Thurs 5 Sat 7 Fri 13 Mon 16 Wed 18 Thur 19 Fri 20

Total Page:16

File Type:pdf, Size:1020Kb

Thurs 5 Sat 7 Fri 13 Mon 16 Wed 18 Thur 19 Fri 20 Compiled by Wayne Roberts th Thurs 5 New Moon. th Sat 7 Dark Sky Viewing Night, Benalla Sports and Equestrian Centre (adjacent to racecourse). Fri 13th First quarter Moon. th Mon 16 Moon at perigee (closest to Earth, 367,391 km). th Wed 18 Monthly meeting, Hockey clubrooms, Churchill Park, Waller St., 7:30 pm. th Thur 19 Full Moon. th Fri 20 Pluto stationary. rd Mon 23 September equinox. th Wed 25 Mercury at aphelion (furthest from Sun, 69.8 million km) th Fri 27 Last quarter Moon. th Sat 28 Moon at apogee (furthest from Earth, 404,308 km). Astronomy Benalla’s experience with the weather as of late has been reminiscent of our horror run last year; we have now been clouded out on each of our last two monthly viewing nights. The silver lining on, literally, the cloud was the success of two outreach ventures during the month – a solar viewing at a Shepparton primary school and an abbreviated night viewing of the Moon, Saturn, Venus and Omega Centauri at which we played host to a group of visiting Japanese students. Both events were well received, with the youngsters in Shepparton eager to examine the telescopes and view the Sun, and the Japanese students bowled over by views of, in particular, the Moon and Saturn. The 23rd of this month marks the September equinox, when the sun rises due east and sets due west and days & nights are of equal length. The transition from winter to summer is a double edged sword from an astronomical observer’s viewpoint – the nights are becoming warmer and more hospitable while at the same time starting later and finishing earlier. Slides and roundabouts. Our monthly viewing nights are held on the Saturday closest to New Moon unless it falls on a Wednesday; on these occasions we view on the preceding Saturday to avoid a Moon setting late in the evening. This month, with New Moon falling on a Thursday, it sets almost two hours after the Sun, giving us a relatively rare opportunity (averaging two months in seven) to observe the lunar surface. The extremely thin 3% waxing crescent will make an interesting target early in the evening. Set up 6:00 pm. Sunset 6:01 pm. (Twilight ends 7:24 pm). Moon sets 7:51 pm. Twilight begins 5:04 am. Sunrise 6:27 am. Moon rises 7:35 am. As September begins, Mercury is in the very early stages of its best evening apparition of the year. On our viewing night it is 10° above the sunset horizon and sets just under an hour later at 6:56 pm, its 94% illuminated disk spanning 5" [" denotes arc-second = 1/60th of an arc-minute (symbol ') or 1/3600th of a degree (symbol °)] and piercing the twilight at magnitude -0.7. Watch the inner planet as it climbs ever higher with each passing day throughout September and into next month before diving back toward the western horizon in late October. At the end of September, as Mercury’s inner orbit causes it to begin catching up to Earth, its apparent size has increased to 5.9", phase and magnitude have decreased to 74% and -.05 respectively (remember from last month that Mercury is the only planet which shines brighter when on the far side of the Sun than when on the same side as Earth) and elevation at sunset has increased to 23°. It reaches greatest eastern elongation (24°) from the Sun on October 9th, a couple of days after rising up past Saturn which is sinking slowly toward the western horizon. This month and next represent your best opportunity this year to follow the speedy ‘Messenger of the Gods’ as its size, phase, magnitude and altitude change at a rate far faster than any other planet. Brilliant Venus continues to dominate the western sky, climbing higher and shining a little brighter on each successive September night. As the month begins it stands 37° above the sunset horizon, its 15" disk 74% illuminated and shining at magnitude -4.02. On our viewing night, these figures read 38°, 15", 72% and -4.05 respectively; look for Spica (Alpha [α] Virginis, mag 1.0) 2° SW (lower left) of Venus, and Saturn 12½° east (upper right). By month’s end the respective parameters are 42°, 18", 63% and -4.17. On the morning of the 9th, the 12% lit waxing crescent Moon’s northern limb passes just 6½' – less than a quarter the size of the lunar disk – from Venus while still beneath the eastern horizon; use the Moon and Venus as mutual tools to locate each other in broad daylight – the planet runs ahead of the Moon’s illuminated NW limb by 1½° (three lunar disks) at 9 am and 2° at 10 am (one finger at arm’s length is approx. 1°) Mars has just cleared morning twilight and continues to pull painfully slowly away from the eastern horizon throughout September, with the pace picking up slightly as the month progresses. On the morning of the 8th (following our viewing night) it rises at 4:44 am, just under 1¾ hours before the Sun and stands 17° above the sunrise horizon, its 4.1" disk 96% lit and shining at magnitude 1.64. Look for it 15° SE of Pollux (Beta [β] Geminorum, mag 1.15) and 22° east of brilliant Jupiter (thumb to little finger of an open hand at arm’s length is approx. 20°). The Red Planet’s ruddy hue and the fact that it shines far more vigorously than any star in its vicinity should make it fairly easy to locate. If you turn a telescope or binoculars on Mars at this time you will see that it stands only ½° west (upper left) of M44, the Beehive Cluster; on the following morning it is even closer, skimming the SW (upper) edge of the cluster. Under a dark sky, M44 is quite easy to see with the naked eye; can you still see it close to the horizon and with Mars shining nearby? By month’s end it rises at 4:00 am and is 19° above the horizon at sunrise (5:54 am), its size, phase and magnitude are 4.4", 95% and 1.61 respectively. Our neighbour’s leisurely climb above the eastern horizon continues to accelerate at a very modest rate throughout the year; by years end it rises about ¼ hour after midnight. Mighty Jupiter is king of the morning sky. On the 8th it rises at 3:22 am, more than three hours before sunrise, at which time it is 26° above the horizon. Its 35" disk is 99% illuminated and blazes fiercely at magnitude -2.1. Scan Jupiter’s trailing edge with a telescope to catch its inner Galilean moon, Io, emerging from an occultation between 5:36:46 am and 5:40:22 am, having passed behind its parent body just before it cleared the eastern horizon; note that this event occurs a little over ½ hour after twilight commences (but still more than ¾ hour before sunrise). Jupiter, which shares the morning sky with Mars, is pulling away from the eastern horizon at a considerably faster rate (due to Mars’ smaller orbit carrying it eastward against the starry backdrop of our sky at a greater rate than Jupiter) than its little brother. By month’s end it is rising at 2:07 am and is over 29° clear of the horizon at sunrise; it is a little bigger at 37" and brighter at -2.2. Saturn and its wondrous ring system are now well advanced in this apparition but still a captivating sight in the early evening sky. This beauty sets on our viewing night at just 10:13 pm, so target it as soon as the sky fully darkens (evening twilight nominally ends at 7:24 pm, but the slim crescent Moon will brighten the sky slightly until it sets just under ½ hour later) in order to minimise the blurring effects of Earth’s atmosphere. Saturn shines at magnitude 0.7, its disk spans 16" and it stands 49° clear of the horizon when the Sun goes down. The magnificent ring system, spanning more than twice the diameter of the planet’s disk, is now inclined at almost 18½°. To locate 2 Saturn with the naked eye early in the evening, note that it is about /3 as far above Venus as the latter is above the Moon. As Venus continues to pull away from the western horizon daily, it closes the gap with Saturn; on the 18th the pair stand side by side with Venus 3½° to Saturn’s south (left). How many of Saturn’s brightest moons can you see? Here are the circumstances at 8 pm on our viewing night (they won’t change appreciably before Saturn sets): Titan, the largest and brightest at magnitude 8.8, lies 2½' to Saturn’s east (upper right); Rhea (mag 10.2) is on the same side a little under half as far 2 from the planet and Dione (mag 10.9) is closer in again, slightly left of, and /3 of the way along, a line from Saturn to Rhea. On the opposite side of the planet to this trio, and about as far out as Dione, lies Tethys (mag 10.7); depending on your optics and seeing conditions, you may see Enceladus (mag 12.2) just 8" closer in than Tethys. Finally, look for Iapetus (mag 11.6) which lies 2' (80% as far out as Titan) NNW (lower right) of Saturn.
Recommended publications
  • Mathématiques Et Espace
    Atelier disciplinaire AD 5 Mathématiques et Espace Anne-Cécile DHERS, Education Nationale (mathématiques) Peggy THILLET, Education Nationale (mathématiques) Yann BARSAMIAN, Education Nationale (mathématiques) Olivier BONNETON, Sciences - U (mathématiques) Cahier d'activités Activité 1 : L'HORIZON TERRESTRE ET SPATIAL Activité 2 : DENOMBREMENT D'ETOILES DANS LE CIEL ET L'UNIVERS Activité 3 : D'HIPPARCOS A BENFORD Activité 4 : OBSERVATION STATISTIQUE DES CRATERES LUNAIRES Activité 5 : DIAMETRE DES CRATERES D'IMPACT Activité 6 : LOI DE TITIUS-BODE Activité 7 : MODELISER UNE CONSTELLATION EN 3D Crédits photo : NASA / CNES L'HORIZON TERRESTRE ET SPATIAL (3 ème / 2 nde ) __________________________________________________ OBJECTIF : Détermination de la ligne d'horizon à une altitude donnée. COMPETENCES : ● Utilisation du théorème de Pythagore ● Utilisation de Google Earth pour évaluer des distances à vol d'oiseau ● Recherche personnelle de données REALISATION : Il s'agit ici de mettre en application le théorème de Pythagore mais avec une vision terrestre dans un premier temps suite à un questionnement de l'élève puis dans un second temps de réutiliser la même démarche dans le cadre spatial de la visibilité d'un satellite. Fiche élève ____________________________________________________________________________ 1. Victor Hugo a écrit dans Les Châtiments : "Les horizons aux horizons succèdent […] : on avance toujours, on n’arrive jamais ". Face à la mer, vous voyez l'horizon à perte de vue. Mais "est-ce loin, l'horizon ?". D'après toi, jusqu'à quelle distance peux-tu voir si le temps est clair ? Réponse 1 : " Sans instrument, je peux voir jusqu'à .................. km " Réponse 2 : " Avec une paire de jumelles, je peux voir jusqu'à ............... km " 2. Nous allons maintenant calculer à l'aide du théorème de Pythagore la ligne d'horizon pour une hauteur H donnée.
    [Show full text]
  • Durham E-Theses
    Durham E-Theses First visibility of the lunar crescent and other problems in historical astronomy. Fatoohi, Louay J. How to cite: Fatoohi, Louay J. (1998) First visibility of the lunar crescent and other problems in historical astronomy., Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/996/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk me91 In the name of Allah, the Gracious, the Merciful >° 9 43'' 0' eji e' e e> igo4 U61 J CO J: lic 6..ý v Lo ý , ý.,, "ý J ýs ýºý. ur ý,r11 Lýi is' ý9r ZU LZJE rju No disaster can befall on the earth or in your souls but it is in a book before We bring it into being; that is easy for Allah. In order that you may not grieve for what has escaped you, nor be exultant at what He has given you; and Allah does not love any prideful boaster.
    [Show full text]
  • The Electric Sun Hypothesis
    Basics of astrophysics revisited. II. Mass- luminosity- rotation relation for F, A, B, O and WR class stars Edgars Alksnis [email protected] Small volume statistics show, that luminosity of bright stars is proportional to their angular momentums of rotation when certain relation between stellar mass and stellar rotation speed is reached. Cause should be outside of standard stellar model. Concept allows strengthen hypotheses of 1) fast rotation of Wolf-Rayet stars and 2) low mass central black hole of the Milky Way. Keywords: mass-luminosity relation, stellar rotation, Wolf-Rayet stars, stellar angular momentum, Sagittarius A* mass, Sagittarius A* luminosity. In previous work (Alksnis, 2017) we have shown, that in slow rotating stars stellar luminosity is proportional to spin angular momentum of the star. This allows us to see, that there in fact are no stars outside of “main sequence” within stellar classes G, K and M. METHOD We have analyzed possible connection between stellar luminosity and stellar angular momentum in samples of most known F, A, B, O and WR class stars (tables 1-5). Stellar equatorial rotation speed (vsini) was used as main parameter of stellar rotation when possible. Several diverse data for one star were averaged. Zero stellar rotation speed was considered as an error and corresponding star has been not included in sample. RESULTS 2 F class star Relative Relative Luminosity, Relative M*R *eq mass, M radius, L rotation, L R eq HATP-6 1.29 1.46 3.55 2.950 2.28 α UMi B 1.39 1.38 3.90 38.573 26.18 Alpha Fornacis 1.33
    [Show full text]
  • Mitteilungen Des Arbeitskreis Sternfreunde Lübeck E.V. Nr. 93 1
    Nr. 93 1/2015 Mitteilungen des Arbeitskreis Sternfreunde Lübeck e.V. Astronomische Impressionen von Rüdiger Buggenthien und Knud Henke Im Frühjahr 1999 war der Mars dominierend am Himmel und ein lohnendes Objekt für alle Beobach- ter. Rüdiger Buggenthien zeichnete den Mars vom 30.04.–11.05.1999 und fotografierte ihn durch seinen 7“ Starfire. Damals war die digitale Fotografie noch nicht erfunden, so dass nur wenigen solch beeindru- ckende Aufnahmen gelangen. Eine 90-minütige Startrail-Aufnahme von Knud Henke. Titelbild und Rückseite Nach vielen Jahren konnten wir am zusammen mit etlichen hundert Besuchern 20.03.2015 wieder eine Sonnenfinsternis beobachten konnten. Die Sonne grinste (Sofi) in Lübeck beobachten. Die Wetteraus- uns die ganze Zeit an, wie man unschwer sichten waren für Norddeutschland recht erkennen kann. Die Aufnahmen stammen regnerisch, selbst am Tag vorher wurde ein von Stephan Brügger. bedeckter Himmel vorhergesagt. Auf der Rückseite sehen wir den 1000 Licht- Wie gut, dass man sich auf die Wetter- jahre entfernten California-Nebel (NGC 1499) vorhersage wieder einmal nicht verlassen im Sternbild Perseus. Diese Aufnahme gelang konnte und wir die komplette Finsternis Torsten Brinker mit einem 300mm Objektiv. Inhaltsverzeichnis S. 2 Bildimpressionen von Rüdiger Buggenthien und Torsten Brinker S. 3 Titelbild und Rückseite S. 3 Inhaltsverzeichnis S. 4 Terminkalender S. 5 Aus dem Verein S. 5 Aus der Redaktion • Neue Mitglieder • Vereinsjubiläen S. 6 Protokoll der ordentlichen Mitgliederversammlung vom 28.02.2015 S. 9 Jahresberichte 2014 Sternwartenleitung • Vereinsbericht • FG Digitale Astrofotografie • FG Visuelle Beobachtung • POLARIS-Redaktion • Internetpräsentation • Pressereferent • Gerätewart • Geschäftsbericht S. 16 Berichte S. 16 Eine Sonnenfinsternis zum Aufwärmen S. 18 Eine 33-Stunden-Sonnenfinsternis S.
    [Show full text]
  • Instruction Manual
    iOptron® GEM28 German Equatorial Mount Instruction Manual Product GEM28 and GEM28EC Read the included Quick Setup Guide (QSG) BEFORE taking the mount out of the case! This product is a precision instrument and uses a magnetic gear meshing mechanism. Please read the included QSG before assembling the mount. Please read the entire Instruction Manual before operating the mount. You must hold the mount firmly when disengaging or adjusting the gear switches. Otherwise personal injury and/or equipment damage may occur. Any worm system damage due to improper gear meshing/slippage will not be covered by iOptron’s limited warranty. If you have any questions please contact us at [email protected] WARNING! NEVER USE A TELESCOPE TO LOOK AT THE SUN WITHOUT A PROPER FILTER! Looking at or near the Sun will cause instant and irreversible damage to your eye. Children should always have adult supervision while observing. 2 Table of Content Table of Content ................................................................................................................................................. 3 1. GEM28 Overview .......................................................................................................................................... 5 2. GEM28 Terms ................................................................................................................................................ 6 2.1. Parts List .................................................................................................................................................
    [Show full text]
  • 1455189355674.Pdf
    THE STORYTeller’S THESAURUS FANTASY, HISTORY, AND HORROR JAMES M. WARD AND ANNE K. BROWN Cover by: Peter Bradley LEGAL PAGE: Every effort has been made not to make use of proprietary or copyrighted materi- al. Any mention of actual commercial products in this book does not constitute an endorsement. www.trolllord.com www.chenaultandgraypublishing.com Email:[email protected] Printed in U.S.A © 2013 Chenault & Gray Publishing, LLC. All Rights Reserved. Storyteller’s Thesaurus Trademark of Cheanult & Gray Publishing. All Rights Reserved. Chenault & Gray Publishing, Troll Lord Games logos are Trademark of Chenault & Gray Publishing. All Rights Reserved. TABLE OF CONTENTS THE STORYTeller’S THESAURUS 1 FANTASY, HISTORY, AND HORROR 1 JAMES M. WARD AND ANNE K. BROWN 1 INTRODUCTION 8 WHAT MAKES THIS BOOK DIFFERENT 8 THE STORYTeller’s RESPONSIBILITY: RESEARCH 9 WHAT THIS BOOK DOES NOT CONTAIN 9 A WHISPER OF ENCOURAGEMENT 10 CHAPTER 1: CHARACTER BUILDING 11 GENDER 11 AGE 11 PHYSICAL AttRIBUTES 11 SIZE AND BODY TYPE 11 FACIAL FEATURES 12 HAIR 13 SPECIES 13 PERSONALITY 14 PHOBIAS 15 OCCUPATIONS 17 ADVENTURERS 17 CIVILIANS 18 ORGANIZATIONS 21 CHAPTER 2: CLOTHING 22 STYLES OF DRESS 22 CLOTHING PIECES 22 CLOTHING CONSTRUCTION 24 CHAPTER 3: ARCHITECTURE AND PROPERTY 25 ARCHITECTURAL STYLES AND ELEMENTS 25 BUILDING MATERIALS 26 PROPERTY TYPES 26 SPECIALTY ANATOMY 29 CHAPTER 4: FURNISHINGS 30 CHAPTER 5: EQUIPMENT AND TOOLS 31 ADVENTurer’S GEAR 31 GENERAL EQUIPMENT AND TOOLS 31 2 THE STORYTeller’s Thesaurus KITCHEN EQUIPMENT 35 LINENS 36 MUSICAL INSTRUMENTS
    [Show full text]
  • Be STAR NEWSLETTER
    ISSN 0296-3140 Be STAR NEWSLETTER NUMBER 40 - August 2012 Editor-in-Chief: Technical Editor: Webmaster: Geraldine J. Peters Douglas R. Gies David McDavid e-mail: [email protected] e-mail: [email protected] e-mail: [email protected] Space Sciences Center Center for High Angular Resolution Astronomy Department of Astronomy University of Southern California Department of Physics and Astronomy University of Virginia University Park Georgia State University PO Box 400325 Los Angeles CA 90089-1341 Atlanta GA 30303-3083 Charlottesville VA 22904-4325 Tel: (213) 740-6336 Tel: (404) 413-6021 Tel: (434) 924-7494 FAX: (213) 740-6342 FAX: (404) 413-5481 FAX: (434) 924-3104 Contents 1 Editorial { G. Peters 3 2 Working Group Matters 4 2.1 Meeting of the Working Group on Active B Stars at the 27th IAU General Assembly in Rio de Janeiro, Brazil: Call for Contributed Talks { Gerrie Peters & Juan Fabregat . 4 2.2 Division IV-V / Working Group Active B-Type Stars: Triennial Report 2006- 2009 { Juan Fabregat & Geraldine J. Peters . 4 2.3 Business Meeting and Scientific Session of the Working Group on Active B Stars 27th IAU General Assembly, Rio de Janeiro, Brazil August 6, 2009 { G. J. Peters . 7 2.4 Proposal for the Bylaws for the IAU Working Group on Active B Stars { G. J. Peters . 7 2.5 PROCEEDINGS: Business Meeting of the Working Group on Active B Stars 27th IAU General Assembly, Rio de Janeiro, Brazil August 6, 2009 { Geraldine J. Peters . 9 2.6 Greetings from the Chair of the Working Group { Gerrie Peters .
    [Show full text]
  • Stargazers Anonymous by Brian Howe
    1 Stargazers’ Anonymous An examination of amateur astronomy in New Zealand A thesis submitted to Victoria University of Wellington to satisfy the requirements for a Masters (MA) in Anthropology, 2009 by Brian Howe 2 Contents Abstract iv Acknowledgements v List of Illustrations and Figures vi 1 Introduction 1 1.1 Astronomy as a research topic 1 1.2 Some considerations in undertaking research 2 2 Methodology and Research 3 2.1 Interviews 3 2.2 Participant Observation 5 2.3 Some reflections on the fieldwork process 6 2.4 Method and Theory 7 3 Astronomy, Amateurs and ‘Leisure’: three concepts 8 3.1 Astronomy as both definition and action 8 3.2 Amateurs: “on the margin between work and leisure” 12 3.3 Leisure as a social practice 16 4 Chapter Outlines 20 Chapter 1: Performativity and Praxis: Amateurs, Astronomical Communities and Contributive Participation Stargazing Aotearoa 22 Introduction 27 The Royal Society and the structure of New Zealand’s astronomical community 27 The view from the interior 30 Amateur-Professional Collaboration 35 Practicals and Armchairs: contribution and consumption 42 Performance and Moral Regulation 47 Intermission: Ritual Learning in the Meeting Space 53 Informal Observing Groups 59 3 Virtual Performance 68 McNaught Revisited 77 Conclusion 79 Chapter 2: Cosmological Communitas: Public Education and Social Reproduction The Bunker 82 Cosmic Tourists 87 Light Pollution 93 Theatre of Stars 97 Sacralising Sights 100 Conclusion 108 Chapter 3: Fake Stone, Real Wilderness Fake Stone, Real Wilderness 112 Stonehenge Aotearoa 113 Nature.Society.Control 122 Conclusion 131 Conclusion : Stargazers’ Anonymous 135 Epilogue : 2009: The International Year of Astronomy 140 Bibliography 144 4 Abstract In this examination of amateur astronomy in New Zealand, I suggest that astronomical science can be a medium through which adherents attempt to enact social transformation.
    [Show full text]
  • 5 Social Relations and Kin Ties
    5 Social Relations and Kin Ties Kinship classifications and relations were the cornerstone of Aboriginal societies: they formed the basis of social structure. Aboriginal people formally and systematically ordered their world, terrestrial and celes- tial, natural as well as cultural, into a number of discrete divisions or categories (‘skins’ in Aboriginal English), that regulated marriage as well as other activities. These categories were essentially social summa- ries of kinship relations. In outline, five kinds of groupings occurred in Aboriginal societies. They are known to anthropologists as matrimoieties, patrimoieties, sec- tions, semimoieties and subsections, dividing the Aboriginal cosmos into two, four, or eight divisions. No Aboriginal society is known to have had more than four (of the possible five) types of groupings. Matrimoieties and patrimoieties, the primary categories, divided the cosmos in two. Marriage arrangements were subject to these divisions, requiring that a man take his wife from the category to which he did not belong and vice versa. In other words, men and women of the same moiety (be it of patri- or matrilineal descent) could not marry. The par- ticular moiety into which a child was born was determined by descent principles: patrimoiety referring to the father’s group and matrimoiety referring to the mother’s group. Some societies for example, were bisected by matrimoieties and further divided by patrimoieties, cross-cutting the society into four equivalent segments, which then resembled the four categories of a section system. Categories ordered people, so that every man, woman and child belonged to one kind of category, and only to one. A person’s category did not change, unlike kin relations, whose categories were rel- ative for any individual; it was an absolute division of the cosmos.
    [Show full text]
  • Luminosity – Energy Output of the Star
    Student Guide Luminosity – Energy Output of the Star Evolution of Stars. Activity 5 Classroom Activity Material List: • Worksheet Outline By using a presentation and a computer animation you will explore the connection between the apparent brightness, absolute brightness and the distance of stars to understand the different luminosity classes of stars. Procedure: Step 1. To Do: Watch the Powerpoint presentation. Write down the definitions: Apparent magnitude is _______________________________________________________ __________________________________________________________________________ Luminosity is _______________________________________________________________ __________________________________________________________________________ Absolute magnitude is _______________________________________________________ __________________________________________________________________________ The Online Observatory collaboration consists of the following partners: Baldone Observatory, Brorfelde Observatory, Cardiff University, Harestua Solar Observatory, Helsinki Observatory Online Observatory Student Guide Label the stars on the picture, write down their luminosity classes! Assessment: Answer the questions: 1. Why is not possible to determinate the luminosity of the star from its apparent magnitude alone? ________________________________________ 2. Spectral designation of the Sun is G5V. To which luminosity class it belongs? ______________________________________________ 3. Deneb is a white supergiant of spectral class A2. What is the spectral
    [Show full text]
  • Brightest Stars : Discovering the Universe Through the Sky's Most Brilliant Stars / Fred Schaaf
    ffirs.qxd 3/5/08 6:26 AM Page i THE BRIGHTEST STARS DISCOVERING THE UNIVERSE THROUGH THE SKY’S MOST BRILLIANT STARS Fred Schaaf John Wiley & Sons, Inc. flast.qxd 3/5/08 6:28 AM Page vi ffirs.qxd 3/5/08 6:26 AM Page i THE BRIGHTEST STARS DISCOVERING THE UNIVERSE THROUGH THE SKY’S MOST BRILLIANT STARS Fred Schaaf John Wiley & Sons, Inc. ffirs.qxd 3/5/08 6:26 AM Page ii This book is dedicated to my wife, Mamie, who has been the Sirius of my life. This book is printed on acid-free paper. Copyright © 2008 by Fred Schaaf. All rights reserved Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada Illustration credits appear on page 272. Design and composition by Navta Associates, Inc. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copy- right.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.
    [Show full text]
  • The COLOUR of CREATION Observing and Astrophotography Targets “At a Glance” Guide
    The COLOUR of CREATION observing and astrophotography targets “at a glance” guide. (Naked eye, binoculars, small and “monster” scopes) Dear fellow amateur astronomer. Please note - this is a work in progress – compiled from several sources - and undoubtedly WILL contain inaccuracies. It would therefor be HIGHLY appreciated if readers would be so kind as to forward ANY corrections and/ or additions (as the document is still obviously incomplete) to: [email protected]. The document will be updated/ revised/ expanded* on a regular basis, replacing the existing document on the ASSA Pretoria website, as well as on the website: coloursofcreation.co.za . This is by no means intended to be a complete nor an exhaustive listing, but rather an “at a glance guide” (2nd column), that will hopefully assist in choosing or eliminating certain objects in a specific constellation for further research, to determine suitability for observation or astrophotography. There is NO copy right - download at will. Warm regards. JohanM. *Edition 1: June 2016 (“Pre-Karoo Star Party version”). “To me, one of the wonders and lures of astronomy is observing a galaxy… realizing you are detecting ancient photons, emitted by billions of stars, reduced to a magnitude below naked eye detection…lying at a distance beyond comprehension...” ASSA 100. (Auke Slotegraaf). Messier objects. Apparent size: degrees, arc minutes, arc seconds. Interesting info. AKA’s. Emphasis, correction. Coordinates, location. Stars, star groups, etc. Variable stars. Double stars. (Only a small number included. “Colourful Ds. descriptions” taken from the book by Sissy Haas). Carbon star. C Asterisma. (Including many “Streicher” objects, taken from Asterism.
    [Show full text]