P53 and Sp1 Associated Rnas Act As Non-Coding Transcriptional Regulators at Homologous Loci

Total Page:16

File Type:pdf, Size:1020Kb

P53 and Sp1 Associated Rnas Act As Non-Coding Transcriptional Regulators at Homologous Loci p53 and Sp1 Associated RNAs Act as Non-coding Transcriptional Regulators at Homologous Loci Rachel Hughes A thesis in fulfilment of the requirements for the degree of Master of Philosophy School of Biotechnology and Biomolecular Sciences Faculty of Science April 2016 PLEASE TYPE THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Hughes First name: Rachel Other name/s: Genevieve Abbreviation for degree as given in the University calendar: MPhil School: Biotechnology and Biomolecular Sciences Faculty: Science Title: p53 and Sp1 Associated RNAs Act as Non-Coding Transcriptional Regulators at Homologous Loci Abstract 350 words maximum: (PLEASE TYPE) RNA functionality has been proven to extend far beyond the outdated protein coding divide, as transcripts not bound for translation are instead found to act as endogenous messengers and moderators, utilising inherent sequence homology to interact with DNA or protein targets. A RIP-Seq of six major transcription factors including p53 and Sp1 uncovered multiple bound RNAs, some of which were interestingly protein coding. Of these, the HIST1 H1 D and SF3B5 mRNAs were knocked down in order to investigate the ability of their affiliated transcription factors to localise to the target genes. Both RNAs demonstrated an inherent ability to modulate transcription factor localisation to homology containing loci in cis by acting as protein guides in the case of SF3B5, and as decoys in HIST1 H1 D. Expression of other linker histone H1 proteins was also observed to be under H1ST1 H1 D RNA regulation, suggesting a network involving the p53 tumour suppressive cascade which induces senescence in damaged cells. Together, the data confirms an innate complexity of RNA that is only beginning to be unveiled, with major lies to tumour preventative pathways and therefore therapeutic possibilities. Declaration relating to disposition of project thesis/dissertation I hereby grant to the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or in part in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all property rights, such as patent rights. I also retain the right to use in future works (such as articles or bo I or part of this thesis or dissertation. I also authorise University Mi se the 350 word abstract of my thesis in Dissertation doctoral theses only). The University recognises that there may be exceptional circumstances requiring restrictions on copying or conditions on use. Requests for restriction for a period of up to 2 years must be made in writing. Requests for a longer period of restriction may be considered in exceptional circumstances and require the approval of the Dean of Graduate Research. FOR OFFICE USE ONLY Date of completion of requirements for Award: Scanned by CamScanner COPYRIGHT STATEMENT ‘I hereby grant the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or part in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all proprietary rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation. I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstract International (this is applicable to doctoral theses only). I have either used no substantial portions of copyright material in my thesis or I have obtained permission to use copyright material; where permission has not been granted I have applied/will apply for a partial restriction of the digital copy of my thesis or dissertation.' Signed ……………………………………………........................... Date ……………………………………………........................... AUTHENTICITY STATEMENT ‘I certify that the Library deposit digital copy is a direct equivalent of the final officially approved version of my thesis. No emendation of content has occurred and if there are any minor variations in formatting, they are the result of the conversion to digital format.’ Signed ……………………………………………........................... Date ……………………………………………........................... Originality Statement ‘I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in this thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project’s design and conception or in style, presentation and linguistic expression is acknowledged.’ Signed Date Table of Contents Abstract i Acknowledgements ii Abbreviations iii List of Figures v List of Tables vi Chapter 1: Introduction 1.1 RNA 2 1.1.1 Protein Coding and Infrastructural RNA 2 1.1.2 Non-coding RNA 3 1.1.3 RNAs in Disease 8 1.2 The Search for Transcription Factor Associated RNAs 9 1.2.1 RIP-Seq 10 1.3 RNAs of Interest 10 1.3.1 HIST1H1D 10 1.3.2 SF3B5 12 1.4 Associated Transcription Factors 13 1.4.1 p53 14 1.4.2 Sp1 16 1.5 Aims 18 Chapter 2: Materials and Methods 19 2.1 Cell lines 19 2.2 Reagents 19 2.3 Buffers 20 2.4 Chemicals and Solutions 21 2.5 Media 21 2.6 Oligodeoxynucleotides 22 2.7 Primers 22 2.8 Antibodies 24 2.9 Biotinylated Antisense ODNs 24 2.10 Deep Sequencing 25 2.11 Cell Culture 25 2.12 Transfection 26 12.12.1 Seeding 26 2.12.2 Transfection Complexes 27 2.13 Knockdown Efficiency 28 2.13.1 RNA Isolation 28 2.13.2 Removing DNA Contaminants 28 2.13.3 Reverse Transcription 28 2.13.4 Quantitative Real Time PCR 28 2.14 Chromatin Immunoprecipitation for Transcription Factor Localisation 30 2.14.1 Cross-linking 30 2.14.2 Lysis and Sonication 31 2.14.3 Binding the Antibody 31 2.14.4 Immunoprecipitation 31 2.14.5 DNA Extraction 33 2.14.6 Quantitative PCR 33 2.14.7 Standard Curve 34 2.15 UCSC Genome Browser 34 2.16 Biotinylated asODN-RNA Pulldown 34 2.16.1 Immunoprecipitation 34 2.16.2 Validation of the Immunoprecipitated RNA 36 Chapter 3: Results 37 3.1 Deep Sequencing Alignment 37 3.2 Determining the Efficacy of asODN Mediated RNA Knockdown 42 3.3 Enrichment or Loss of Transcription Factor Localisation After RNA Knockdown 45 3.4 Enrichment or Loss at Homologous Loci 48 3.4.1 Determining Possible Homologous Targets 48 3.4.2 Enrichment or Loss of Transcription Factor Localisation at Homologous Loci 50 3.5 Expression at Homologous Loci 52 3.6 Biotinylated asODN-RNA Pulldown 54 Chapter 4: Discussion 55 4.1 RNA-Directed Transcriptional Activation and Repression 55 4.2 Trans-regulation at Homologous Loci 60 4.3 mRNA Acting as ncRNA 62 4.4 HIST1H1D in Cell Senescence 66 4.5 Looking Ahead 67 Chapter 5: Conclusion 69 References 70 Appendix 81 A. UCSC Genome Browser 81 B. Sequenced Transcripts From RIP-Seq Data 84 Abstract RNA functionality has been proven to extend far beyond the outdated protein coding divide, as transcripts not bound for translation are instead found to act as endogenous messengers and moderators, utilising inherent sequence homology to interact with DNA or protein targets. A RIP-Seq of six major transcription factors including p53 and Sp1 uncovered multiple bound RNAs, some of which were interestingly protein coding. Of these, the HIST1H1D and SF3B5 mRNAs were knocked down in order to investigate the ability of their affiliated transcription factors to localise to the target genes. Both RNAs demonstrated an inherent ability to modulate transcription factor localisation to homology containing loci in cis by acting as protein guides in the case of SF3B5, and as decoys in HIST1H1D. Expression of other linker histone H1 proteins was also observed to be under HIST1H1D RNA regulation, suggesting a network involving the p53 tumour suppressive cascade which induces senescence in damaged cells. Together, the data confirms an innate complexity of RNA that is only beginning to be unveiled, with major ties to tumour preventative pathways and therefore therapeutic possibilities. i Acknowledgements Preliminary immunoprecipitation and deep sequencing data was provided with permission by Kevin Morris, John Burdach and Merlin Crossley. Many thanks to Kevin Morris for the insightful guidance over the course of this project, as well as Rosie, Chris, Galina, Caio, Nick and Albert of the Morris lab who have been kind enough to answer questions along the way. Thanks also to Louise Lutze- Mann and Matthew Clemson for the additional support. This project is dedicated to Bill, Julie, Derek, Lauren and Zac who's continued encouragement has made the achievement possible. ii Abbreviations asODN - antisense oligodeoxynucleotide BLAT - basic local alignment tool cDNA - complementary deoxyribonucleic acid ChIP - chromatin immunoprecipitation Ct - cycle threshold DNA - deoxyribonucleic acid F1- forward primer 1 F2- forward primer 2 HIST1H1D - protein member D of the histone cluster 1 family H1 - histone cluster 1 lncRNA - long non-coding ribonucleic acid mRNA - messenger ribonucleic acid ncRNA - non-coding ribonucleic acid ODN - oligodeoxynucleotide PCR - polymerase chain
Recommended publications
  • SF3B2-Mediated RNA Splicing Drives Human Prostate Cancer Progression
    Published OnlineFirst August 20, 2019; DOI: 10.1158/0008-5472.CAN-18-3965 Cancer Molecular Cell Biology Research SF3B2-Mediated RNA Splicing Drives Human Prostate Cancer Progression Norihiko Kawamura1,2, Keisuke Nimura1, Kotaro Saga1, Airi Ishibashi1, Koji Kitamura1,3, Hiromichi Nagano1, Yusuke Yoshikawa4, Kyoso Ishida1,5, Norio Nonomura2, Mitsuhiro Arisawa4, Jun Luo6, and Yasufumi Kaneda1 Abstract Androgen receptor splice variant-7 (AR-V7) is a General RNA splicing SF3B2 complex-mediated alternative RNA splicing constitutively active AR variant implicated in U2 castration-resistant prostate cancers. Here, we show U2 snRNA that the RNA splicing factor SF3B2, identified by 3’ 3’ in silico and CRISPR/Cas9 analyses, is a critical 5’ 3’ splice site 5’ SF3B7 AR-V7 5’ A U2AF2 AGA Exon ? determinant of expression and is correlated SF3B6(p14) SF3B4 SF3B1 SF3B4 SF3B1 with aggressive cancer phenotypes. Transcriptome SF3B5 SF3B2 SF3B3 SF3B2 SF3B3 and PAR-CLIP analyses revealed that SF3B2 con- SF3A3 SF3B2 complex SF3A3 SF3A1 SF3A1 SF3b complex trols the splicing of target genes, including AR, to AR pre-mRNA drive aggressive phenotypes. SF3B2-mediated CE3 aggressive phenotypes in vivo were reversed by AR-V7 mRNA AR mRNA AR-V7 knockout. Pladienolide B, an inhibitor of CE3 a splicing modulator of the SF3b complex, sup- Drive malignancy pressed the growth of tumors addicted to high While the SF3b complex is critical for general RNA splicing, SF3B2 promotes inclusion of the target exon through recognizing a specific RNA motif. SF3B2 expression. These findings support the idea © 2019 American Association for Cancer Research that alteration of the splicing pattern by high SF3B2 expression is one mechanism underlying prostate cancer progression and therapeutic resistance.
    [Show full text]
  • Supplementary Files for Understanding the Functional Impact of Copy Number Alterations in Breast Cancers Using a Network Modeling Approach
    Electronic Supplementary Material (ESI) for Molecular BioSystems. This journal is © The Royal Society of Chemistry 2016 Supplementary files for Understanding the functional impact of copy number alterations in breast cancers using a network modeling approach Sriganesh Srihari1#, Murugan Kalimutho2#, Samir Lal3, Jitin Singla4, Dhaval Patel4, Peter T. Simpson3,5, Kum Kum Khanna2 and Mark A. Ragan1* 1Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia 2 QIMR-Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia 3 The University of Queensland, UQ Centre for Clinical Research, Brisbane, QLD 4029, Australia 4 Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India 5 The University of Queensland, School of Medicine, Brisbane, QLD 4006, Australia Supplementary website: http://bioinformatics.org.au/tools-data/ under NetStrat Section 4.1 of main text (Materials and Methods) Choosing cut-off A pair of genes (proteins) could be co-expressed due to a number of reasons – for example, by being co- regulated by the same transcription factor or due to co-functioning in a complex via direct interactions. To identify trans-associated genes we are only interested in gene pairs (i.e. interactions in the network) whose co- expression associates with the CNA of one or both genes. In Equation 2 (main manuscript), since we compute the weighted sum of CNAs, those gene pairs which do not exhibit any CNAs (zero or low CNAs) would be assigned zero or low weights and hence will not be accounted for. In addition, we would also like to discount gene pairs from the network that show low co-expression values, by using an cut-off on the co-expression.
    [Show full text]
  • Noelia Díaz Blanco
    Effects of environmental factors on the gonadal transcriptome of European sea bass (Dicentrarchus labrax), juvenile growth and sex ratios Noelia Díaz Blanco Ph.D. thesis 2014 Submitted in partial fulfillment of the requirements for the Ph.D. degree from the Universitat Pompeu Fabra (UPF). This work has been carried out at the Group of Biology of Reproduction (GBR), at the Department of Renewable Marine Resources of the Institute of Marine Sciences (ICM-CSIC). Thesis supervisor: Dr. Francesc Piferrer Professor d’Investigació Institut de Ciències del Mar (ICM-CSIC) i ii A mis padres A Xavi iii iv Acknowledgements This thesis has been made possible by the support of many people who in one way or another, many times unknowingly, gave me the strength to overcome this "long and winding road". First of all, I would like to thank my supervisor, Dr. Francesc Piferrer, for his patience, guidance and wise advice throughout all this Ph.D. experience. But above all, for the trust he placed on me almost seven years ago when he offered me the opportunity to be part of his team. Thanks also for teaching me how to question always everything, for sharing with me your enthusiasm for science and for giving me the opportunity of learning from you by participating in many projects, collaborations and scientific meetings. I am also thankful to my colleagues (former and present Group of Biology of Reproduction members) for your support and encouragement throughout this journey. To the “exGBRs”, thanks for helping me with my first steps into this world. Working as an undergrad with you Dr.
    [Show full text]
  • WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T (51) International Patent Classification: David [US/US]; 13539 N . 95th Way, Scottsdale, AZ C12Q 1/68 (2006.01) 85260 (US). (21) International Application Number: (74) Agent: AKHAVAN, Ramin; Caris Science, Inc., 6655 N . PCT/US20 12/0425 19 Macarthur Blvd., Irving, TX 75039 (US). (22) International Filing Date: (81) Designated States (unless otherwise indicated, for every 14 June 2012 (14.06.2012) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, English (25) Filing Language: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, Publication Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, (30) Priority Data: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 61/497,895 16 June 201 1 (16.06.201 1) US MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 61/499,138 20 June 201 1 (20.06.201 1) US OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, 61/501,680 27 June 201 1 (27.06.201 1) u s SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, 61/506,019 8 July 201 1(08.07.201 1) u s TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Mrna Editing, Processing and Quality Control in Caenorhabditis Elegans
    | WORMBOOK mRNA Editing, Processing and Quality Control in Caenorhabditis elegans Joshua A. Arribere,*,1 Hidehito Kuroyanagi,†,1 and Heather A. Hundley‡,1 *Department of MCD Biology, UC Santa Cruz, California 95064, †Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan, and ‡Medical Sciences Program, Indiana University School of Medicine-Bloomington, Indiana 47405 ABSTRACT While DNA serves as the blueprint of life, the distinct functions of each cell are determined by the dynamic expression of genes from the static genome. The amount and specific sequences of RNAs expressed in a given cell involves a number of regulated processes including RNA synthesis (transcription), processing, splicing, modification, polyadenylation, stability, translation, and degradation. As errors during mRNA production can create gene products that are deleterious to the organism, quality control mechanisms exist to survey and remove errors in mRNA expression and processing. Here, we will provide an overview of mRNA processing and quality control mechanisms that occur in Caenorhabditis elegans, with a focus on those that occur on protein-coding genes after transcription initiation. In addition, we will describe the genetic and technical approaches that have allowed studies in C. elegans to reveal important mechanistic insight into these processes. KEYWORDS Caenorhabditis elegans; splicing; RNA editing; RNA modification; polyadenylation; quality control; WormBook TABLE OF CONTENTS Abstract 531 RNA Editing and Modification 533 Adenosine-to-inosine RNA editing 533 The C. elegans A-to-I editing machinery 534 RNA editing in space and time 535 ADARs regulate the levels and fates of endogenous dsRNA 537 Are other modifications present in C.
    [Show full text]
  • Encoded on Chromosome 6P21.33 in Human Breast Cancers Revealed by Transcrip- Tome Analysis Yan A
    Journal of Cancer 2010, 1 38 Journal of Cancer 2010; 1:38-50 © Ivyspring International Publisher. All rights reserved Research Paper Undetectable and Decreased Expression of KIAA1949 (Phostensin) Encoded on Chromosome 6p21.33 in Human Breast Cancers Revealed by Transcrip- tome Analysis Yan A. Su1 , Jun Yang1, Lian Tao1, and Hein Nguyen1, and Ping He2 1. GenProMarkers Inc., Rockville, Maryland 20850, USA; 2. Division of Hematology, Center for Biological Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA Corresponding author: Yan A. Su, MD, PhD, GenProMarkers Inc., 9700 Great Seneca Highway, Suite 182, Rockville, Maryland 20850. Phone: (301) 326-6523; FAX: (240) 453-6208; Email:[email protected] Published: 2010.06.21 Abstract Cytogenetic aberration and loss of heterozygosity (LOH) are documented on chromosome 6 in many cancers and the introduction of a neo-tagged chromosome 6 into breast cancer cell lines mediates suppression of tumorigenicity. In this study, we described the identification of KIAA1949 (phostensin) as a putative tumor suppressor gene. Our microarray analysis screened 25,985 cDNAs between a tumorigenic and metastatic breast cancer cell line MDA-MB-231 and the chromosome 6-mediated suppressed, non-tumorigenic and non-metastatic derivative cell line MDA/H6, resulting in the identification of 651 differentially expressed genes. Using customized microarrays containing these 651 cDNAs and 117 con- trols, we identified 200 frequently dysregulated genes in 10 breast cancer cell lines and 5 tumor tissues using MDA/H6 as reference. Our bioinformatics analysis revealed that chro- mosome 6 encodes 25 of these 200 genes, with 4 downregulation and 21 upergulation.
    [Show full text]
  • Variation in Protein Coding Genes Identifies Information Flow
    bioRxiv preprint doi: https://doi.org/10.1101/679456; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Animal complexity and information flow 1 1 2 3 4 5 Variation in protein coding genes identifies information flow as a contributor to 6 animal complexity 7 8 Jack Dean, Daniela Lopes Cardoso and Colin Sharpe* 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Institute of Biological and Biomedical Sciences 25 School of Biological Science 26 University of Portsmouth, 27 Portsmouth, UK 28 PO16 7YH 29 30 * Author for correspondence 31 [email protected] 32 33 Orcid numbers: 34 DLC: 0000-0003-2683-1745 35 CS: 0000-0002-5022-0840 36 37 38 39 40 41 42 43 44 45 46 47 48 49 Abstract bioRxiv preprint doi: https://doi.org/10.1101/679456; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Animal complexity and information flow 2 1 Across the metazoans there is a trend towards greater organismal complexity. How 2 complexity is generated, however, is uncertain. Since C.elegans and humans have 3 approximately the same number of genes, the explanation will depend on how genes are 4 used, rather than their absolute number.
    [Show full text]
  • Using Network Inference to Discover Molecular Pathways Underlying Cytokine Synergism and Age-Related Neurodegeneration by Bryce Hwang S.B., M.I.T
    Using network inference to discover molecular pathways underlying cytokine synergism and age-related neurodegeneration by Bryce Hwang S.B., M.I.T. (2018) Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Master of Engineering in Computer Science and Molecular Biology at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2018 ○c Bryce Hwang. All rights reserved. The author hereby grants to M.I.T. permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Author.............................................................. Department of Electrical Engineering and Computer Science May 25, 2018 Certified by. Ernest Fraenkel Professor Thesis Supervisor Accepted by . Katrina LaCurts Chair, Master of Engineering Thesis Committee Using network inference to discover molecular pathways underlying cytokine synergism and age-related neurodegeneration by Bryce Hwang Submitted to the Department of Electrical Engineering and Computer Science on May 25, 2018, in partial fulfillment of the requirements for the degree of Master of Engineering in Computer Science and Molecular Biology Abstract New high-throughput “omic” methods can help shed light on molecular pathways underpinning diseases ranging from cancers to neurodegenerative disorders. However, effectively integrating information across these diverse data types is challenging. Network modeling approaches can help bridge this gap. In particular, the Prize- Collecting Steiner Forest approach (PCSF) is a network modeling method that provides high-confidence subnetworks of physically interacting molecules by integrating diverse “omics” data with prior knowledge from protein-protein interaction networks (PPIs). However, PCSF is sensitive to initial parameterization and generating biological hypotheses from the resulting subnetworks can often be difficult.
    [Show full text]
  • Quantitative Trait Loci Mapping of Macrophage Atherogenic Phenotypes
    QUANTITATIVE TRAIT LOCI MAPPING OF MACROPHAGE ATHEROGENIC PHENOTYPES BRIAN RITCHEY Bachelor of Science Biochemistry John Carroll University May 2009 submitted in partial fulfillment of requirements for the degree DOCTOR OF PHILOSOPHY IN CLINICAL AND BIOANALYTICAL CHEMISTRY at the CLEVELAND STATE UNIVERSITY December 2017 We hereby approve this thesis/dissertation for Brian Ritchey Candidate for the Doctor of Philosophy in Clinical-Bioanalytical Chemistry degree for the Department of Chemistry and the CLEVELAND STATE UNIVERSITY College of Graduate Studies by ______________________________ Date: _________ Dissertation Chairperson, Johnathan D. Smith, PhD Department of Cellular and Molecular Medicine, Cleveland Clinic ______________________________ Date: _________ Dissertation Committee member, David J. Anderson, PhD Department of Chemistry, Cleveland State University ______________________________ Date: _________ Dissertation Committee member, Baochuan Guo, PhD Department of Chemistry, Cleveland State University ______________________________ Date: _________ Dissertation Committee member, Stanley L. Hazen, MD PhD Department of Cellular and Molecular Medicine, Cleveland Clinic ______________________________ Date: _________ Dissertation Committee member, Renliang Zhang, MD PhD Department of Cellular and Molecular Medicine, Cleveland Clinic ______________________________ Date: _________ Dissertation Committee member, Aimin Zhou, PhD Department of Chemistry, Cleveland State University Date of Defense: October 23, 2017 DEDICATION I dedicate this work to my entire family. In particular, my brother Greg Ritchey, and most especially my father Dr. Michael Ritchey, without whose support none of this work would be possible. I am forever grateful to you for your devotion to me and our family. You are an eternal inspiration that will fuel me for the remainder of my life. I am extraordinarily lucky to have grown up in the family I did, which I will never forget.
    [Show full text]
  • (A) Schematic Representation of the Secondary Assays Done to Control for Promoter Or Luciferase Specific Effects
    Supplementary Figure 1. Secondary Assays (A) Schematic representation of the secondary assays done to control for promoter or luciferase specific effects. The Hh-GL2 Assay is the original assay format. The Hh-GL3 assay is similar to the original reporter construct, but lacks a 3' intron that contributed to nonsense mediated decay of the reporter (see Materials and Methods). In the luciferase reversal assay, the promoters and luciferase constructs were swapped. In the promoter matching assay, the Hh expressing construct was driven by a Pol III promoter. (B) Ci overexpression partially activates the Hh signaling pathway and can partially rescue loss of reporter activity due to RNAi elimination of smo. Graphic representation of normalized luciferase values for the indicated stimulus (either Hh or Ci, in equal amounts) and dsRNA treatment. Ci expression activates the ptc∆136 reporter to about half the level induced by Hh treatment. smo dsRNA almost completely eliminates reporter activity when Hh is used as stimulus, while smo dsRNA only reduces reporter by about 30% when Ci is used as stimulus. Supplementary Figure 1 A B Hh Ci Ptc∆136 Firefly GL2 Assay 70 Pol 3 Renilla 60 50 Actin Hedgehog FL 40 30 20 GL3 10 Ptc∆136 Firefly Assay 0 Normalized Value Pol 3 Renilla GFP Smo 5' Ci 5' Actin Hedgehog FL dsRNA Luciferase Pol 3 Firefly Reversal Assay Ptc∆136 Renilla Actin Hedgehog FL Promoter Ptc∆136 Firefly Matching Pol 3 Renilla Assay Pol 3 Hedgehog FL Supplementary Figure 2. Phosphorylation of Fu and Cos2 are not affected by reduction in Cdk9, Pitslre, or mts.
    [Show full text]
  • Olea Europaea L
    Dündar et al. BMC Genomics 2013, 14:219 http://www.biomedcentral.com/1471-2164/14/219 RESEARCH ARTICLE Open Access Isolation and expression analysis of cDNAs that are associated with alternate bearing in Olea europaea L. cv. Ayvalık Ekrem Dündar1*, Öznur Suakar1, Turgay Unver2 and Ayhan Dagdelen3 Abstract Background: Olive cDNA libraries to isolate candidate genes that can help enlightening the molecular mechanism of periodicity and / or fruit production were constructed and analyzed. For this purpose, cDNA libraries from the leaves of trees in “on year” and in “off year” in July (when fruits start to appear) and in November (harvest time) were constructed. Randomly selected 100 positive clones from each library were analyzed with respect to sequence and size. A fruit-flesh cDNA library was also constructed and characterized to confirm the reliability of each library’s temporal and spatial properties. Results: Quantitative real-time RT-PCR (qRT-PCR) analyses of the cDNA libraries confirmed cDNA molecules that are associated with different developmental stages (e. g. “on year” leaves in July, “off year” leaves in July, leaves in November) and fruits. Hence, a number of candidate cDNAs associated with “on year” and “off year” were isolated. Comparison of the detected cDNAs to the current EST database of GenBank along with other non - redundant databases of NCBI revealed homologs of previously described genes along with several unknown cDNAs. Of around 500 screened cDNAs, 48 cDNA elements were obtained after eliminating ribosomal RNA sequences. These independent transcripts were analyzed using BLAST searches (cutoff E-value of 1.0E-5) against the KEGG and GenBank nucleotide databases and 37 putative transcripts corresponding to known gene functions were annotated with gene names and Gene Ontology (GO) terms.
    [Show full text]
  • PHF5A Epigenetically Inhibits Apoptosis to Promote Breast Cancer Progression
    Author Manuscript Published OnlineFirst on April 26, 2018; DOI: 10.1158/0008-5472.CAN-17-3514 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. PHF5A Epigenetically Inhibits Apoptosis to Promote Breast Cancer Progression Yi-Zi Zheng,1,2 Meng-Zhu Xue,3 Hong-Jie Shen,4 Xiao-Guang Li,1 Ding Ma,1,2 Yue Gong,1,2 Yi-Rong Liu,1,2 Feng Qiao,1 Hong-Yan Xie,1,2 Bi Lian,1,2 Wei-Li Sun,1 Hai-Yun Zhao,1,2 Ling Yao,1 Wen-Jia Zuo,1,2 Da-Qiang Li,1 Peng Wang,5 Xin Hu,1,2 and Zhi-Ming Shao,1,2 1Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China. 2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. 3SARI center for Stem Cell and Nanomedicine, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China. 4Epigenetics Laboratory, Institutes of Biomedical Sciences and School of Basic Medicine, Shanghai Medical College of Fudan University, Shanghai, 200032, China. 5Bio-Med Big Data Center, Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China. Running Title PHF5A Epigenetically Promotes Breast Cancer Progression Corresponding Authors Xin Hu, Ph.D., Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, 270 Dong’An Road, Shanghai, 200032, P.R. China; Phone: +86-21-64175590 (83423); E-mail: 1 Downloaded from cancerres.aacrjournals.org on September 24, 2021.
    [Show full text]