Reassessment of the Species in the Euwallacea Fornicatus (Coleoptera: Curculionidae: Scolytinae) Complex After the Rediscovery of the “Lost” Type Specimen

Total Page:16

File Type:pdf, Size:1020Kb

Reassessment of the Species in the Euwallacea Fornicatus (Coleoptera: Curculionidae: Scolytinae) Complex After the Rediscovery of the “Lost” Type Specimen insects Article Reassessment of the Species in the Euwallacea Fornicatus (Coleoptera: Curculionidae: Scolytinae) Complex after the Rediscovery of the “Lost” Type Specimen Sarah M. Smith 1, Demian F. Gomez 2 , Roger A. Beaver 3, Jiri Hulcr 2 and Anthony I. Cognato 1,* 1 Department of Entomology, Michigan State University, East Lansing, MI 48824, USA 2 School of Forest Resources and Conservation, University of Florida, 136 Newins-Ziegler Hall, Gainesville, FL 32611, USA 3 161/2 Mu 5, Soi Wat Pranon, T. Donkaew, A. Maerim, Chiangmai 50180, Thailand * Correspondence: [email protected]; Tel.: +1-51-7432-2369 Received: 22 July 2019; Accepted: 19 August 2019; Published: 22 August 2019 Abstract: Ambrosia beetles of the Euwallacea fornicatus (Eichhoff, 1868) species complex are emerging tree pests, responsible for significant damage to orchards and ecosystems around the world. The species complex comprises seven described species, all of which are nearly identical. Given that the morphology-defined species boundaries have been ambiguous, historically, there has been much disagreement on species validity, which was compounded by the presumed loss of the type series of E. fornicatus. The species complex was recently reviewed using morphometrics to associate the type specimens to the clades delineated with molecular data under the assumption of the lost type series. We rediscovered a syntype of Xyleborus fornicatus, and reevaluated the species in the complex using morphometrics. We propose the following taxonomic changes to the species complex: Euwallacea fornicatus (=E. tapatapaoensis (Schedl, 1951); = E. whitfordiodendrus (Schedl, 1942)) syn. res.); E. fornicatior (Eggers, 1923) (=E. schultzei (Schedl, 1951) syn. nov.); E. kuroshio (Gomez and Hulcr, 2018) and E. perbrevis (Schedl, 1951) stat. res. These taxonomic changes shift the species name associated with the widely used common names for two taxa, namely: Euwallacea fornicatus should be used for the “Polyphagous Shot Hole Borer”, and E. perbrevis for the “Tea Shot Hole Borer clade a”. A lectotype is designated for X. fornicatus in order to stabilize the use of the name. Keywords: ambrosia beetle; invasive species; taxonomy; species delineation 1. Introduction Xyleborine ambrosia beetles (Coleoptera: Curculionidae: Scolytinae: Xyleborini) are among the most damaging and invasive organisms, with impacts ranging from economic to ecological. Ecological and biological features, such as fungus-farming, haplodiploidy, and a wide host range, make the Xyleborini one of the most successful colonizers [1]. With ~1160 recognized species, this is the most species-rich tribe of Scolytinae, including some of the most widespread species [2]. The Euwallacea fornicatus species complex comprises seven species described from Asia and Oceania, namely: E. fornicatus (Eichhoff, 1868) (Sri Lanka), E. fornicatior (Eggers, 1923) (Sri Lanka), E. whitfordiodendrus (Schedl, 1942) (Malaysia), E. schultzei (Schedl, 1951) (Philippines), E. perbrevis (Schedl, 1951b) (Philippines), E. tapatapaoensis (Schedl, 1951) (Samoa), and E. kuroshio Gomez and Hulcr, 2018 (Japan). This species complex is arguably one of the most challenging in scolytine systematics, because the species are nearly identical. Given the blurred species boundaries, scolytine taxonomists disagreed on the validity of these species (see Stouthamer et al. [3] for a detailed synopsis). Wood [4] Insects 2019, 10, 261; doi:10.3390/insects10090261 www.mdpi.com/journal/insects Insects 2019, 10, x FOR PEER REVIEW 2 of 12 Insectstaxonomists2019, 10, 261disagreed on the validity of these species (see Stouthamer et al. [3] for a detailed2 of 11 synopsis). Wood [4] considered E. schultzei, E. perbrevis, E. tapatapaoensis, and E. whitfordiodendrus to be synonyms of E. fornicatus, and later, Wood and Bright [5] placed E. fornicatior in synonymy, leaving considered E. schultzei, E. perbrevis, E. tapatapaoensis, and E. whitfordiodendrus to be synonyms of E. only E. fornicatus as valid. fornicatus, and later, Wood and Bright [5] placed E. fornicatior in synonymy, leaving only E. fornicatus Xyleborus fornicatus was described from an unknown number of specimens from Sri Lanka [6]. as valid. Eichhoff’s collection and types were deposited in the Zoological Museum in Hamburg, Germany Xyleborus fornicatus was described from an unknown number of specimens from Sri Lanka [6]. (UZHM), and were destroyed when the museum was bombed during World War II. Approximately Eichhoff’s collection and types were deposited in the Zoological Museum in Hamburg, Germany a dozen Eichhoff types were saved by K.E. Schedl, and now reside at the Naturhistorisches Museum (UZHM), and were destroyed when the museum was bombed during World War II. Approximately a Wien (NHMW) [5] (p. 3). Given that the type specimens were not present in either UZHM or NHMW, dozenthe type Eichho seriesff typeswas listed were as saved ”lost” by by K.E. Wood Schedl, and and Bright now [5] reside in their at the catalog Naturhistorisches of bark and ambrosia Museum Wienbeetles. (NHMW) However, [5] (p.a syntype 3). Given was that listed the type in specimensa checklist wereof scolytine not present and in platypodine either UZHM types or NHMW, in the theZoological type series Museum, was listed Museum as ”lost” and by In Woodstitute and of Zoology, Bright [5 ]Polish in their Academy catalog of of bark Science, and ambrosiaWarsaw, Poland beetles. However,(MIIZ) [7], abut syntype this checklist was listed was in not a checklistlisted in the of scolytinecatalog [5], and and platypodine was subsequently types in largely the Zoological ignored. Museum,This is one Museum of several and errors Institute pertaining of Zoology, to type Polish specimen Academy deposition of Science, listed Warsaw, in Wood Poland and Bright’s (MIIZ) [[5]7], butcatalog this (see checklist [8,9]). was not listed in the catalog [5], and was subsequently largely ignored. This is one of severalBeginning errors pertaining in the 1980 to type′s populations specimen depositionof what was listed presumed in Wood to and be Bright’sEuwallacea [5] fornicatus catalog (see became [8,9]). Euwallacea fornicatus establishedBeginning outside in the Asia 1980 0sin populations Central and of whatNorth was America, presumed Israel, to be and South Africa [4,10–13].became establishedStouthamer outside et al. [3] Asia sampled in Central E. fornicatus and North s.l. America, from multiple Israel, andlocalities South across Africa [Asia,4,10– 13as]. well Stouthamer as from E. fornicatus s.l. etintroduced al. [3] sampled populations around thefrom world. multiple Their molecular localities phylogeny across Asia, revealed as well that as from E. fornicatus introduced was E. fornicatus populationsa complex consisting around the of world. three Theirclades, molecular presumed phylogeny species, which revealed were that termed tea shotwas hole a complex borer consisting(TSHB), Kuroshio of three clades,shot hole presumed borer (KSHB), species, and which po werelyphagous termed shot tea shothole holeborer borer (PSHB). (TSHB), Gomez Kuroshio et al. shot[14] expanded hole borer the (KSHB), Stouthamer and polyphagous et al. [3] dataset shot an holed recognized borer (PSHB). the following Gomez etfour al. species: [14] expanded KSHB and the StouthamerPSHB, tea shot et al. hole [3] datasetborer a and(TSHBa), recognized and tea the shot following hole borer four b species: (TSHBb). KSHB These and clade PSHB, names tea shot are holefrequently borer aused (TSHBa), in the and literature, tea shot but hole they borer do b not (TSHBb). have official These cladetaxonomic names status are frequently and they usedare not in theofficially literature, recognized but they by dothe not Entomological have official Societ taxonomicy of America status andcommittee they are of notcommon officially names. recognized Gomez byet al. the [14] Entomological delineated species Society in of the America complex committee using morphometrics of common names. to associate Gomez molecular et al. [14] delineated data with speciestype specimens. in the complex With usingthe assumption morphometrics that tothe associate type series molecular of E. fornicatus data with was type lost specimens. [5], Gomez With etthe al. assumption[14] based their that thespecies type seriesconcept of E.on fornicatus the specimenswas lost sequenced [5], Gomez from et al. the [14 ]type based locality their species of Sri conceptLanka, onwhich the specimenscorresponded sequenced to TSHBa from clade. the type locality of Sri Lanka, which corresponded to TSHBa clade. InIn thisthis review, review, we we examined examined the rediscoveredthe rediscoveredXyleborus Xyleborus fornicatus fornicatussyntype syntype (Figure1 )(Figure and additional 1) and non-typeadditional specimens non-type ofspecim individualsens of inindividuals the Euwallacea in the fornicatus Euwallaceacomplex fornicatus so as complex to revise so diagnoses as to revise and providediagnoses new and and provide revised new distribution and revised information. distribution information. Figure 1. Syntype of Xyleborus fornicatus , female, from left to right: dorsal dorsal view, view, lateral lateral view, view, posterior oblique view ofof declivity,declivity, andand labellabel information.information. BodyBody lengthlength ofof 2.622.62 mm.mm. Insects 2019, 10, 261 3 of 11 2. Materials and Methods We follow the clade names for the Euwallacea fornicatus species complex proposed by Stouthamer et al. [3], and those subsequently followed by Gomez et al. [14]. The syntype of Xyleborus
Recommended publications
  • For Scolytidae
    Great Basin Naturalist Memoirs Volume 13 A Catalog of Scolytidae and Platypodidae (Coleoptera), Part 2: Taxonomic Article 16 Index 1-1-1992 Index for Scolytidae Stephen L. Wood Monte L. Bean Life Science Museum and Department of Zoology, Brigham Young University, Provo, Utah 84602 Donald E. Bright Jr. Biosystematics Research Centre, Canada Department of Agriculture, Ottawa, Ontario, Canada 51A 0C6 Follow this and additional works at: https://scholarsarchive.byu.edu/gbnm Part of the Anatomy Commons, Botany Commons, Physiology Commons, and the Zoology Commons Recommended Citation Wood, Stephen L. and Bright, Donald E. Jr. (1992) "Index for Scolytidae," Great Basin Naturalist Memoirs: Vol. 13 , Article 16. Available at: https://scholarsarchive.byu.edu/gbnm/vol13/iss1/16 This End Matter is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist Memoirs by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. , 1460 GREAT BASIN NATURALIST MEMOIRS No. 13 Family Scolytidae Index This index iiichides all Latin names used in this catalog for Scol)tidae. Family-group names (family, subfamily, tribe) and names applied below the rank of subspecies (including aben-ations, variations, nomen nudums) are given in regukxr type. Valid names of genera and species are in bold type. The names of synonyms of genera and species, subgeneric names, and subspecific names are given in italics. The names are listed in alphabetical order by the computer; however, the user must realize that the computer reads parentheses () as a letter of the alphabet preceding the letter "a." The names of fossil species are preceded by an asterisk {").
    [Show full text]
  • Xyleborus Bispinatus Reared on Artificial Media in the Presence Or
    insects Article Xyleborus bispinatus Reared on Artificial Media in the Presence or Absence of the Laurel Wilt Pathogen (Raffaelea lauricola) Octavio Menocal 1,*, Luisa F. Cruz 1, Paul E. Kendra 2 ID , Jonathan H. Crane 1, Miriam F. Cooperband 3, Randy C. Ploetz 1 and Daniel Carrillo 1 1 Tropical Research & Education Center, University of Florida 18905 SW 280th St, Homestead, FL 33031, USA; luisafcruz@ufl.edu (L.F.C.); jhcr@ufl.edu (J.H.C.); kelly12@ufl.edu (R.C.P.); dancar@ufl.edu (D.C.) 2 Subtropical Horticulture Research Station, USDA-ARS, 13601 Old Cutler Rd., Miami, FL 33158, USA; [email protected] 3 Otis Laboratory, USDA-APHIS-PPQ-CPHST, 1398 W. Truck Road, Buzzards Bay, MA 02542, USA; [email protected] * Correspondence: omenocal18@ufl.edu; Tel.: +1-786-217-9284 Received: 12 January 2018; Accepted: 24 February 2018; Published: 28 February 2018 Abstract: Like other members of the tribe Xyleborini, Xyleborus bispinatus Eichhoff can cause economic damage in the Neotropics. X. bispinatus has been found to acquire the laurel wilt pathogen Raffaelea lauricola (T. C. Harr., Fraedrich & Aghayeva) when breeding in a host affected by the pathogen. Its role as a potential vector of R. lauricola is under investigation. The main objective of this study was to evaluate three artificial media, containing sawdust of avocado (Persea americana Mill.) and silkbay (Persea humilis Nash.), for rearing X. bispinatus under laboratory conditions. In addition, the media were inoculated with R. lauricola to evaluate its effect on the biology of X. bispinatus. There was a significant interaction between sawdust species and R.
    [Show full text]
  • Coleoptera, Curculionidae: Scolytinae)
    Zootaxa 4722 (6): 540–554 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4722.6.2 http://zoobank.org/urn:lsid:zoobank.org:pub:4ADBCE90-97D2-4A34-BCDC-5E207D8EDF0D Two new genera of Oriental xyleborine ambrosia beetles (Coleoptera, Curculionidae: Scolytinae) ANTHONY I. COGNATO1,3, SARAH M. SMITH1 & ROGER A. BEAVER2 1Michigan State University, Department of Entomology, 288 Farm Lane, room 243, East Lansing, MI 48824, USA. 2161/2 Mu 5, Soi Wat Pranon, T. Donkaew, A. Maerim, Chiangmai 50180, Thailand. 3Corresponding author. E-mail: [email protected] Abstract As part of an ongoing revision of the Southeast Asian fauna two distinct species groups were identified and hypothesized as new genera. These species groups were monophyletic as evidenced by a Bayesian analysis of DNA sequences from four genes for 181 xyleborine taxa augmented by 18 species newly included in this phylogenetic analysis. The species groups and newly discovered species demonstrated unique combinations of diagnostic characters and levels of DNA sequence difference commensurable to other xyleborine taxa. Hence, two new genera and three new species were described: Fraudatrix gen. n., Tricosa gen. n., Tricosa cattienensis sp. n., T. indochinensis sp. n., T. jacula sp. n.. The following new combinations are proposed: Fraudatrix cuneiformis (Schedl, 1958) (Xyleborus) comb. n., Fraudatrix melas (Eggers, 1927) comb. n., F. pileatula (Schedl, 1975) (Xyleborus) comb. n., F. simplex (Browne, 1949), (Cryptoxyleborus) comb. n., Tricosa mangoensis (Schedl, 1942) (Xyleborus) comb. n., T. metacuneola (Eggers, 1940) (Xyleborus) comb. n.
    [Show full text]
  • A New Beetle-Fungus Disease Complex Threatening Avocado
    identical new beetle species was found in Israel in 2009 in commer- Akif Eskalen cial avocado orchards where it has Department of Plant Pathology and Microbiology been causing damage to avocado (Fig. 1,2). Unlike the Redbay Ambro- Richard Stouthamer sia beetle, the vector of the Laurel Department of Entomology wilt disease which has been infest- ing avocado and other members University of California of the avocado family (Laureceae) Riverside, California in the Southeastern United States, Figure. 2: A failed main branch of avo- the new beetle has been observed cado in Israel caused by the Fusarium die- on more than 100 di!erent plant back (Mendel et al. 2012) A new beetle-fungus disease species in California including many species common in the urban land- scape and on such agriculturally important species as: avocado, olive, complex threatening avocado peach, guava, lychee, mango, persimmon, and pomegranate. "e beetle and fungus have a symbiotic relationship. When the beetle burrows into the tree, it inoculates the host plant with the fungus, which is carried in its mouthparts in a structure called a mycangia. "e fungus attacks the vascular tissue of the tree which brings water and ecently a new beetle/disease complex was detected that nutrients from the roots to the rest of the tree eventually causing branch causes a Fusarium dieback on avocado and other host plants R dieback. "e beetle larvae live in galleries within the tree and feed on the in and near Los Angeles County. "e disease is caused by a new, yet un- fungus. named Fusarium sp.
    [Show full text]
  • The Redbay Ambrosia Beetle and Laurel Wilt: Biology, Impact, and Thoughts on Biological Control
    The Redbay Ambrosia Beetle and Laurel Wilt: Biology, Impact, and Thoughts on Biological Control Albert E. Mayfield and James L. Hanula USDA Forest Service, Southern Research Station So, what is a redbay? Persea borbonia (Lauraceae) • Aromatic, broadleaved, evergreen of the US Southeastern Coastal Plain Exotic Scolytinae (bark and ambrosia beetles) in the US • 59 exotic spp. established – 30 last 30 yrs, 12 since 2000 • Majority ambrosia beetles • Easily transported and established in wood and solid wood packing material Brief History of Laurel Wilt • 2002: An Asian ambrosia beetle (Xyleborus glabratus) detected near Savannah, GA • 2004-2005: Beetle determined to be vector of fungus (Raffaelea lauricola) causing wilt disease and widespread redbay mortality (SC, GA, FL) • 2005-2010: continued range expansion in Southeastern US Redbay Ambrosia Beetle (Xyleborus glabratus) • Coleoptera: Curculionidae: Scolytinae – Symbiont fungi, mandibular mycangia – Partial parthenogenesis, sib mating – Sex ratio strongly skewed to female Female Male Redbay Ambrosia Beetle (Xyleborus glabratus) • Native to India, Bangladesh, Myanmar, Taiwan, Japan • Reported Asian host families (genera): – Lauraceae (Lindera, Litsea, Phoebe) – Dipterocarpaceae (Shorea) – Fagaceae (Lithocarpus) – Fabaceae (Leucaena) Laurel wilt pathogen (Raffaelea lauricola) • Recently described as one of 6 Raffaelea spp. in the mycangia (Harrington et al. 2010) • Presumed to have arrived with vector • Transmitted to host sapwood via RAB and moves systemically in the xylem S.W. Fraedrich A.E. Mayfield M.D. Ulyshen RAB Biology and Host Attraction Hanula, J.L. et al. 2008. J. Econ. Entomol. 101:1276 Hanula, J.L and Sullivan, B. 2008. Environ. Entomol. 37:1403 • Adults active year round, peak in September (GA and SC) • Brood development takes about 60 days; multiple gen/year • Diseased + beetle-infested redbay wood is not more attractive than uninfested wood RAB Biology and Host Attraction Hanula, J.L.
    [Show full text]
  • 1 Recovery Plan for Laurel Wilt on Redbay and Other
    Recovery Plan for Laurel Wilt on Redbay and Other Forest Species Caused by Raffaelea lauricola and disseminated by Xyleborus glabratus Updated January 2015 (Replaces December 2009 Version) Table of Contents Executive Summary……………………………….………………………………………………..…………………………………………….. 2 Contributors and Reviewers…………………………………………………………………………..………………………………………. 4 I. Introduction………………………………………………………………………………………………………………………………………... 5 II. Disease Cycle and Symptom Development….……………………………………………………………………………….……. 9 III. Spread……………………………………………………………………………………………………………………………….……….…… 23 IV. Monitoring and Detection………………………………………………………………………………………………………………. 25 V. Response…………………………………………………………………………………………………………………………………………. 29 VI. Permits and Regulatory Issues…………………………………………………..……………………………………………………. 32 VII. Cultural, Economic and Ecological Impacts……………..…………………………………………………………………….. 33 VIII. Mitigation and Disease Management…………………………………………………………………………………………... 38 IX. Infrastructure and Experts……………………………………………………………………………………………………………... 45 X. Research, Extension, and Education Needs….……………………………………………………………………………….... 48 XI. References……………………………………………………………………………………………………………………………………... 50 XII. Web Resources…………………………………………………...……………………………………………………………………..…. 58 This recovery plan is one of several disease-specific documents produced as part of the National Plant Disease Recovery System (NPDRS) called for in Homeland Security Presidential Directive Number 9 (HSPD-9). The purpose of the NPDRS is to insure that the tools, infrastructure, communication
    [Show full text]
  • Lessons from a Major Pest Invasion: the Polyphagous Shot Hole Borer in South Africa
    Lessons from a major pest invasion: The AUTHORS: polyphagous shot hole borer in South Africa Trudy Paap1,2 Michael J. Wingfield1,2 Z. Wilhelm de Beer1,2 The arrival and establishment of invasive forest pests can cause devastating environmental damage and great economic impact. For example, the cost over the past decade of dealing with the arrival of a single invasive beetle Francois Roets3 in the USA, the emerald ash borer (Agrilus planipennis), is estimated at more than USD10 billion.1 Originating from AFFILIATIONS: Asia, this beetle has killed hundreds of millions of native ash trees since it became established in the USA. However, 1Department of Biochemistry, this beetle is but one of hundreds of invasive insect pests that impact forests in the USA, and that contribute to a Genetics and Microbiology, University global tree health crisis caused by invasive insects and pathogenic microorganisms.2-4 of Pretoria, Pretoria, South Africa 2Forestry and Agricultural South Africa is no different from other countries and is experiencing an increasing rate of introductions of damaging Biotechnology Institute (FABI), forest pests.5,6 These invasions are largely unintentional and are a by-product of globalisation and increasing University of Pretoria, Pretoria, South 7,8 Africa global trade. The movement of living plants and plant products, including untreated wood packaging materials 9,10 3Department of Conservation Ecology (i.e. pallets, dunnage and crating), is known to be a major pathway for these pests. For clarification, in this and Entomology, Stellenbosch commentary we use the terms ‘insect’ and ‘pathogen’ to distinguish between the two types of organisms, although University, Stellenbosch, South Africa we also use the general term ‘pest’ to refer to both groups.
    [Show full text]
  • Invertebrados Terrestres Euwallacea Fornicatus 1 Euwallacea Fornicatus (Wood & Bright, 1992). Euwallacea Fornicatus Form
    Método de Evaluación Rápida de Invasividad (MERI) para especies exóticas en México Euwallacea fornicatus (Wood & Bright, 1992). Euwallacea fornicatus (Wood & Bright, 1992). Foto: Ken Walker. Fuente: Wikimedia. Euwallacea fornicatus forma una simbiosis con hongos (Haack, 2006; Eskalen et al., 2014) del género Fusarium (F. ambrosianum= F. bugnicourtii) (DGSV-CNRF, 2011), provocando síntomas típicos de marchitez regresiva de Fusarium o “Fusarium dieback (FD)” (Lynch et al., 2014) en árboles de aguacate, granado, mango, guayaba, higuerilla, nuez de macadamia, framboyán, quinina, entre otros muchos hospederos (Rabaglia et al., 2006; Mendel et al., 2012). Además de que el escarabajo por sí mismo puede afectar árboles con diámetro entre 2 y 81 cm (Coleman, 2013). En México, hay una gran diversidad de las especies reportadas como hospedantes de importancia agrícola (incluidas algunas especies ornamentales (DGSV-CNRF, 2011) y forestal (Lauráceas). Si no se llevan a cabo medidas de control, podría afectar la producción agrícola así como árboles de paisajes urbanos (Eskalen et al., 2013a) y naturales. Información taxonómica Reino: Animalia Phylum: Arthropoda Clase: Insecta Orden: Coleoptera Familia: Curculionidae Género: Euwallacea Nombre científico: Euwallacea fornicatus Wood & Bright, 1992 Nombre común: Tea shot hole borer. Resultado: 0.7437 Categoría de riesgo: Muy Alto Invertebrados terrestres Euwallacea fornicatus 1 Método de Evaluación Rápida de Invasividad (MERI) para especies exóticas en México Euwallacea fornicatus (Wood & Bright, 1992). Descripción de la especie Los machos de E. fornicatus tienen ojos, alas y piezas bucales atrofiados (James, 2007). Debido a que no vuelan, es raro observarlos ya que nunca abandonan las galerías (López et al., 2007). Presenta una sutura en la parte posterior del mazo antenal, el pronoto es semicuadrado con la parte posterior lisa (Rabaglia et al., 2006).
    [Show full text]
  • A Synopsis of Hawaiian Xyleborini (Coleoptera: Scolytidae)1
    Pacific Insects Vol. 23, no. 1-2: 50-92 23 June 1981 © 1981 by the Bishop Museum A SYNOPSIS OF HAWAIIAN XYLEBORINI (COLEOPTERA: SCOLYTIDAE)1 By G. A. Samuelson2 Abstract. The first post Fauna Hawaiiensis synopsis of Hawaiian Xyleborini is presented, with all of the species of the tribe known from the islands keyed and treated in text. Most species are illustrated. Twenty-four species of Xyleborus are recognized and of these, 18 species are thought to be endemic to Hawaiian islands and 6 species adventive. Not counted are 3 names applied to male-described endemics which are likely to be associated with known females later. Five species of Xyleborus are described as new and lectotypes are designated for 11 additional species. Males are described for 7 species of Xyleborus hitherto known only from females. One adventive species of Xyleborinus and 3 adventive species of Xylosandrus are known to the islands, but 1 of the latter may not have established. The Xyleborini make up a large and interesting part of the Hawaiian scolytid fauna. This tribe contains both endemic and recently adventive species in the Hawai­ ian Is, with 3 genera represented. The endemic xyleborines all belong to Xyleborus Eichhoff and they seem to be the only members of the Scolytidae to have evolved to any extent in the islands, though not a great number of species has been produced. Presently treated are 18 species, of which most are certainly endemic, and 6 adventive species. Xyleborinus Reitter is represented by 1 adventive species in the Hawaiian Is. Xylosandrus Reitter is represented by 3 adventive species, but 1 appears not to have established in Hawaii.
    [Show full text]
  • Temperature-Dependent Development of Xyleborus Glabratus (Coleoptera: Curculionidae: Scolytinae) Gurpreet S
    Temperature-dependent development of Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae) Gurpreet S. Brar1,*, John L. Capinera2, Paul E. Kendra3, Jason A. Smith4, and Jorge E. Peña5 Abstract Redbay ambrosia beetle, Xyleborus glabratus Eichhoff (Coleoptera: Curculionidae: Scolytinae), is a nonnative pest that transmits the pathogenic fungus Raffaelea lauricola T.C. Harr., Fraedrich & Aghayeva (Ophiostomatales: Ophiostomataceae), which causes laurel wilt disease in trees of the family Lauraceae. Laurel wilt is present in the commercial avocado (Persea americana Mill.; Laurales: Lauraceae) growing areas of Florida and poses a potential threat to the avocado industries of California and Mexico. The life cycle of X. glabratus was studied in avocado logs at 16, 20, 24, 28, and 32 °C. Xyleborus glabratus successfully completed its life cycle at 24, 28, and 32 °C, with the greatest oviposition and development rate at 28 °C. Development of the egg and pupal stages was studied at 12, 16, 18, 20, 24, 28, 32, and 36 °C. One linear and 7 nonlinear developmental models were used to estimate the temperature-dependent development of both stages. The linear model estimated the lower threshold temperatures for egg and pupal development to be 13.8 °C and 11.1 °C, respectively, and the degree-days (DD) for egg and pupal development to be 55.1 DD and 68.2 DD, respectively. The Brier-2, Ratkowsky, Logan, and polynomial models gave the best estimates for the temperature-dependent development of the egg stages, whereas the Brier-1, Logan, and polynomial models gave the best estimates of temperature-dependent development of the pupal stages. Our results suggested that the optimal temperature for development of X.
    [Show full text]
  • California Forest Insect and Disease Training Manual
    California Forest Insect and Disease Training Manual This document was created by US Forest Service, Region 5, Forest Health Protection and the California Department of Forestry and Fire Protection, Forest Pest Management forest health specialists. The following publications and references were used for guidance and supplemental text: Forest Insect and Disease Identification and Management (training manual). North Dakota Forest Service, US Forest Service, Region 1, Forest Health Protection, Montana Department of Natural Resources and Conservation and Idaho Department of Lands. Forest Insects and Diseases, Natural Resources Institute. US Forest Service, Region 6, Forest Health Protection. Forest Insect and Disease Leaflets. USDA Forest Service Furniss, R.L., and Carolin, V.M. 1977. Western forest insects. USDA Forest Service Miscellaneous Publication 1339. 654 p. Goheen, E.M. and E.A. Willhite. 2006. Field Guide to Common Disease and Insect Pests of Oregon and Washington Conifers. R6-NR-FID-PR-01-06. Portland, OR. USDA Forest Service, Pacific Northwest Region. 327 p. M.L. Fairweather, McMillin, J., Rogers, T., Conklin, D. and B Fitzgibbon. 2006. Field Guide to Insects and Diseases of Arizona and New Mexico. USDA Forest Service. MB-R3-16-3. Pest Alerts. USDA Forest Service. Scharpf, R. F., tech coord. 1993. Diseases of Pacific Coast Conifers. USDA For. Serv. Ag. Hndbk. 521. 199 p.32, 58. Tree Notes Series. California Department of Forestry and Fire Protection. Wood, D.L., T.W. Koerber, R.F. Scharpf and A.J. Storer, Pests of the Native California Conifers, California Natural History Series, University of California Press, 2003. Cover Photo: Don Owen. 1978. Yosemite Valley.
    [Show full text]
  • A Fungal Symbiont of the Redbay Ambrosia Beetle Causes a Lethal Wilt in Redbay and Other Lauraceae in the Southeastern United States
    A Fungal Symbiont of the Redbay Ambrosia Beetle Causes a Lethal Wilt in Redbay and Other Lauraceae in the Southeastern United States S. W. Fraedrich, Southern Research Station, USDA Forest Service, Athens, GA 30602; T. C. Harrington, Depart- ment of Plant Pathology, Iowa State University, Ames 50011; R. J. Rabaglia, Forest Health Protection, USDA Forest Service, Arlington, VA 22209; M. D. Ulyshen, Southern Research Station, USDA Forest Service, Athens, GA 30602; A. E. Mayfield, III, Florida Department of Agriculture and Consumer Services, Division of Forestry, Gainesville 32608; J. L. Hanula, Southern Research Station, USDA Forest Service Athens, GA 30602; J. M. Eickwort, Florida Department of Agriculture and Consumer Services, Division of Forestry, Gainesville 32608; and D. R. Miller, Southern Research Station, USDA Forest Service, Athens, GA 30602 fungi have been assigned to the anamor- ABSTRACT phic genera Ambrosiella or Raffaelea Fraedrich, S. W., Harrington, T. C., Rabaglia, R. J., Ulyshen, M. D., Mayfield, A. E., III, Hanula, (3,22), and subsequent phylogenetic stud- J. L., Eickwort, J. M., and Miller, D. R. 2008. A fungal symbiont of the redbay ambrosia beetle ies have found close relationships between causes a lethal wilt in redbay and other Lauraceae in the southeastern United States. Plant Dis. these anamorphs and the ascomycetaceous 92:215-224. genera Ceratocystis and Ophiostoma (7,24,40). Many bark beetles, including Extensive mortality of redbay has been observed in the coastal plain counties of Georgia and ambrosia beetles, have mutualistic associa- southeastern South Carolina since 2003 and northeastern Florida since 2005. We show that the tions with species in these genera of asco- redbay mortality is due to a vascular wilt disease caused by an undescribed Raffaelea sp.
    [Show full text]