesshownaboveareregardedasfirstgenerationsupersonicaeroengineswhichwerede velopedinthe1960s.However,theyarerelativelydiverseintheirthermodynamiccycledefinition.Threeturbojets, oneintwospools(Olympus593)andtheothertwosinglespool(RD36,GE4)layoutswithdifferentOPRandTET canbefound.ThetwoincludeatwospoolandathreespooldesignwithasignificantrangeinOPRand TET,reflectingdifferentenginetechnologygenerations. AssummaryofthesimplecycleanalysesofthefirstgenerationSSTturboengines[17],itcanbestatedthat conventionalturbofanscanonlybeoperatedinaugmentedmodeduringsupersoniccruiseflight.Theresultingpoor efficiencyofturbofanssignificantlyreducestheirpossibleflightrange. TheOlympus593turbojetofConcordedemonstratesawellbalancedperformanceinthewholeflightdomain. Althoughthisenginewasagoodcompromiseatitstime,subsonicandtakeoffperformancehastobesignificantly improvedforaviablefutureSST. Fromtheabovenotation,theOlympus593engineisfoundtobeagoodexampletobeinvestigatedintermsof moreindetailconfigurationandmechanics(eg,[9][11][12][13][14][15][16]).Fromthereferencesavailableonthe engine,adiscussiononthesupersonicengineconfigurationwillbegivenbelow. Theweightandconfigurationanalysistoolabpwisutilizedtoemployananalysisoftheengine.Detailde scriptionofthemechanicalaspectsoftheOlympus593isseenin[11].Furthercharacteristicsonrotatingmachine aredescribedin[18]and[19].Afterdeterminingthegeometricalconfiguration,abpwprovidesseveralcharacteris tics of the performance which are determined only by given geometrical features (impossible to give after simple cycleanalysiswithasocalled“rubberengine”).Forexample,powerinputtothecompressorsandcompressoroff designcharacteristics[18][19]andcompressorloadcharacteristicsareconfirmedvalid.Byconfirmingtheavailable flowcharacteristics,theenginemechanicalconfigurationiscalculatedtointroduceanestimatedweight.Thederived valueisabout3000kgwithoutsecondarynozzle.ThesecondarynozzleofOlympusengineisamodulestructurefor identicaltwoenginesalignandhasacomplexejectorflowpath.Forotherturbojetengines,GE4andRD36,simpli fiedsectionalimageandsomeinformationareavailable([20]and[21]).Thoseenginesdonotprovide abundant information,andsomepropertiesareassumedbyanalogytotheOlympus593engine. ThepresentresultsarecomparedwithestimationbyTaguchiandcoworkers[22].Figure8showstheresultof weightestimationincomparisonwithactualreportedvalue.Thedottedlineshowstheestimationofweightvariation withchangeofFAC,whicharedescribedasfollowing[22]:

Wengine = .9 8851× FAC [kg], where

8 K.OKAIandM.SIPPEL,ComponentAnalysisofTBCCPropulsionforaMach4.5SupersonicCruiseAirliner

.0 265 FAC = ma ×π , and ma and π arecorrectedmassflowin[kg]andpressureratio,respectively. Fromthefigure,thepresentweightestimationgivesrelativelyclosevaluetotheactualvalue.Andalsoitcanbeseen thatthequitesimple(statistical)estimationgivesrelativelygoodresultandtheparameterFACisagoodreferenceto showthelargenessoftheengine.TheRD36engineresultbyabpwand[22]somewhatoverestimatestotheactual reportedvalue.Theenginestructuraldataisnotsufficient(becauseofthehistorictrendofRussianenginesmore titanmaterialsareapplied)andhaspluggednozzlestructure,whichcannotbecalculatedpreciselyinthepresenttool. Bycomparingtheactualweightdatawiththeempiricalexpressionof[22],GE4isfoundtobeproperlyestimatedin theabpwestimationbuttheabsoluteweight(comparedtothethrust)isheavyasasupersonicengine.Theresultant heavyweightisreportedtobeoneofthereasonsofthecancellationofthewholeprogram. Otherthanthemethoddescribedin[22],thereareseveralengineweightestimationmethodsreported.Koba yashi[23]introducedweightestimationexpressionstoturboenginesandappliedthemtohisintegratedoptimisation calculationoftheTSTOspaceplane.Theexpressionsarebasedon[24]andimprovedwithavailablemodelfabrica tiondataforspecificpurposetotheTSTOengines.Basically,theseweightestimationsaregiveninthefollowing expression: k W Wref ∝ (D Dref ) , whereWandDareweightandsectionaldiameter,respectively,andrefmeansreferentialvalue.Becauseaturbo engineisapressurevesselwhichflowshighpressurefluid,thefactorkwouldbespecifiedas2,3and0forpressure balancingstructure,notpressurebalancedstructureandaccessorydevice,respectively.Thereforeactualcomponents givethevaluebetween2and3,forexampleWAATS[27]providesdatacorrespondingtothekvalueofabout2.5. Theapproachin[25]isalsostraightforward,andhasthefollowingexpression:

W = ∑ ρnVn . n Componentdensityandspecificdiameterofthecomponentsareempiricallydetermined.Mostrecently,amodified expressionisreportedbasedon[25],andthenewapproachdealswithbladelifetime[26].Theactualdesignofthe hightemperatureand/orhighloadingcomponentsisrestrictedbytheenvironmentofloading.Aswillbeseeninthe following,supersonicenginecomponentssufferfromrelativelysevereloadingenvironment,andthedesignshould considernotonlytheperformancesuchaspressureratioandturbineinlettemperature,butalsoinlettemperatureand pressureenvironmentandtheirvariationduringoperation. Presentabpwcanberegardedanintermediatelevelweightestimationtoolbetweentheprecisestructuralcal culationwithFEMandmoresimplecalculationssuchasshownabove.Theabpwhasmeritsoffastcalculationcom paredwithFEMandneedscalibrationsforspecificpurposes.Also,anothermeritsofabpwisthatithasanabilityto breakdowntheestimatedweightcomponentasshowninFigure9forOlympus593engine.Asseeninthefigure, compressorsandnozzleweighsamongthecomponents.However,someverificationdataisneededinsuchakindof analysis.AsshowninFigure8,itisshownthatthepresentabpwisreliableasfarasthepreliminarydesignlevel. Theinformationontheactualenginetestdataandthepresentabp(main)calculationdataonOlympus593 revealssomeimportantfeaturesonmechanicalaspectsofthesupersonicturboengines.Reference[11]showsand abp(main) calculation confirmed that throughout engine components suffer from high temperature (840K) during cruise.TheOlympuscruisesatcompressorexittemperaturesthatthesubsonicengineonlyseesbrieflyattakeoff. Thesignificanceislongenough(abouthalftimeoftheflight)forfullystabilizedsoaktemperaturestobeachieved throughouttheengine,whereasinthetypicalsubsonicenginesonlythethinairfoilsectionsandsomeofthecasings achievethosehightemperatures.Asaresultforsupersonicengines,thistemperaturegradients and consequential stressrangearemuchhigherthansubsonicengines[11].Further,thetemperatureavailableforcoolingofturbine disksandbladeswithacceptable pressure level is higher than for subsonic engines, limiting the ability of turbine coolingbytheprovidedcoolingair[11].Therefore,asin[26],supersonicenginesshouldconsidertheoperation sequenceespeciallyonthermalloadingmorecarefullythanconventionalsubsonicengines.

9 5.08LAPCAT

Figure8:Estimationofturbojetengineweights

LPC HPC CC HPT LPT A/B 1st Nozzle shaft

Figure9:WeightdistributionofmajorcomponentsbyabpwcalculationonOlympus593

Remarks on nozzle Asmentionedintheintakesection,thenozzleoperationshouldbecoupledwithintakebleedingflowpath. Thepresentnozzleconfigurationisonlythesimpleconvergentdivergentnozzlematchingwithwholeoperationre gime.Tohaveapreciseestimationofperformanceandweightforthenozzle,ejectorflowconfigurationshouldbe takenintoaccount.Atthismoment,theflowconfigurationcanbeincorporatedwiththeinformation(eg.[28],[29]) andthemassflowdistributionpatternstrategyisbeingdeveloped.Thisrevisionwouldbereportedinthefuture.

4. Analysis of LAPCAT M-4 engine components

General description of the LAPCAT M-4 engine Table1listsallpropulsioninterfacedataobtainedfromthevehicledesignsimulationsofLAPCAT.These dataarethebasicrequirementsforthesubsequentpreliminarydesignofallTBCCpropulsioncomponents.Amini mumsealeveltakeoffthrustatMach0.3of1800kNhasbeendefinedkeepingtherunwaylengthrequirementwithin acceptablelimits.

10 K.OKAIandM.SIPPEL,ComponentAnalysisofTBCCPropulsionforaMach4.5SupersonicCruiseAirliner

Table1:PropulsionsystemthrustrequirementsbasedonLAPCATM4vehicledesignprocess Trajectory point 1 (take-off): Mach: 0.3 Altitude: 0 m Totalinstalledthrust: 1800 kN Trajectory point 2 (cruise 1): Mach: 4.5 Altitude: 24300m Totalinstalledthrust: 640 kN Trajectory point 3 (cruise 2): Mach: 4.5 Altitude: 29100m Totalinstalledthrust: 292 kN Trajectorypoint1isthemajorsizingcriterionforallturboengines,whiletheothertwotrajectorypointsoper ateinRAMmodeandarerelevantfortheairintakesizing. Anadvancedturbojetisregardedaswellasthreecombinationsofvariablecycleturbofans.Aramburnerwill beintegratedwiththeconvergentdivergentnozzleforallcyclevariants.Thisdeviceactsasanafterburnerinhigh altitudeaccelerationflightandasthesinglepropulsionsystembeyondthetransitionMachnumberof around 3.5. Cycletemperaturesarelimitedtosimilar,ambitiouslyhighvalues.ATETof1950Kandanafterburnertemperature of2100Kneverthelessseemtobeachievablebyadvancedengineswithinadevelopmentperspectiveofabout20 years.Inthefollowingestimations,materialsunderresearchanddevelopmentareaggressivelyappliedtoproposea reasonablethrusttoweightengineconfigurationwithinthetermperspective. Intake analysis and design Allengineswillbefedbythesametwodimensional,variablegeometry,mixedcompressionintake.Different designshavebeeninvestigated.Oneofthemostpromisingconfigurationsisanuptosixshock,threevariableramp mixedcompressionintake.AttainablepressurerecoveryhasbeenestimatedwiththeDLRcodeabpi[5].Anopti mizedcruisepointpressurerecoveryofaround70%atMach4.5couldbepossible,ascanbeseeninFigure10.This translatesintoanintakeefficiencyof0.974atcruise.ThepressurerecoveryandefficiencyatlowerMachnumbers canbesignificantlyraisedbyasuitablepositioningofthesecondandthirdrampangles.Externalcompressionwith theterminatingshockinfrontofthelipseemstobeadvantageousforMachnumbersuptoapproximately2.5.The curvesinFigure10 includetheeffectofforebodycompressionandthebowshock.Thecycleanalysesoftheturbo jetandofthevariablecycleenginespresentedinthefollowingsectionarebasedonthepressurerecoverydatafrom Figure4.Thecaptureareaof7.5m2hasbeencheckedbyabpianalysesindesignandoffdesignconditionsonavail ableairmassflowandseemstobesufficientinthecompleteflightmission.

1

0.95

0.9

η=0.99 0.85 Π[−] Π[−] Π[−] Π[−] η=0.985 0.8 mixed compression external compression η=0.98 0.75

η=0.975 0.7

η=0.97

0.65 1 1.5 2 2.5 3 3.5 4 4.5 5 Ma [ - ] Figure10:LAPCATM43RV3AirIntakegeometrypressurerecoverydata

11 5.08LAPCAT

Further2DCFDanalysesoncompressionpartoftheintakehavebeenconductedandbasiccorrespondence andseveralremarksforthetreatmentshavebeenobtained.TheCFDresultsareavailableforseveralinflightcondi tionsnotonlythedesignpointbutalsosubsoniccasesforwhichitishardtohandlewithsimpleanalyticaltoolssuch asabpi.Indetailinformationontheanalysisisdescribedin[17]. Aparametricanalysishasbeenconductedbychangingtheexitdiameterandreducedlength(ductlengthdi videdbyexitdiameter),andappropriateexitdiameterandreducedlengthofthedivergentductaredeterminedas D2=1.95mandL/D2=4.25,respectively.Thisvalueofnondimensionallengthwouldbewithinallowablelevelin termsofsmalldistortionandresultsinactuallengthof7.5m. Figure11 showsthepreliminarysizedgeometryoftheLAPCATM43RV3intake.Maintainingtheprevious captureareaof7.5m2,thetotallengthoftherampsreachesabout9mandthewidthis2.5m.Totallengthofthe subsonicdiffuserincludingamovablesectionwithrectangularcrosssectionisabout8.6mandtheoveralllengthof theintakewiththeisolatorsectionismorethan19m. Geometry data as automatically generated by the abpi tool or provided as input values allow a first mass estimationwhichisbasedonasimplifiedstructuralmechanicalanalysis.Thematerialoftheintakeismostlyselected asanadvancedCSiCcompositeforhightemperatureresistanceandhighstrengthinanuncooledenvironment.Due totheextremelylightweightdesign,atotalintakemasswithoutequipmentandactuatorsofslightlyabove5500kgis obtained. Oneimportantfeatureintheindetaileddesignoftheintakeisactuatordesignandbypassflowducting.As seen in the previous chapter, the present wide Mach number operation requires large variation of bypass airflow schedulerelatedtoejectornozzleconfiguration.Thepresentintakeanalysisassumestheamountofbleedingatthroat sectionasmuchasneededforfullboundarylayerdepletion.Furtherimprovementofnozzledesigninrespectof ejectorconfigurationshouldbecombinedwithintakebleedscheduling.

Figure11:LAPCATM43RV3AirIntakegeometryinwireframeandshadedmodes

12 K.OKAIandM.SIPPEL,ComponentAnalysisofTBCCPropulsionforaMach4.5SupersonicCruiseAirliner

Core-engine configuration determination TheturboenginesunderinvestigationascandidatesarelistedwithmajorcyclespecificationdataatSLScon ditionsinTable2. TheLAPCATTJE6isarelativelysimpleandcompactdesignwithasixstagecorecompressorpoweredbya twinstageHPT.ThreedifferentvariantsofadvancedvariablecycleengineshavebeeninvestigatedfortheLAPCAT supersonicairliner.AllaredoublebypassturbofansprincipallysimilartoRTAadesign[2],howeveradaptedtothe missionrequirementsofthepresentLAPCATM4.Themajordifferencesofthethreeconceptsareinthenumberof fanorcompressorstagesandtheirOPR,asalsosummarizedinTable2.ARAMburnerwillbeintegratedwiththe convergentdivergentnozzleinallvariants.Table2alsoliststhemajorcyclespecificationdataoftheLAPCATM4 VCEenginesatSLSconditionspriortotakeoff.NotethatbothoftheVABIsareclosedandbothbypassratiosare consequentlysettozerotoachieveahighspecificthrust.ComplicatedlayoutoftheVCEallowsanadaptationof thedifferentcompressorsmoreorlessindependentlyofeachother.AroundMach2.5threeenginesareswitchingto anoperationmodeinwhichthefirstfanistransitioningtowindmilling.AtMach3thelowpressurespoolisinfull windmilling,thustemperatureandpressureoftheincomingflowwillnotbealteredinthiscomponent.AtMach3.5, transitiontopureRAMjetisinitiated.ThecoreenginesofVCEwillbeclosedbeyondtheMach3.5trajectorypoint andthecompleteairflowisdirectedthroughthebypassducttotheRAMchamber.Severalpreliminaryinvestiga tionsinthespeedregimeareongoing[30].Oneissuewouldbeathermalenvironmentaround1050Kforthewind millingLPfanduringlongRAMcruisetimecouldraiseproblems.ThemaximumRAMcombustiontemperatureis limitedto2100Kasfortheafterburner.Thishightemperatureisusedduringthe(short)accelerationphaseandcan bereducedduringthe(longer)cruisingphase.Thelowerthermalloadseasesomewhatcoolingconcernsbecauseof nocryogenicfluidapplicabletoactivecooling. AcomprehensivecycleanalysisandcorrespondingflightsimulationsofLAPCATM4havebeenconductedin thepreviousreport[30].Asasummary,itisfoundassuminganidenticalamountofavailablefuelandanidentical takeoffmass,thattheachievablerangeofthefourturboengineshasthesameranking.However,theseassumptions disregardedanydifferencesinenginedrymass. Table2:LAPCATM4’sdifferentturbojetandVCEdoublebypassturbofancycles’specificationdataatsealevel staticconditionsaccordingtoabpcalculation TJE-6 VCE-114 VCE-213 VCE-214 OPR 15 23.256 14.887 24.0

ΠFan 1.9(1stage) 2.1(2stages) 2.1(2stages) ΠCDF 1.8(1stage) 1.7(1stage) 1.7(1stage) ΠHPC 15(6Stages) 6.8(4stages) 4.17(3stages) 6.72(4stages) HPTurbine 2Stage 1stage 1stage 1stage LPTurbine 1stage 1stage 1stage Bypass ratio (BPR1) 0.0 0.0 0.0

λ1 Bypass ratio (BPR2) 0.0 0.0 0.0

λ2 airmassflow kg/s 450 435 450 450 TET K 1950 1950 1950 1950

Fspec 0,0 ,dry Ns/kg 1116 1129 1109 1126 F 0,0 ,dry kN 502 491 499 506 sfc 0,0 ,dry g/kNs 30.67 28.1 30.7 27.9 T afterburner K 2100 2100 2100 2100 Fspec 0,0 ,afterburner Ns/kg 1343 1400 1353 1415 F 0,0 ,afterburner kN 589.4 601 603 627 sfc 0,0 ,afterburner g/kNs 43.84 42 43.7 41.8 Asmentionedabove,itisquiteimportanttohaveinformationaboutenginemassdatatocomparethetypeof engines.TheengineconfigurationswhichhavebeenevaluatedfirstaretheTJE6turbojetengineandtheVCE114 doublebypassturbofanengine.TheverybroadrangeofengineoperationfromsealevelTakeoffuptoM=3.5in morethan20000mrequiresathroughinvestigationofeachcomponentunderallrelevantconditions.Thepreliminary resultsshowthatbothoftheenginescanbeaccomplishedwithaninletdiameterof1.9m 2andamaximumengine diameterofapproximately2.1m.Thetotallengthoftheenginewithnozzleisatleastabout7m.Assumingad

13 5.08LAPCAT

vancedfibrereinforcedmaterials(eg.TMCasdescribedin[33]),theturbojetweightisalmost5tonsclass(4600kg) andthevariablecycleengineinthe6tonsclass(6100kg),bothincludingnozzle.Figure12showscomparisonofthe LAPCATTJE6weightwithotherweighttrends.ThisfigureshowsestimatedweightdataonLAPCATTJE6both foradvancedmaterialcaseandconventionalmaterialcase.Thecaseofconventionalmaterialresultscorresponding tothetrenddescribedbythecurvebyTaguchiandcoworkers[22]anditapparentlyresultsheavy.Byapplyingthe advancedlightweightmaterials[33]asmuchaspossiblewithintheallowanceofmechanicalstresses,itisshownthat theweightcanbecomealmosthalf.Itshouldbenotedthattheapplicationofunrealisedmaterialsareinvestigated withmuchcare,becausethelonglifereliabilityandtoughnesstovariousenvironmentsarestillobscure[34].At leastinthismomentitcanbesaidthatwithasimpleweightestimationtoolwhichisvalidforseveralexistingsuper sonicenginetheLAPCATTJE6engineisderivedtoweighalmost6tons.Thefirstweightestimationofturbojet andoneVCEshowsthatthelatterweighsheavieraboutby1ton.Alsonotethatthepresentestimatednozzleweight isforavariableaxysymmetricconvergentdivergenttype.Alargerandmorecomplicatedejectornozzlewithad vancednoisesuppressionfeatureswillbecomeheavier.ForthecomparisonamongvariousVCEstheductflowpath andtheiractuationconfigurationforthephasetransitionwouldbeimportant.Furthercomparisonamongtheengine conceptsshouldbedonewiththeseestimatedengineweightderivedinthesamestandpoint. Onedifficultfeatureistheapplicabilityoftemperatureresistancematerials.Asmentionedabove,theOlympus enginecomponentperformanceisnotsuchanextremeonecomparedwithrecentcivilaircrafts,butbyaccountingits thermalenvironmenttheconfigurationitselfwasverychallenging.TheOlympusenginecomponentsshouldhave sufferedfromrelativelylongtimehightemperaturegradientconditions,resultinginseverethermalloadingandcor respondingcycle.ThepresentLAPCATengineinawholesuffersinsimilarorsevererthermalloadingcondition, howeverasseeninFigure2,thetimeforthecoreenginestosufferfromthehighthermalandmechanicalloadsis quitelimitedtotheaccelerationphase.MostofthetimeisoccupiedwithsubsoniccruiseandhighspeedRAMmode. StillcareshouldbetakenbecauseofhightemperaturewindmillconditionandlongtimeoperationofRAMcombus tor(withrelativelylowload).

Figure12:EngineweightestimationofLAPCATTJE6andsomeexistingturbojetengines

14 K.OKAIandM.SIPPEL,ComponentAnalysisofTBCCPropulsionforaMach4.5SupersonicCruiseAirliner

5. Conclusion and Future work Aturbinebasedcombinedcycleisanattractivepropulsionsolutionforanadvancedultralonghaulsupersonic airliner.WithintheframeworkofthepresentLAPCATM4propulsionwhichseeksaMach4classconventional fuel turboengine feature, component analysis on thealreadyproposedenginetypecandidatesarecarried out. In advancetotheanalysis,thepresentanalysistoolareappliedtoseveralexistingenginetoassurethevalidityandto betterunderstandthespecificfeatureswhichsometimesaredifferentfromconventionalsubsonicengines. Apreliminaryhighperformanceairintakedesigniscarriedoutandshowspromisingdata.Preliminarysizing designoftheintakeiscarriedoutandtheresultshowsthatthetotallengthreachesalmost20mandassumingad vancedhightemperaturecompositematerialsanintakemassofabout5.5tonsisestimated. Theconfigurationandweightanalysisareconductedfortwoofthecandidateturboengines(TJE6andVCE 114).ItisshownfortheTJE6casethattheapplicationofadvancedlightweightmaterialscanreducetheengine total weight tremendously compared to the conventional material case. The resultant weights are 5tons class and 6tonsclassincludingnozzleforTJE6andVCE114,respectively.Theconfigurationanalysisshowsthatbothofthe enginescanbeaccomplishedwithaninletareaof3m 2,andthetotallengthisabout7mincludingnozzle. Thefirstestimationoftheconcreteconfigurationandroughestimationofweightgivesmuchinsightforfurther investigation.Asforthefuturework,moreindetaildescriptiononnozzleconfiguration,feasibleairpartitioningand ductconfigurationisfavoured.Allofthecoreenginetypesandfurthermoreintegratedanalysesonthetotalpropul sionsystemwillbepursued.

6. Acknowledgements Thisworkwasperformedwithinthe“LongTermAdvancedPropulsionConceptsandTechnologies”project investigatinghighspeedairbreathingpropulsion.LAPCAT,coordinatedbyESAESTEC,issupportedbytheEU within the 6th framework Programme Priority 1.4, Aeronautic and Space, Contract no.: AST4CT2005012282. FurtherinformationonLAPCATcanbefoundon http://www.estec.esa.int/techresources/lapcat The authors gratefully acknowledge the contributions of Mr. Josef Klevanski and Mr. Philipp Voigt in the investigationsoftheLAPCATM4TBCCpropulsionsystem.

References [1] N.N.:SIXTHFRAMEWORKPROGRAMME,PRIORITY1.4,AERONAUTICandSPACE,AnnexI“DescriptionofWork”,Project acronym:LAPCAT,Projectfulltitle:LongTermAdvancedPropulsionConceptsandTechnologies,Proposal/Contractno.:12282,Dateof preparationofAnnexI:1stofFebruary2005,Operativecommencementdateofcontract:26thofApril2005

[2] McNelis,N.;Bartolotta,P.:RevolutionaryTurbineAccelerator(RTA)Demonstrator,AIAA20053250,May2005

[3] Sippel,M.;Klevanski,J.:PreliminaryDefinitionoftheSupersonicandHypersonicAirlinerConfigurationsinLAPCAT,AIAA20067984, November2006

[4] Domack,C.S.;Dollyhigh,S.M.;Beissner,F.L.;Geiselhart,K.A.;McGraw,M.E.;Shields,E.W.;Swanson,E.E.:ConceptDevelopment ofaMach4HighSpeedCivilTransport,NASATechnicalMemorandum4223,1990

[5] Sippel,M.:ProgrammsystemzurVorauslegungvonluftatmendenAntriebenfürRaumfahrzeuge,abp2.0,DLRTB31998/07,1998

[6] Murakami,A.,Empiricalmethodoftotalpressurelossestimationofsubsonicdiffuser( inJapanese ),JAXARM04002,2004.

[7] Walltrup,P.J.,andBillig,F.S.,PredictionofPrecombustionWallPressureDistributioninEngines,JournalofSpacecraftsand ,Vol.10,No.9,Sep.1973.

[8] Goldsmith,E.L.AndSeddon,J.Ed.,PracticalIntakeAerodynamicDesign,Blackwellscientificpublications,1993.

[9] Okai,K.,ApplicationofabpionJAXA’sRectangularHypersonicIntake,SARTTN011/2006,December2006.

[10] Okai,K.,IntakeanalysisofLargeSupersonicIntake(Concorde,Tu144,XB70,HYPRandLAPCAT)usingabpi,SARTTN02/2007, 2007.

[11] Ganley,G.A.,Concordepropulsion–Didwegetitright?TheRollsRoyce/SnecmaOlympus593EngineReviewed,SAE912180,Sep tember1991.

[12] Talbot,J.E.,Concordedevelopment–Powerplantinstallationandassociatedsystems,SAE912181,September1991.

15 5.08LAPCAT

[13] Trubshaw,E.B.,Concordeflighttesting–powerplantandperformanceflying,SAE912192,September1991.

[14] Baxter,A.,Olympus–thefirstfortyyears,RollsRoyceheritagetrust1990.

[15] OBE,P.H.C.andNock,J.,Olympus593–Experienceinfirstyearofcommercialservice,SAE760888,December1976.

[16] Devriese,J.andYoung,P.H.,OlympusinConcorde,AeronauticalJournalDecember1972pp.683694.

[17] Sippel,M.:ResearchonTBCCPropulsionforaMach4.5SupersonicAirliner,AIAA20067976,November2006

[18] Saravanamuttoo,HIH,Rogers,GFCandCohen,H.,GasturbineTheory,fifthedition,Prenticehall,2001.

[19] Cumpsty,N.,Jetpropulsion,secondedition,Cambridgeuniversitypress,2003.

[20] Pirtle,J.C.,GE4supersonictransportengine–Developmentprogressandstatus,SAE690374,April,1969.

[21] Gordon,Y.,andRigmant,V.,TupolevTu144–Russia’sConcorde,Redstarvolume24,Midlandpublishing,2005.

[22] Taguchi,H.,Futamura,H.,Yanagi,R.andMaita,M.,Performanceanalysisofprecooledturbojetenginesforspaceplanes(inJapanese ), JAXARR04039,2005.

[23] Kobayashi,H.,Aresearchonintegratedsystemdesignoftwostagetoorbitalspaceplanes( inJapanese ),Dissertation,Universityof Tokyo,2001.

[24] Sagerser,D.,Lieblein,S.andKrebs,R.P.,EmpiricalexpressionsforestimatinglengthandweightofaxialflowcomponentsofVTOL powerplants,NASATMX2406,1971.

[25] Pera,R.J.,Onat,E.,Klees,G.W.andTjonneland,E.,Amethodtoestimateweightanddimensionsofaircraftgasturbineengines,NASA CR135170,May1977.

[26] Tong,M.T.,Halliwell,IandGhosn,L.J.,Acomputercodeforgasturbineengineweightanddisklifeestimation,ASMEJournalof EngineeringforGasandPower,Vol.206pp.265270,April,2004.

[27] Glatt,C.R.,WAATS–Acomputerprogramforweightsanalysisofadvancedtransportationsystems,NASACR2420,1974.

[28] Enomoto,S.,Yanagi,R.andSasaki,M.,Internalflowfieldandmassflowrateof2DCDejectornozzles,AIAA19983106,July,1998

[29] Kerrebrock,J.L,Aircraftenginesandgasturbines,secondedition,MITpress.1992

[30] Sippel,M.andOkai,K.,PreliminaryDefinitionofaTBCCPropulsionSystemforaMach4.5SupersonicCruiseAirliner,ISABE2007 1204,September2007.

[31] Mattingly,J.D.,Heiser,W.H.,andPratt,T.P.,Aircraftenginedesign,secondEdition,AIAAEducationalSeries,2002.

[32] Kurze,J.,Preliminarydesign,inAerospacedesign:Astateoftheart,vonKarmanInstitutelectureseries20022003,0711April2003.,

[33] Kumpfert,J.,Peters,M.,andKaysser,W.A.,Thepotentialofadvancedmaterialsonstructuraldesignoffutureaircraftengines,RTO AVTsymposiumondesignprinciplesandmethodsforaircraftgasturbineengines,Toulouse,May1998.

[34] Hatta,H.,Goto,K.,Hougo,Y.,Fukuda,H.,Sato,T.andTanatsugu,N.,ApplicationsofcarboncarboncompositestoanATREXengine forafutureTSTOspacevehicle( inJapanese ),InstituteofSpaceandAstronauticalSciencesReportVol.46,pp.205223,March2003.

[35] Harpur,N.F.,Taunton,M.A.andCoombe,T.W.,DesignandDevelopmentoftheConcordestructure,ThestructuralEngineer,Vol.47, No.4,pp.139150,April1969

[36] Jenkins,D.R.andLandis,T.R.,ValkyrieNorthAmerican’sMach3Superbomber,Specialtypress,2004

16