Practical Security Stories and Security Tasks for Agile Development Environments JULY 17, 2012

Total Page:16

File Type:pdf, Size:1020Kb

Practical Security Stories and Security Tasks for Agile Development Environments JULY 17, 2012 Practical Security Stories and Security Tasks for Agile Development Environments JULY 17, 2012 Table of Contents Problem Statement and Target Audience 2 Overview 2 Assumptions 3 Section 1) Agile Development Methodologies and Security 3 How to Choose the Security-focused Stories and Security Tasks? 3 Story and Task Prioritization Using “Security Debt” 4 Residual Risk Acceptance 4 Section 2a) Security-focused Stories and Associated Security Tasks 5 Section 2b) Operational Security Tasks 29 Section 3) Tasks Requiring the Help of Security Experts 31 Appendix A) Residual Risk Acceptance 32 Glossary 33 References 33 About SAFECode 34 Problem Statement and 3. Use a non-Agile development technique but Target Audience need to interoperate with Agile environments, for example, a component development out- One of the strengths of the Agile development sourced to a vendor using Agile development technique lies in it being an “early feedback system” technique. that can potentially identify defects much earlier in the software lifecycle than conventional software Overview development techniques. With Agile, necessary changes are incorporated in a dynamic fashion. This paper consists of three Sections with content Cycles/sprints are very short, usually no more than tailored specifically to the unique needs of Agile two to four weeks, and for this reason software architects, developers and testers. development teams find it difficult (if not impossi- Section 1 ble) to comply with a long list of security assurance • Provides an overview of a sample Agile meth- tasks. Consequently, more often than not, the odology and a set of security tasks that may be development team ends up skipping security tasks beneficial. altogether; shipping software with a high software security risk level. Section 2 This paper attempts to address this gap by provid- • Section 2a consists of 36 security-focused stories ing Agile practitioners with a list of security-focused with associated security tasks. The “threat stories and security tasks they can consume “as is” landscape” for this section was developed in their Agile-based development environments. based on the most common issues SAFECode The objective of the paper is to go a step beyond members are seeing in their own environ- providing a list of security flaws and translate ments. In addition, the CWE/SANS Top 25 Most secure development practices into a language and Dangerous Development Errors list (plus the 16 format that Agile practitioners can more readily act weaknesses on the cusp list) and the OWASP Top upon as part of a standard Agile methodology. To 10 list were consulted for this section to ensure simplify things further, the recommended security completeness of coverage. A list of unique tasks are broken down by roles, including architects, “security-focused stories” was derived from this developers and testers, and the tasks that most threat landscape, followed by associated com- often require specialized skills from security experts mon security tasks for the stories. are listed separately. As such, this paper can readily • Section 2b consists of a set of 17 operational serve as a first stop for organizations which: security tasks that Agile practitioners should consider conducting on an ongoing basis. These 1. Already use Agile methods and wish to incor- have been further classified as Required or porate security tasks into or enhance existing Recommended for new or existing code, or for security tasks used in their development process. the software development team in general. 2. Use the ‘waterfall’ development technique with adequate security measures already in place, but Section 3 are evaluating moving to Agile methods without • Consists of 12 advanced security tasks that re-inventing the wheel. typically require guidance from software security experts (in-house or consultants) for the first 2 few iterations or in an ongoing manner. These How to Choose the Security-focused tasks relate more to the competencies of the Stories and Security Tasks? team members and their way of working. 1. An initial round of security analysis should be Assumptions conducted to ensure that product management understands the security-relevant aspects of 1. The audience for this paper should already business requirements. These include envisioned understand the fundamental nature of Agile system functionality, policy/compliance, legal, software development. The key concepts and contractual and regulatory requirements, and in terms are derived from Scrum or Scrum-like best cases, clear security-related requirements. methodology. However, the focus is on helping For example, if the software handles and stores the reader implement a practical approach to credit card holder data, it is likely subject to building secure software via Agile concepts and the PCI DSS requirements. At this time, product not to promote any individual practice, as each management can be consulted to verify they are organization will have different needs. prepared for this and understand the potentially 2. A team’s architects, developers and testers were strict compliance obligations associated with kept in perspective, instead of the end user, such a requirement. when choosing security-focused story names. Product management should then work through While user stories center around “use cases” these individual requirements and define more that allow the user to complete a certain task, detailed backlog items that are then entered security-focused stories revolve around “abuse into the backlog along with a proper prioritiza- cases,” which don’t reflect a typical end-user tion. At this time, appropriate security-focused view of the system, and to which the end-user stories from Section 2a should be considered has no visibility or participation. to ensure user stories are covered by relevant security stories. Security stories that are purely Section 1) Agile Development non-functional, for example “as an architect/ Methodologies and Security developer, I want to ensure graceful handling In Agile, the business requirements are typically of all exceptions,” need to be placed into the defined as user stories or epics (group of related backlog as agreed with the Product Owner and user stories). These describe expected user scenarios the development team. (“use cases,” “features,” etc.) at a fairly high level. When a new development sprint starts, the The focus is on defining system functionality with development team should pick up (or be an affirmative approach (“as a user I want to access assigned) the tasks allocated for the sprint (both my private data”) instead of by negation of an functional and security-focused tasks) and com- end-state or condition (“as a user I do not want my mence the development work. data to be exposed”). These user stories are then broken into more manageable and concrete tasks 2. Security tasks listed in Section 2b should be that the sprint team implements. They can be very incorporated in an ongoing manner in your Agile detailed and technical in nature and therefore are development life cycle. prime candidates for defining the detailed security aspects of the system. 3 3. Security tasks listed in Section 3 should be comprehensive threat model may be a costly incorporated as the tasks from 2a and 2b are activity, but one that will have long-term accomplished. benefits due to the number of defects it can reveal if performed early, and which will make Note: To maximize the effective use of this work, the tasks of system architecture and documen- security tasks associated with the security-focused tation easier in the future. stories selected during sprint planning must be part of the version control pre-check-in task list for 2. Nature of your system: Another factor when new/modified code (as applicable). The QA team considering security debt is the nature of your should also create relevant test cases mapped to system, its deployment, and the nature of the the security-focused stories and execute all of them data for which it will be responsible. Given these during testing. factors, it may be apparent that one particular attack vector would be more readily prevalent Story and Task Prioritization than others, and that might influence the Using “Security Debt” security stories and tasks you choose to address The term “security debt” in Agile software develop- first. It does not mean that the others are less ment is used to describe uncompleted tasks that important, but simply that the conditions of your have security relevance. Skipping, postponing, system dictate that these activities will mini- de-prioritizing or otherwise ignoring applicable mize your system’s attack surface versus others security-focused stories or security tasks will build that might be “good to have” but do not have as “debt” that by accumulating will likely leave the immediate an impact on your system’s security application vulnerable. Sometimes this is addressed posture. by performing security sprints that try to clear or reduce this debt, but it is recommended to try to Residual Risk Acceptance avoid building debt in the first place. Unfortunately, It is important to both inform business stakehold- sometimes it is impossible to not build security ers of any known risks left in the application that debt. Prioritization of some kind is necessary in such is approved for release to production and get their cases. In order to accomplish that, take the follow- approval for leaving these risks unresolved. The ing factors into account: sprint review conducted at the end of a given sprint should cover any issues left in the completed sprint. 1. Return on investment: Consider some of the A single release may include a large number of proposed stories and tasks; it will be easy to sprints performed by various teams, and thus there see that they directly influence not only the can be multiple known risks and issues in a release. coding of a system, but its very design. If a Any risk that may impact the business objectives team must concentrate on a select number of must be approved by the respective stakeholders stories and tasks, then the ones in this paper before release.
Recommended publications
  • The Advanced Persistent Threat (Or InformaOnized Force OperaOns)
    The Advanced Persistent Threat (or Informaonized Force Operaons) Michael K. Daly November 4, 2009 What is meant by Advanced, Persistent Threat? . Increasingly sophiscated cyber aacks by hosle organizaons with the goal of: Gaining access to defense, financial and other targeted informaon from governments, corporaons and individuals. Maintaining a foothold in these environments to enable future use and control. Modifying data to disrupt performance in their targets. APT: People With Money Who Discovered That Computers Are Connected APT in the News A Broad Problem Affecng Many Naons and Industries Is this a big deal? Is it new? . Yes, this is a very big deal. If “it” is the broad noon of the, spying, social engineering and bad stuff, then No, it is definitely not new. However, it is new (~2003) that naon states are widely leveraging the Internet to operate agents across all crical infrastructures. APT acvity is leveraging the expansion of the greater system of systems I’m not in the military. Why do I care? “[APT] possess the targeting competence to identify specific users in a unit or organization based on job function or presumed access to information. [APT] can use this access for passive monitoring of network traffic for intelligence collection purposes. Instrumenting these machines in peacetime may enable attackers to prepare a reserve of compromised machines that can be used during a crisis. [APT] … possess the technical sophistication to craft and upload rootkit and covert remote access software, creating deep persistent access to the
    [Show full text]
  • An Encrypted Payload Protocol and Target-Side Scripting Engine
    An Encrypted Payload Protocol and Target-Side Scripting Engine Dino A. Dai Zovi [email protected] Abstract into the remote process and then triggering the vulnera- Modern exploit payloads in commercial and open-source bility (the injection vector) in order to cause the remote penetration testing frameworks have grown much more process to execute the injected code (the payload). Tra- advanced than the traditional shellcode they replaced. ditionally, these payloads have been written in processor- These payloads permit interactive access without launch- specific assembly language, assembled, and extracted by ing a shell, network proxying, and many other rich fea- hand into reusable machine code components. These tures. Available payload frameworks have several lim- payloads were typically small and executed an operating itations, however. They make little use of encryption to system shell, causing them to be commonly referred to secure delivery and communications, especially in earlier as shellcode. Common shellcode variants included func- stage payloads. In addition, their richer features require tionality such as restoring dropped privileges, breaking a constant network connection to the penetration tester, out of chroot environments, and attaching the shell to making them unsuitable against mobile clients, such as an inbound or outbound network connection. This style laptops, PDAs, and smart phones. of payload construction was both labor and skill inten- This work introduces a first-stage exploit payload that sive. is able to securely establish an encrypted channel using With the growth of commercial penetration testing ElGamal key agreement and the RC4 stream cipher. The services and especially commercial penetration test- key agreement implementation requires only modular ing products, exploit payloads have gotten considerably exponentiation and RC4 also lends itself to an implemen- more capable and complex.
    [Show full text]
  • Lifecycle of the Advanced Persistent Threat
    Lifecycle of the Advanced Persistent Threat Counter Threat Unit research Table of Contents Summary .............................................................. 2 Background: Who, not what ......................................... 3 Organized .................................................................... 3 Efficient ...................................................................... 3 Tenacious .................................................................... 4 APT Lifecycle ......................................................... 5 Preparation .................................................................. 6 Initial intrusion .............................................................. 6 Primary Objective .................................................... 9 Expansion .................................................................... 9 Persistence ................................................................. 11 Search and Exfiltration .................................................... 12 Cleanup ...................................................................... 14 Conclusion .......................................................... 15 Copyright © 2012 Dell SecureWorks Page 1 Summary Advanced Persistent Threats (APT) are a serious concern in the today’s threat landscape. They represent a threat to an organization’s intellectual property, financial assets and reputation. In some cases, these threats target critical infrastructure and government suppliers, thereby threatening the victim country’s national
    [Show full text]
  • Data Thieves: the Motivations of Cyber Threat Actors and Their Use
    Testimony Data Thieves The Motivations of Cyber Threat Actors and Their Use and Monetization of Stolen Data Lillian Ablon CT-490 Testimony presented before the House Financial Services Committee, Subcommittee on Terrorism and Illicit Finance, on March 15, 2018. For more information on this publication, visit www.rand.org/pubs/testimonies/CT490.html Testimonies RAND testimonies record testimony presented or submitted by RAND associates to federal, state, or local legislative committees; government-appointed commissions and panels; and private review and oversight bodies. Published by the RAND Corporation, Santa Monica, Calif. © Copyright 2018 RAND Corporation is a registered trademark. Limited Print and Electronic Distribution Rights This document and trademark(s) contained herein are protected by law. This representation of RAND intellectual property is provided for noncommercial use only. Unauthorized posting of this publication online is prohibited. Permission is given to duplicate this document for personal use only, as long as it is unaltered and complete. Permission is required from RAND to reproduce, or reuse in another form, any of its research documents for commercial use. For information on reprint and linking permissions, please visit www.rand.org/pubs/permissions.html. www.rand.org Data Thieves: The Motivations of Cyber Threat Actors and Their Use and Monetization of Stolen Data Testimony of Lillian Ablon1 The RAND Corporation2 Before the Committee on Financial Services Subcommittee on Terrorism and Illicit Finance United States House of Representatives March 15, 2018 ood afternoon, Chairman Pearce, Ranking Member Perlmutter, and distinguished members of the subcommittee. Thank you for the invitation to testify at this important G hearing, “After the Breach: the Monetization and Illicit Use of Stolen Data.” Cybersecurity is a constant and growing challenge.
    [Show full text]
  • Effect of Payload Virus As Threatening for Internet Security
    International Journal of Modern Communication Technologies & Research (IJMCTR) ISSN: 2321-0850, Volume-2, Issue-9, September 2014 Effect of Payload Virus as Threatening For Internet Security Sana Mahmoud Eltayeb Almansour, Dr.Amin Babekir Abd elnabi Mustafa can really bypass security borders , stay in the victim devise or Abstract– Security remains at the top concerns of internet spread in the network without being noticed . usage despite this continuous effort of security engineers to make the Internet as safe as possible, the level of threats II. PAYLOAD:- continues to grow. Hackers are getting better and quicker every day, while In order to define payload it is best explained through the security programming companies do their best to stay the definition of vulnerability and exploit. A particular server, winner of the race. It is an everlasting fight against hacker and website or application is vulnerable when it can be intruders who are trying to breach the safety and privacy of compromised or overtaken by A hacker. their victim whom could be someone using the Internet. Now that we know that a particular application is vulnerable, In this paper one of the current, dangerous most effective we need to find an exploit for that vulnerability, which might method will be discussed, explaining how what is a payload, how be the piece of code, to overtake the victim's application it works, exploits, and the intrusion process, most definitely security precision needs to be taken. without prior authorization. To go further I need a tool, virus or Trojan sent along with the exploit, to be executed on the Index Terms– Payload, Hacking, Internet Security, Victim.
    [Show full text]
  • An Introduction to Computer Security: the NIST Handbook U.S
    HATl INST. OF STAND & TECH R.I.C. NIST PUBLICATIONS AlllOB SEDS3fl NIST Special Publication 800-12 An Introduction to Computer Security: The NIST Handbook U.S. DEPARTMENT OF COMMERCE Technology Administration National Institute of Standards Barbara Guttman and Edward A. Roback and Technology COMPUTER SECURITY Contingency Assurance User 1) Issues Planniii^ I&A Personnel Trairang f Access Risk Audit Planning ) Crypto \ Controls O Managen»nt U ^ J Support/-"^ Program Kiysfcal ~^Tiireats Policy & v_ Management Security Operations i QC 100 Nisr .U57 NO. 800-12 1995 The National Institute of Standards and Technology was established in 1988 by Congress to "assist industry in the development of technology . needed to improve product quality, to modernize manufacturing processes, to ensure product reliability . and to facilitate rapid commercialization ... of products based on new scientific discoveries." NIST, originally founded as the National Bureau of Standards in 1901, works to strengthen U.S. industry's competitiveness; advance science and engineering; and improve public health, safety, and the environment. One of the agency's basic functions is to develop, maintain, and retain custody of the national standards of measurement, and provide the means and methods for comparing standards used in science, engineering, manufacturing, commerce, industry, and education with the standards adopted or recognized by the Federal Government. As an agency of the U.S. Commerce Department's Technology Administration, NIST conducts basic and applied research in the physical sciences and engineering, and develops measurement techniques, test methods, standards, and related services. The Institute does generic and precompetitive work on new and advanced technologies. NIST's research facilities are located at Gaithersburg, MD 20899, and at Boulder, CO 80303.
    [Show full text]
  • WORLD WAR C : Understanding Nation-State Motives Behind Today’S Advanced Cyber Attacks
    REPORT WORLD WAR C : Understanding Nation-State Motives Behind Today’s Advanced Cyber Attacks Authors: Kenneth Geers, Darien Kindlund, Ned Moran, Rob Rachwald SECURITY REIMAGINED World War C: Understanding Nation-State Motives Behind Today’s Advanced Cyber Attacks CONTENTS Executive Summary ............................................................................................................................................................................................................................................................................................................... 3 Introduction ............................................................................................................................................................................................................................................................................................................................................... 4 A Word of Warning ................................................................................................................................................................................................................................................................................................................. 5 The FireEye Perspective ...........................................................................................................................................................................................................................................................................................
    [Show full text]
  • Detection of Web API Content Scraping an Empirical Study of Machine Learning Algorithms
    DEGREE PROJECT IN COMPUTER SCIENCE AND ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2017 Detection of Web API Content Scraping An Empirical Study of Machine Learning Algorithms DINA JAWAD KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF COMPUTER SCIENCE AND COMMUNICATION Detection of Web API Content Scraping An Empirical Study of Machine Learning Algorithms DINA JAWAD Master’s in Computer Science Supervisor at CSC was Sonja Buchegger Examiner at CSC was Mads Dam External supervisors were Johan Ostlund¨ & Henrik Eriksson 2017-06-20 Abstract Scraping is known to be difficult to detect and prevent, especially in the context of web APIs. It is in the interest of organisations that rely heav- ily on the content they provide through their web APIs to protect their content from scrapers. In this thesis, a machine learning approach towards detecting web API content scrapers is proposed. Three supervised machine learning algorithms were evaluated to see which would perform better on data from Spotify's web API. Data used to evaluate the classifiers con- sisted of aggregated HTTP request data that describes each application having sent HTTP requests to the web API over a span of two weeks. Two separate experiments were performed for each classifier, where the second experiment consisted of synthetic data for scrapers (the minority class) in addition to the original dataset. SMOTE was the algorithm used to perform oversampling in experiment two. The results show that Random Forest was the better classifier, with an MCC value of 0.692, without the use of synthetic data. For this particular problem, it is crucial that the classifier does not have a high false positive rate as legitimate usage of the web API should not be blocked.
    [Show full text]
  • Piercing the Hawkeye
    Piercing the HawkEye: Nigerian Cybercriminals Use a Simple Keylogger to Prey on SMBs Worldwide Ryan Flores and Lord Remorin Trend Micro Forward-Looking Threat Research Team with Mary Yambao and Don Ladores TrendLabsSM Research Paper TREND MICRO LEGAL DISCLAIMER The information provided herein is for general information and educational purposes only. It is not Contents intended and should not be construed to constitute legal advice. The information contained herein may not be applicable to all situations and may not reflect the most current situation. Nothing contained herein should be relied on or acted upon without 4 the benefit of legal advice based on the particular facts and circumstances presented and nothing herein should be construed otherwise. Trend Micro HawkEye: Persons of reserves the right to modify the contents of this document at any time without prior notice. Interest Translations of any material into other languages are intended solely as a convenience. Translation accuracy is not guaranteed nor implied. If any questions arise related to the accuracy of a translation, please refer to the original language 6 official version of the document. Any discrepancies or differences created in the translation are not binding and have no legal effect for compliance or Spotting a Mark: enforcement purposes. Notable HawkEye Use Although Trend Micro uses reasonable efforts to include accurate and up-to-date information Cases herein, Trend Micro makes no warranties or representations of any kind as to its accuracy, currency, or completeness. You agree that access to and use of and reliance on this document and the content thereof is at your own risk.
    [Show full text]
  • Application Security Fortify-On-Demand | Application Defender | Fortify | Webinspect
    Prep Work Exercises ▪ Open Your VM c:\VM Images\2017\windows 10 x64 (2).vmx ▪ UID: Admin ▪ PWD: P@ssword1 ▪ Check Access to http://6.94.185.35.bc.googleusercontent.com:8080/ssc/#/ ▪ UID: Admin ▪ PWD: Fortify@01 ▪ Check Access to http://zero.webappsecurity.com/ ▪ UID: username ▪ PWD: password Application Security Fortify-On-Demand | Application Defender | Fortify | WebInspect Haleh Nematollahy Jeffrey Hsiao Senior Security Solutions Architect Security Solutions Architect [email protected] Agenda • Prep Work Exercises • Introductions • Application Security Challenges • HPE Fortify Solution • HPE WebInspect Overview and Exercises • Lunch • HPE Softrware Security Center Overview and Exercises • HPE WebInspect Enterprise Overview • Wrap-Up Introductions ▪ Name and organization ▪ Role and duties ▪ Secure coding background HPE Software is now Micro Focus! Servers Laptops Network Printers Storage Enterprise Enterprise Services Software The Software Security Problem Existing network and perimeter based security is insufficient 1 2 3 4 5 6 7 8 84% of breaches exploit vulnerabilities in the application layer Yet the ratio of spending between perimeter security and application security is 23-to-1 - Gartner Maverick Research: Stop Protecting Your Apps; It’s Time for Apps to Protect Themselves (2014) Vulnerability Defined Is this a vulnerability? cross-site sql scripting injection security mechanisms Vulnerabilities in Software What is a software or application vulnerability? A vulnerability is a hole or a weakness in the application, which can be a design flaw or an implementation bug, that allows an attacker to cause harm to the stakeholders of an application. So How Bad Can It Be? Vulnerabilities in Software OWASP ▪ The Open Web Application Security Project is a worldwide free and open community focused on improving the security of application software.
    [Show full text]
  • The Strategic Promise of Offensive Cyber Operations
    The Strategic Promise of Offensive Cyber Operations Max Smeets Abstract Could offensive cyber operations provide strategic value? If so, how and under what conditions? While a growing number of states are said to be interested in developing offensive cyber capabilities, there is a sense that state leaders and policy makers still do not have a strong concep- tion of its strategic advantages and limitations. This article finds that offensive cyber operations could provide significant strategic value to state-actors. The availability of offensive cyber capabilities expands the options available to state leaders across a wide range of situations. Dis- tinguishing between counterforce cyber capabilities and countervalue cyber capabilities, the article shows that offensive cyber capabilities can both be an important force-multiplier for conventional capabilities as well as an independent asset. They can be used effectively with few casu- alties and achieve a form of psychological ascendancy. Yet, the promise of offensive cyber capabilities’ strategic value comes with a set of condi- tions. These conditions are by no means always easy to fulfill—and at times lead to difficult strategic trade-offs. At a recent cybersecurity event at Georgetown Law School, Richard Ledgett, former deputy director of the National Security Agency (NSA), told an audience “well over 100” countries around the world are now capable of launching cyber-attacks.1 Other senior policy makers and ex- perts have made similar statements about the proliferation of offensive cyber capabilities.2 Yet, offensive cyber operations are not considered to be an “absolute weapon,” nor is their value “obviously beneficial.”3 There is also a sense that state leaders and policy makers, despite calling for Max Smeets is a postdoctoral cybersecurity fellow at Stanford University Center for International Security and Cooperation (CISAC).
    [Show full text]
  • 7 Stages of Cyber Kill Chain Download Here
    7 Stages of Cyber Kill Chain Supplementary Reading Overview The “cyber kill chain” is a sequence of stages required for an attacker to successfully infiltrate a network and exfiltrate data from it. Each stage demonstrates a specific goal along the attacker’s path. “It is vital that we have secure systems that we can trust, not just Designing your monitoring and response plan around the cyber preventing credit card kill chain model is an effective method because it focuses on numbers from being how actual attacks happen. stolen, but protecting ourselves from malicious attacks where there is hacking or Distributed Denial of Service attacks, you know what that is. Whether is it malware that infects our computers which steals sensitive information or possibly threatens critical infrastructure if it gets into the hospital IT systems, patients can die, if it gets into our power system, our power grid can be brought down, if it gets into our airport system, we can have a very serious problem.” says Mr. Lee Hsien Loong, the Prime Minister of Singapore. https://www2.deloitte.com/content/dam/Deloitte/sg/Documents/ri sk/sea-risk-cyber-thought-leadership-noexp.pdf https://www.alienvault.com/blogs/security-essentials/defend-like-an- attacker-applying-the-cyber-kill-chain Slide 2 © 2017 Deloitte Touche Tohmatsu Limited Cyber 101: Supplementary Reading Reconnaissance What are reconnaissance attacks? "The problem with A reconnaissance attack, as the name implies, is the efforts social media is that of an threat actors to gain as much information about people have an the network as possible before launching other more inherent trust," serious types of attacks.
    [Show full text]