'Jaws, Claws and Tyrannosaurs'

Total Page:16

File Type:pdf, Size:1020Kb

'Jaws, Claws and Tyrannosaurs' A G.A.T.E.WAYS JOURNEY for gifted Year 3 and 4 children with a passion for palaeontology and dinosaurs ‘JAWS, CLAWS AND TYRANNOSAURS’ G.A.T.E.WAYS is an independent organization offering challenging and enriching activities and experiences to develop and extend highly able children. This JOURNEY for both girls and boys will run over four sessions. It’s over 22 years since the movie Jurassic Park first arrived on the scene thanks to the imaginative minds of Michael Crichton and Steven Spielberg. Curiously more has happened to dinosaurs in the real world than on film since then. Fossil discoveries mainly in China, have transformed our understanding of dinosaurs. New species of dinosaurs are being discovered at a rate of one a week. The connection between birds and dinosaurs is now firmly established and birds are now regarded as avian dinosaurs. A whole family of dinosaurs, the tyrannosaurs, have been found with an extensive covering of feathers. T-rex was likely covered in quills and perhaps looked more like a cassowary than a komodo dragon. The tyrannosaur family has expanded in number, size, distribution and ancestry. This program looks at the latest dinosaur discoveries and the myths that have sometimes sprung up around them. Session One Can we build a more ‘up to date’ dinosaur? Many changes have occurred in our understanding of dinosaurs in recent years. The most exciting discoveries have involved the unmistakable impression of feathers. Dinosaurs had all kinds of feathers. They not only had down feathers for warmth. Microraptor was a dinosaur with four wings and obvious flight feathers. Pterosaurs were not the only ancient family of reptiles that could fly. Fifty years ago dinosaurs were all thought to be cold blooded; now it would appear they are more bird like than we could imagine. In this session we will examine some dinosaur feathers and work out what each different type of feather was for. Looking at dinosaur books published before 2000 and the Jurassic Park series of movies, we can see that dinosaurs appeared naked with only their scales as a covering. Now the evidence points to a whole new look. What else did the film get right or wrong? During the session we will design a dinosaur from scratch and add feathers. We will need to take into account scientific accuracy. Session Two Taking a close up look at T-rex and raptors In this session we will examine the most recent findings on tyrannosaurs. Once upon a time Tyrannosaurus rex was a one of a kind. Now we know T rex was neither the first nor the biggest tyrannosaur. There was a big family of tyrannosaurs and T rex was the last of the line of tyrannosaurs stretching back over 100 million years. Jurassic World may have invented Indomitus rex but in real life, fact is often stranger than fiction. We now have Pinocchio rex, Raptorex, Alioramus and Juratyrant. We’ll attempt to draw T rex to scale and try to determine what it was capable of doing. How did T rex see the world? Was it a fluffy monster? We will look at the evidence for the way T rex hunted and grappled with its prey. Was T rex a predator or a scavenger? What would have happened in a meeting between T rex and Triceratops. Australia had some dinosaurs related to T rex, the allosaurs. We’ll make a working model of a retractable raptor claw and try to work out what its function was. We’ll also make a plaster cast of a T rex tooth and a raptor claw. and we’ll identify the four characteristics that make a tyrannosaur. Finally we will try to imagine how T rex would have managed in a fight with Indomitus rex the fictional dinosaur from Jurassic World. Session Three What is in a name? In this session we’ll investigate the language of dinosaurs. What is palaeontology? What makes a carnivore or an omnivore or an herbivore? We’ll earn a little Greek and Latin to understand what the various names mean before compiling a table of dinosaur names. Following that, we’ll do a crash course in plate tectonics and put together the pieces of a wonderful jigsaw where Australia was once a part of Gondwanaland. How do we know Australia was once attached to Antarctica? What sort of dinosaurs did Australia have 100 million years ago? We’ll take a look at some of Australia’s polar dinosaurs, so called because southern Australia was just inside the Antarctic Circle 100 million years ago. How did they cope with the cold? Finally we’ll look at evidence of dinosaur burrows found recently on the Victorian coast. Session Four Whichever way you look at it, dinosaurs leave an impression In our final session, we will view some of the most recent illustrations of dinosaurs and compare them with earlier illustrations and with other animals which existed at the same time. We’ll investigate a range of fossils to determine if they are authentic or replicas. How can we tell if the fossils are part of a skeleton or a skin impression? Why is it that the Chinese fossil dinosaurs are better preserved than the American dinosaur fossils? We’ll recreate the opening scene in Jurassic World and make a model of a dinosaur tyrannosaur or raptor claw from wire which we mount on a model of an egg. This symbolically captures the beginning of a new life for dinosaurs. What the students need to bring Week one: Optional: Any model dinosaurs that you may have ( or discussion) Week three: one complete toilet roll for ‘geological time’ exercise Week four: Optional: A raptor or T rex model if you have one Assessment and reporting Students will be assessed on their involvement in the program. Each student will have a brief report summarising the student’s contribution to discussions, involvement with activities and participation in creating artefacts. About the presenter Tim Byrne worked as an Education Officer at Museum Victoria and presented many fossil/dinosaur programs. He has been fortunate to attend many fossil field trips and has even organised a few field trips himself. He has closely followed the developing idea of birds as a kind of living dinosaur. While enjoying the Jurassic franchise, he also enjoys separating the wheat from the chaff. He recently attended the Palaeontology Society lectures to uncover the latest research on dinosaurs. .
Recommended publications
  • Late Jurassic Theropod Dinosaur Bones from the Langenberg Quarry
    Late Jurassic theropod dinosaur bones from the Langenberg Quarry (Lower Saxony, Germany) provide evidence for several theropod lineages in the central European archipelago Serjoscha W. Evers1 and Oliver Wings2 1 Department of Geosciences, University of Fribourg, Fribourg, Switzerland 2 Zentralmagazin Naturwissenschaftlicher Sammlungen, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany ABSTRACT Marine limestones and marls in the Langenberg Quarry provide unique insights into a Late Jurassic island ecosystem in central Europe. The beds yield a varied assemblage of terrestrial vertebrates including extremely rare bones of theropod from theropod dinosaurs, which we describe here for the first time. All of the theropod bones belong to relatively small individuals but represent a wide taxonomic range. The material comprises an allosauroid small pedal ungual and pedal phalanx, a ceratosaurian anterior chevron, a left fibula of a megalosauroid, and a distal caudal vertebra of a tetanuran. Additionally, a small pedal phalanx III-1 and the proximal part of a small right fibula can be assigned to indeterminate theropods. The ontogenetic stages of the material are currently unknown, although the assignment of some of the bones to juvenile individuals is plausible. The finds confirm the presence of several taxa of theropod dinosaurs in the archipelago and add to our growing understanding of theropod diversity and evolution during the Late Jurassic of Europe. Submitted 13 November 2019 Accepted 19 December 2019 Subjects Paleontology,
    [Show full text]
  • Dinosaurs British Isles
    DINOSAURS of the BRITISH ISLES Dean R. Lomax & Nobumichi Tamura Foreword by Dr Paul M. Barrett (Natural History Museum, London) Skeletal reconstructions by Scott Hartman, Jaime A. Headden & Gregory S. Paul Life and scene reconstructions by Nobumichi Tamura & James McKay CONTENTS Foreword by Dr Paul M. Barrett.............................................................................10 Foreword by the authors........................................................................................11 Acknowledgements................................................................................................12 Museum and institutional abbreviations...............................................................13 Introduction: An age-old interest..........................................................................16 What is a dinosaur?................................................................................................18 The question of birds and the ‘extinction’ of the dinosaurs..................................25 The age of dinosaurs..............................................................................................30 Taxonomy: The naming of species.......................................................................34 Dinosaur classification...........................................................................................37 Saurischian dinosaurs............................................................................................39 Theropoda............................................................................................................39
    [Show full text]
  • Nanotyrannus’ As a Valid Taxon Of
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Queen Mary Research Online Dentary groove morphology does not distinguish ‘Nanotyrannus’ as a valid taxon of tyrannosauroid dinosaur. Comment on: “Distribution of the dentary groove of theropod dinosaurs: implications for theropod phylogeny and the validity of the genus Nanotyrannus Bakker et al., 1988” Stephen L. Brusatte1*, Thomas D. Carr2, Thomas E. Williamson3, Thomas R. Holtz, Jr.4,5, David W. E. Hone6, Scott A. Williams7 1 School of GeoSciences, University of Edinburgh, Grant Institute, James Hutton Road, Edinburgh, EH9 3FE, United Kingdom, [email protected] 2Department of Biology, Carthage College, 2001 Alford Park Drive, Kenosha, WI 53140, USA 3New Mexico Museum of Natural History and Science, 1801 Mountain Road, NW, Albuquerque, NM 87104, USA 4Department of Geology, University of Maryland, 8000 Regents Drive, College Park, MD 20742, USA 5Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA 6School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom. 7Burpee Museum of Natural History, 737 North Main Street, Rockford, IL 60115, USA *Corresponding author ABSTRACT: There has been considerable debate about whether the controversial tyrannosauroid dinosaur ‘Nanotyrannus lancensis’ from the uppermost Cretaceous of North America is a valid taxon or a juvenile of the contemporaneous Tyrannosaurus rex. In a recent Cretaceous Research article, Schmerge and Rothschild (2016) brought a new piece of evidence to this discussion: the morphology of the dentary groove, a depression on the lateral surface of the dentary that houses neurovascular foramina.
    [Show full text]
  • Hierarchical Clustering Analysis Suppcdr.Cdr
    Distance Hierarchical joiningclustering 3.0 2.5 2.0 1.5 1.0 0.5 Sinosauropteryx Caudipteryx Eoraptor Compsognathus Compsognathus Compsognathus Compsognathus Megaraptora basal Coelurosauria Noasauridae Neotheropoda non-averostran T non-tyrannosaurid Dromaeosauridae basalmost Theropoda Oviraptorosauria Compsognathidae Therizinosauria T A yrannosauroidea Compsognathus roodontidae ves Compsognathus Compsognathus Compsognathus Compsognathus Compsognathus Compsognathus Compsognathus Compsognathus Compsognathus Compsognathus Compsognathus Compsognathus Compsognathus Richardoestesia Scipionyx Buitreraptor Compsognathus Troodon Compsognathus Compsognathus Compsognathus Juravenator Sinosauropteryx Juravenator Juravenator Sinosauropteryx Incisivosaurus Coelophysis Scipionyx Richardoestesia Compsognathus Compsognathus Compsognathus Richardoestesia Richardoestesia Richardoestesia Richardoestesia Compsognathus Richardoestesia Juravenator Richardoestesia Richardoestesia Richardoestesia Richardoestesia Buitreraptor Saurornitholestes Ichthyornis Saurornitholestes Ichthyornis Richardoestesia Richardoestesia Richardoestesia Richardoestesia Richardoestesia Juravenator Scipionyx Buitreraptor Coelophysis Richardoestesia Coelophysis Richardoestesia Richardoestesia Richardoestesia Richardoestesia Coelophysis Richardoestesia Bambiraptor Richardoestesia Richardoestesia Velociraptor Juravenator Saurornitholestes Saurornitholestes Buitreraptor Coelophysis Coelophysis Ornitholestes Richardoestesia Richardoestesia Juravenator Saurornitholestes Velociraptor Saurornitholestes
    [Show full text]
  • Cranial Anatomy of Allosaurus Jimmadseni, a New Species from the Lower Part of the Morrison Formation (Upper Jurassic) of Western North America
    Cranial anatomy of Allosaurus jimmadseni, a new species from the lower part of the Morrison Formation (Upper Jurassic) of Western North America Daniel J. Chure1,2,* and Mark A. Loewen3,4,* 1 Dinosaur National Monument (retired), Jensen, UT, USA 2 Independent Researcher, Jensen, UT, USA 3 Natural History Museum of Utah, University of Utah, Salt Lake City, UT, USA 4 Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, USA * These authors contributed equally to this work. ABSTRACT Allosaurus is one of the best known theropod dinosaurs from the Jurassic and a crucial taxon in phylogenetic analyses. On the basis of an in-depth, firsthand study of the bulk of Allosaurus specimens housed in North American institutions, we describe here a new theropod dinosaur from the Upper Jurassic Morrison Formation of Western North America, Allosaurus jimmadseni sp. nov., based upon a remarkably complete articulated skeleton and skull and a second specimen with an articulated skull and associated skeleton. The present study also assigns several other specimens to this new species, Allosaurus jimmadseni, which is characterized by a number of autapomorphies present on the dermal skull roof and additional characters present in the postcrania. In particular, whereas the ventral margin of the jugal of Allosaurus fragilis has pronounced sigmoidal convexity, the ventral margin is virtually straight in Allosaurus jimmadseni. The paired nasals of Allosaurus jimmadseni possess bilateral, blade-like crests along the lateral margin, forming a pronounced nasolacrimal crest that is absent in Allosaurus fragilis. Submitted 20 July 2018 Accepted 31 August 2019 Subjects Paleontology, Taxonomy Published 24 January 2020 Keywords Allosaurus, Allosaurus jimmadseni, Dinosaur, Theropod, Morrison Formation, Jurassic, Corresponding author Cranial anatomy Mark A.
    [Show full text]
  • New Tyrannosaur from the Mid-Cretaceous of Uzbekistan Clarifies Evolution of Giant Body Sizes and Advanced Senses in Tyrant Dinosaurs
    New tyrannosaur from the mid-Cretaceous of Uzbekistan clarifies evolution of giant body sizes and advanced senses in tyrant dinosaurs Stephen L. Brusattea,1, Alexander Averianovb,c, Hans-Dieter Suesd, Amy Muira, and Ian B. Butlera aSchool of GeoSciences, University of Edinburgh, Edinburgh EH9 3FE, United Kingdom; bZoological Institute, Russian Academy of Sciences, St. Petersburg 199034, Russia; cDepartment of Sedimentary Geology, Saint Petersburg State University, St. Petersburg 199178, Russia; and dDepartment of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560 Edited by Neil H. Shubin, The University of Chicago, Chicago, IL, and approved January 29, 2016 (received for review January 5, 2016) Tyrannosaurids—the familiar group of carnivorous dinosaurs in- We here report the first diagnostic tyrannosauroid from the mid- cluding Tyrannosaurus and Albertosaurus—were the apex predators Cretaceous, a new species from the Turonian (ca. 90–92 million in continental ecosystems in Asia and North America during the years ago) Bissekty Formation of Uzbekistan. This formation has latest Cretaceous (ca. 80–66 million years ago). Their colossal sizes recently emerged as one of the most important records of mid- and keen senses are considered key to their evolutionary and eco- Cretaceous dinosaurs globally (9–11). Possible tyrannosauroid logical success, but little is known about how these features devel- specimens from the Bissekty Formation were reported more than oped as tyrannosaurids evolved from smaller basal tyrannosauroids a half century ago (12), and, more recently, several isolated fossils that first appeared in the fossil record in the Middle Jurassic (ca. 170 were assigned to the group (9, 13), but none of these has been million years ago).
    [Show full text]
  • A Tyrannosauroid Metatarsus from the Merchantville Formation of Delaware Increases the Diversity of Non-Tyrannosaurid Tyrannosauroids on Appalachia
    A tyrannosauroid metatarsus from the Merchantville Formation of Delaware increases the diversity of non-tyrannosaurid tyrannosauroids on Appalachia Chase D. Brownstein Collections and Exhibitions, Stamford Museum & Nature Center, Stamford, CT, USA ABSTRACT During the Late Cretaceous, the continent of North America was divided into two sections: Laramidia in the west and Appalachia in the east. Although the sediments of Appalachia recorded only a sparse fossil record of dinosaurs, the dinosaur faunas of this landmass were different in composition from those of Laramidia. Represented by at least two taxa (Appalachiosaurus montgomeriensis and Dryptosaurus aquilunguis), partial and fragmentary skeletons, and isolated bones, the non-tyrannosaurid tyrannosauroids of the landmass have attracted some attention. Unfortunately, these eastern tyrants are poorly known compared to their western contemporaries. Here, one specimen, the partial metatarsus of a tyrannosauroid from the Campanian Merchantville Formation of Delaware, is described in detail. The specimen can be distinguished from A. montgomeriensis and D. aquilunguis by several morphological features. As such, the specimen represents a potentially previously unrecognized taxon of tyrannosauroid from Appalachia, increasing the diversity of the clade on the landmass. Phylogenetic analysis and the morphology of the bones suggest the Merchantville specimen is a tyrannosauroid of “intermediate” grade, thus supporting the notion that Appalachia was a refugium Submitted 18 July 2017 for relict dinosaur
    [Show full text]
  • Explore 35(3) Summer 2013 CULTURE CONNECT
    Summer December 2013 to March 2014 VOLUME 35 NUMBER 3 discover TYRANNOSAURS: MEET THE FAMILY nature SHARING SYDNEY HARBOUR culture COLLECTING INDIGENOUS LANGUAGES CONTENTS NATURE Sharing the Harbour Sydney’s harbour is the most biodiverse 8 in the world by Shane Ahyong, Pat Hutchings, Mick Ashcroft, Mark McGrouther and Mandy Reid Review The Woodhen 18 Insect soup anyone? New foodie craze or citizen science project? 22 by Juliet Gauchat Getting into deep water Studying animals from the ocean depths 30 by Torben Riehl Confusing the scientists How a fossilised skull fooled the experts 32 by Yong Yi Zhen CULTURE Musings What’s new in culture 7 Review The Aboriginal Story of Burke and Wills 17 Collecting Indigenous languages An early explorer collected 26 words and specimens by Vanessa Finney Opening up Meeting the resurgent interest in Aboriginal cultures 29 by Laura McBride DISCOVER On the record Comings and goings at the Museum 2 Digging for dugongs The Dugong once frolicked in Botany Bay 3 by Patricia Egan On the tyrannosaur trail Tyrannosaurs once ruled the world 4 by Anne Musser Highlights & snapshots Our annual report to Members 13 Xplorer young scientist liftout Tyrannosaur time! centre Xplanations Search > Discover 19 In your backyard with Martyn Robinson 20 Members events Travel, talks and walks 34 OPINION From the Director Changing beliefs 1 Leaner and greener Balancing collection care with 24 environmental costs by Colin MacGregor FRANK HOWARTH • from the director changing BELIEFS As I write this the IPCC has just released its fifth report on climate change, and the evidence points overwhelmingly to human activity as the cause of current climate warming.
    [Show full text]
  • New Tyrannosaur from the Mid-Cretaceous of Uzbekistan Clarifies Evolution of Giant Body Sizes and Advanced Senses in Tyrant Dinosaurs
    New tyrannosaur from the mid-Cretaceous of Uzbekistan clarifies evolution of giant body sizes and advanced senses in tyrant dinosaurs Stephen L. Brusattea,1, Alexander Averianovb,c, Hans-Dieter Suesd, Amy Muira, and Ian B. Butlera aSchool of GeoSciences, University of Edinburgh, Edinburgh EH9 3FE, United Kingdom; bZoological Institute, Russian Academy of Sciences, St. Petersburg 199034, Russia; cDepartment of Sedimentary Geology, Saint Petersburg State University, St. Petersburg 199178, Russia; and dDepartment of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560 Edited by Neil H. Shubin, The University of Chicago, Chicago, IL, and approved January 29, 2016 (received for review January 5, 2016) Tyrannosaurids—the familiar group of carnivorous dinosaurs in- We here report the first diagnostic tyrannosauroid from the mid- cluding Tyrannosaurus and Albertosaurus—were the apex predators Cretaceous, a new species from the Turonian (ca. 90–92 million in continental ecosystems in Asia and North America during the years ago) Bissekty Formation of Uzbekistan. This formation has latest Cretaceous (ca. 80–66 million years ago). Their colossal sizes recently emerged as one of the most important records of mid- and keen senses are considered key to their evolutionary and eco- Cretaceous dinosaurs globally (9–11). Possible tyrannosauroid logical success, but little is known about how these features devel- specimens from the Bissekty Formation were reported more than oped as tyrannosaurids evolved from smaller basal tyrannosauroids a half century ago (12), and, more recently, several isolated fossils that first appeared in the fossil record in the Middle Jurassic (ca. 170 were assigned to the group (9, 13), but none of these has been million years ago).
    [Show full text]
  • Bizarre New Horned Tyrannosaur from Asia Described 5 October 2009
    Bizarre new horned tyrannosaur from Asia described 5 October 2009 Tyrannosaurus, this new animal is like a ballerina." Mark Norell, Chair of the Division of Paleontology at the Museum, agrees. "We now have evidence of two very different tyrannosaurs that lived in Asia at the same time and place—just like today, where lions and cheetahs live in the same area but look dissimilar and exploit their environment differently." Tyrannosaurs are bipedal predators that lived at the end of the Cretaceous (from 85 million years to approximately 65 million years ago) is currently known from several groups of fossils. One subfamily from North America includes Albertosaurus and Gorgosaurus, while the other subfamily bridges Asia and North America and includes Tyranosaurus, Tarbosaurus, and Alioramus. Both T. rex and Tarbosaurus are This is Alioramus altai in a scientifically reconstructed remarkably similar, even though they lived on scene. Credit: Jason Brougham different continents; both were predators with massive jaws and thick teeth that could crunch through bones. In fact, bite marks have been found on some fossils that were prey. Until now, Now, just a few weeks after tiny, early Raptorex Alioramus was known only from fragmentary fossils kriegsteini was unveiled, a new wrench has been that were briefly described decades ago by a thrown into the family tree of the tyrannosaurs. The Russian paleontologist, and it has long been new Alioramus altai—a horned, long-snouted, debated whether Alioramus was a proper gracile cousin of Tyrannosaurus rex—shared the tyrannosaur, a more primitive cousin, or perhaps a same environment with larger, predatory relatives.
    [Show full text]
  • Diminutive Fleet-Footed Tyrannosauroid Narrows the 70-Million-Year Gap In
    ARTICLE https://doi.org/10.1038/s42003-019-0308-7 OPEN Diminutive fleet-footed tyrannosauroid narrows the 70-million-year gap in the North American fossil record Lindsay E. Zanno 1,2,3, Ryan T. Tucker 4, Aurore Canoville1,2, Haviv M. Avrahami1,2, Terry A. Gates1,2 & 1234567890():,; Peter J. Makovicky 3 To date, eco-evolutionary dynamics in the ascent of tyrannosauroids to top predator roles have been obscured by a 70-million-year gap in the North American (NA) record. Here we report discovery of the oldest Cretaceous NA tyrannosauroid, extending the lineage by ~15 million years. The new taxon—Moros intrepidus gen. et sp. nov.—is represented by a hind limb from an individual nearing skeletal maturity at 6–7 years. With a ~1.2-m limb length and 78-kg mass, M. intrepidus ranks among the smallest Cretaceous tyrannosauroids, restricting the window for rapid mass increases preceding the appearance of colossal eutyrannosaurs. Phylogenetic affinity with Asian taxa supports transcontinental interchange as the means by which iconic biotas of the terminal Cretaceous were established in NA. The unexpectedly diminutive and highly cursorial bauplan of NA’s earliest Cretaceous tyrannosauroids reveals an evolutionary strategy reliant on speed and small size during their prolonged stint as marginal predators. 1 Paleontology, North Carolina Museum of Natural Sciences, 11W. Jones, St. Raleigh, NC 27601, USA. 2 Department of Biological Sciences, North Carolina State University, 100 Brooks Ave., Raleigh, NC 27607, USA. 3 Section of Earth Sciences, Field Museum of Natural History, 1400S. Lake Shore Dr., Chicago, IL 60605, USA. 4 Department of Earth Sciences, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa.
    [Show full text]
  • Evolutionary Dynamics of Tyrannosauroid Dinosaurs
    Facultat de Ciències Memòria del Treball Final de Grau Títol del treball: Evolutionary Dynamics of Tyrannosauroid Dinosaurs Estudiant: Laia Garcia Escolà Grau en biologia Correu electrònic: [email protected] Tutor: Sandra Heras Mena Cotutor: Albert Prieto Márquez Empresa/institució: ICP (Institut Català de Paleontologia) Vistiplau tutor (i cotutor): Nom del tutor: Sandra Heras Mena ([email protected]) Nom del cotutor: Albert Prieto Márquez ([email protected]) Empresa/ institució: Institut Català de Paleontologia Miquel Crusafont Data de dipòsit de la memòria a secretaria de coordinació: 03/06/2019 Evolutionary Dynamics of Tyrannosauroid Dinosaurs Laia Garcia Escolà Abstract This study explores the evolutionary dynamics of tyrannosauroid dinosaurs, a successful clade of basal coelurosaur theropods. This is accomplished by estimating rates of evolution using the Claddis R package. Morphological diversity was measured from discrete character data and estimates of evolutionary tempo on current phylogenetic hypotheses of tyrannosauroid relationships. In this work it is shown the process to obtain the set of necessary documents to obtain the results with the script to finally calculated it with R. In this set of previous documents are included a matrix character, that gather a series of different characters associated with the different taxa into the clade. It is also added a temporary range of each taxon and a consensus phylogenetic tree made by phylogenetic analysis under parsimony. All of them obtained through different software (Mesquite, TNT and R) and necessaries to run the script to obtain the seek resultants rates. Evolutionary rates were estimated for different anatomical regions of the tyrannosauroid skeleton, including the skull and mandible, the post cranial body and the whole-body.
    [Show full text]