Ecryptfs: an Enterprise-Class Encrypted Filesystem for Linux
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
NTFS • Windows Reinstallation – Bypass ACL • Administrators Privilege – Bypass Ownership
Windows Encrypting File System Motivation • Laptops are very integrated in enterprises… • Stolen/lost computers loaded with confidential/business data • Data Privacy Issues • Offline Access – Bypass NTFS • Windows reinstallation – Bypass ACL • Administrators privilege – Bypass Ownership www.winitor.com 01 March 2010 Windows Encrypting File System Mechanism • Principle • A random - unique - symmetric key encrypts the data • An asymmetric key encrypts the symmetric key used to encrypt the data • Combination of two algorithms • Use their strengths • Minimize their weaknesses • Results • Increased performance • Increased security Asymetric Symetric Data www.winitor.com 01 March 2010 Windows Encrypting File System Characteristics • Confortable • Applying encryption is just a matter of assigning a file attribute www.winitor.com 01 March 2010 Windows Encrypting File System Characteristics • Transparent • Integrated into the operating system • Transparent to (valid) users/applications Application Win32 Crypto Engine NTFS EFS &.[ßl}d.,*.c§4 $5%2=h#<.. www.winitor.com 01 March 2010 Windows Encrypting File System Characteristics • Flexible • Supported at different scopes • File, Directory, Drive (Vista?) • Files can be shared between any number of users • Files can be stored anywhere • local, remote, WebDav • Files can be offline • Secure • Encryption and Decryption occur in kernel mode • Keys are never paged • Usage of standardized cryptography services www.winitor.com 01 March 2010 Windows Encrypting File System Availibility • At the GUI, the availibility -
Trusted Platform Module (TPM) Quick Reference Guide
Trusted Platform Module (TPM) Quick Reference Guide System builders/integrators should give this Guide to the system owners to assist them in enabling and activating the Trusted Platform Module. Warning of Potential Data Loss ..........................3 Trusted Platform Module (TPM) .........................5 System Requirements ........................................5 Security Precautions ..........................................5 Password Procedures ............................................. 6 Emergency Recovery File Back Up Procedures ........... 7 Hard Drive Image Backup Procedures....................... 7 Clear Text Backup (Optional) .................................. 7 Trusted Platform Module Ownership ..................8 Trusted Platform Module Software Installation..8 Enabling the Trusted Platform Module ...............8 Assuming Trusted Platform Module Ownership..9 Recovery Procedures ........................................10 How to Recover from a Hard Drive Failure ............... 10 How to Recover from a Desktop Board, coin battery or TPM Failure........................................... 10 Clearing Trusted Platform Module Ownership ...11 Support Links ....................................................12 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, -
Trusted Platform Module (TPM) TCG 1.2 / 2.0
Trusted Platform Module (TPM) TCG 1.2 / 2.0 USER GUIDE Revision 1.20 The information in this user's guide has been carefully reviewed and is believed to be accurate. The vendor assumes no responsibility for any inaccuracies that may be contained in this document, and makes no commitment to update or to keep current the information in this manual, or to notify any person or organization of the updates. Please Note: For the most up-to-date version of this manual, please see our website at www.supermicro.com. Super Micro Computer, Inc. ("Supermicro") reserves the right to make changes to the product described in this manual at any time and without notice. This product, including software and documentation, is the property of Supermicro and/ or its licensors, and is supplied only under a license. Any use or reproduction of this product is not allowed, except as expressly permitted by the terms of said license. IN NO EVENT WILL SUPER MICRO COMPUTER, INC. BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, SPECULATIVE OR CONSEQUENTIAL DAMAGES ARISING FROM THE USE OR INABILITY TO USE THIS PRODUCT OR DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN PARTICULAR, SUPER MICRO COMPUTER, INC. SHALL NOT HAVE LIABILITY FOR ANY HARDWARE, SOFTWARE, OR DATA STORED OR USED WITH THE PRODUCT, INCLUDING THE COSTS OF REPAIRING, REPLACING, INTEGRATING, INSTALLING OR RECOVERING SUCH HARDWARE, SOFTWARE, OR DATA. Any disputes arising between manufacturer and customer shall be governed by the laws of Santa Clara County in the State of California, USA. The State of California, County of Santa Clara shall be the exclusive venue for the resolution of any such disputes. -
PV204: Disk Encryption Lab
PV204: Disk encryption lab May 12, 2016, Milan Broz <[email protected]> Introduction Encryption can provide confidentiality and authenticity of user data. It can be implemented on several different layes, including application, file system or storage device. Application encryption examples are PGP or ZIP compression with password. Encryption of files (inside filesystem or through independent layer like Linux eCryptfs) provides more generic solution. Yet some parts (like filesystem metadata) are still unencrypted. However this solution provides encrypted data with private key per user. (Every user can have own directory encrypted by own key.) Encryption of the low-level storage (disk) is called Full Disk Encryption (FDE). It is completely transparent to the user (no need to choose what to encrypt – the whole disk is encrypted). The encrypted disk behaves as the same as a disk without encryption. The major disadvantage is that everyone who knows the password can read the whole disk. Often we combine FDE with another encryption layer. The primary use of FDE is to provide data confidentiality in power-down mode (stolen laptop does not leak user data). Once the disk is unlocked, the main encryption key remains in system, usually directly in system RAM. Exercise II will show how easy is to get this key from memory image of system. Another disadvantage of FDE is that it usually cannot guarantee integrity of data. Encryption is fully transparent and length-preserving, the ciphertext and plaintext device are of the same size. There is no space to store any integrity information. This allows attacks by direct modification of ciphertext. -
Active @ UNDELETE Users Guide | TOC | 2
Active @ UNDELETE Users Guide | TOC | 2 Contents Legal Statement..................................................................................................4 Active@ UNDELETE Overview............................................................................. 5 Getting Started with Active@ UNDELETE........................................................... 6 Active@ UNDELETE Views And Windows......................................................................................6 Recovery Explorer View.................................................................................................... 7 Logical Drive Scan Result View.......................................................................................... 7 Physical Device Scan View................................................................................................ 8 Search Results View........................................................................................................10 Application Log...............................................................................................................11 Welcome View................................................................................................................11 Using Active@ UNDELETE Overview................................................................. 13 Recover deleted Files and Folders.............................................................................................. 14 Scan a Volume (Logical Drive) for deleted files..................................................................15 -
Pitx-APL V2.0
USER GUIDE pITX-APL V2.0 Doc. Rev. 1.4 Doc-ID: 1065-6365 pITX-APL V2.0 – Rev. 1.4 This page has been intentionally left blank pITX-APL V2.0 – Rev. 1.4 PITX-APL V2.0 – USER GUIDE Disclaimer Kontron would like to point out that the information contained in this manual may be subject to alteration, particularly as a result of the constant upgrading of Kontron products. This document does not entail any guarantee on the part of Kontron with respect to technical processes described in the manual or any product characteristics set out in the manual. Kontron assumes no responsibility or liability for the use of the described product(s), conveys no license or title under any patent, copyright or mask work rights to these products and makes no representations or warranties that these products are free from patent, copyright or mask work right infringement unless otherwise specified. Applications that are described in this manual are for illustration purposes only. Kontron makes no representation or warranty that such application will be suitable for the specified use without further testing or modification. Kontron expressly informs the user that this manual only contains a general description of processes and instructions which may not be applicable in every individual case. In cases of doubt, please contact Kontron. This manual is protected by copyright. All rights are reserved by Kontron. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), without the express written permission of Kontron. -
Mcafee Foundstone Fsl Update
2016-AUG-18 FSL version 7.5.841 MCAFEE FOUNDSTONE FSL UPDATE To better protect your environment McAfee has created this FSL check update for the Foundstone Product Suite. The following is a detailed summary of the new and updated checks included with this release. NEW CHECKS 20369 - Splunk Enterprise Multiple Vulnerabilities (SP-CAAAPQM) Category: General Vulnerability Assessment -> NonIntrusive -> Web Server Risk Level: High CVE: CVE-2013-0211, CVE-2015-2304, CVE-2016-1541, CVE-2016-2105, CVE-2016-2106, CVE-2016-2107, CVE-2016-2108, CVE- 2016-2109, CVE-2016-2176 Description Multiple vulnerabilities are present in some versions of Splunk Enterprise. Observation Splunk Enterprise is an operational intelligence solution Multiple vulnerabilities are present in some versions of Splunk Enterprise. The flaws lie in multiple components. Successful exploitation by a remote attacker could lead to the information disclosure of sensitive information, cause denial of service or execute arbitrary code. 20428 - (HT206899) Apple iCloud Multiple Vulnerabilities Prior To 5.2.1 Category: Windows Host Assessment -> Miscellaneous (CATEGORY REQUIRES CREDENTIALS) Risk Level: High CVE: CVE-2016-1684, CVE-2016-1836, CVE-2016-4447, CVE-2016-4448, CVE-2016-4449, CVE-2016-4483, CVE-2016-4607, CVE- 2016-4608, CVE-2016-4609, CVE-2016-4610, CVE-2016-4612, CVE-2016-4614, CVE-2016-4615, CVE-2016-4616, CVE-2016-4619 Description Multiple vulnerabilities are present in some versions of Apple iCloud. Observation Apple iCloud is a manager for the Apple's could based storage service. Multiple vulnerabilities are present in some versions of Apple iCloud. The flaws lie in several components. Successful exploitation could allow an attacker to retrieve sensitive data, cause a denial of service condition or have other unspecified impact on the target system. -
The Samhain Host Integrity Monitoring System the Samhain Host Integrity Monitoring System This Is Version 2.4.3 of the Samhain Manual
The Samhain Host Integrity Monitoring System The Samhain Host Integrity Monitoring System This is version 2.4.3 of the Samhain manual. Copyright © 2002-2019 Rainer Wichmann Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1 or any later version published by the Free Software Foundation with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. You may obtain a copy of the GNU Free Documentation Licensefrom the Free Software Foundation by visiting their Web site or by writing to: Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. This manual refers to version 4.4.0 of Samhain. Table of Contents 1. Introduction .............................................................................................................. 1 1. Backward compatibility ...................................................................................... 1 2. Compiling and installing ............................................................................................. 2 1. Overview ......................................................................................................... 2 2. Requirements .................................................................................................... 3 3. Download and extract ......................................................................................... 3 4. Configuring the source ...................................................................................... -
Copyrighted Material
Index Note to the Reader: Throughout this index boldfaced page numbers indicate primary discussions of a topic. Italicized page numbers indicate illustrations. IUSR_computername account, 274–275 Numbers disabling, 61 mapping certificates to, 283–286 3DES, 125–126, 416, 494 user accounts, configuring for 802.1x standard (IEEE), 181–184, 494 delegation, 46 authentication for, 182 ACEs (Access Control Entries) combining VPNs with, 190 authentication for clients, 494 802.11a standard (IEEE), 494 in Discretionary Access Control List, 7 vs. 802.11b, 170 Active Directory (AD), 3, 494 802.11b standard (IEEE), 494 assigning GPO to container in, 28 for certificate store, 404 Configuration container for certificate templates, 360 A mapping certificates to accounts, 283–286 Access Control Entries (ACEs), 494 in mixed mode, 324 in Discretionary Access Control List, 7 publishing certificates through, 404–409 Access Control List (ACL), 494 in child domain, 406–409 Access Control Settings dialog box, 16 from standalone online CA, 404–406 Auditing tab, 16, 440 to view published certificates and CRLs, “Access Is Denied” error message, 420 358–359 access point, 494. See also wireless access Active Directory domain controller point (WAP) client security to traffic, 226–229 access token, 260, 494 testing, 227–229 account lockout policy, in security Active Directory domains templates, 9 Properties dialog box, General tab, 228 account logon events, tracking, 15, 445 trust relationships, 271–273, 272 account management events, tracking, 15, Active Directory object, auditing, 18 445–446 Active Directory Properties dialog box, 228 Account Policies Active Directory Sites and Services (ADSS), security template configuration, 12, 5, 494 12–14, 13 configuration, 407–408 in security templates, 9 Active Directory Users and Computers (ADUC), accountability trail, 14 COPYRIGHTED5, MATERIAL494 accounts Active Server Pages (ASP), SUS and, 111 Administrator account, renaming, 55, 56 AD. -
Jim Allchin on Longhorn, Winfs, 64-Bit and Beyond Page 34 Jim
0805red_cover.v5 7/19/05 2:57 PM Page 1 4 Scripting Solutions to Simplify Your Life Page 28 AUGUST 2005 WWW.REDMONDMAG.COM MrMr WindowsWindows Jim Allchin on Longhorn, WinFS, 64-Bit and Beyond Page 34 > $5.95 05 • AUGUST Make Room for Linux Apps Page 43 25274 867 27 Active Directory Design Disasters Page 49 71 Project1 6/16/05 12:36 PM Page 1 Exchange Server stores & PSTs driving you crazy? Only $399 for 50 mailboxes; $1499 for unlimited mailboxes! Archive all mail to SQL and save 80% storage space! Email archiving solution for internal and external email Download your FREE trial from www.gfi.com/rma Project1 6/16/05 12:37 PM Page 2 Get your FREE trial version of GFI MailArchiver for Exchange today! GFI MailArchiver for Exchange is an easy-to-use email archiving solution that enables you to archive all internal and external mail into a single SQL database. Now you can provide users with easy, centralized access to past email via a web-based search interface and easily fulfill regulatory requirements (such as the Sarbanes-Oxley Act). GFI MailArchiver leverages the journaling feature of Exchange Server 2000/2003, providing unparalleled scalability and reliability at a competitive cost. GFI MailArchiver for Exchange features Provide end-users with a single web-based location in which to search all their past email Increase Exchange performance and ease backup and restoration End PST hell by storing email in SQL format Significantly reduce storage requirements for email by up to 80% Comply with Sarbanes-Oxley, SEC and other regulations. -
Encrypting File System
SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA Seminarski rad iz kolegija „Računalna forenzika“ Encrypting File System Luka Škorić Zagreb, siječanj, 2018. Sadržaj 1. Uvod ................................................................................................................................................ 1 2. NTFS............................................................................................................................................... 2 3. Karakteristike Encrypting File System-a ................................................................................... 4 3.1. Enkripcijski algoritmi ............................................................................................................. 5 3.2. Način rada .............................................................................................................................. 6 3.3. Nedostatci EFS-a .................................................................................................................. 8 4. Zaključak ...................................................................................................................................... 10 5. Literatura ...................................................................................................................................... 11 1. Uvod Enkripcija tvrdog diska predstavlja proces zaštite podataka pretvaranjem podataka u nečitki kod, što kao cilj ima zaštitu istih podataka od nedozvoljenog pristupa. Filesystem - level encryption, često nazvan i file/folder -
Cloaker: Hardware Supported Rootkit Concealment
Cloaker: Hardware Supported Rootkit Concealment Francis M. David, Ellick M. Chan, Jeffrey C. Carlyle, Roy H. Campbell Department of Computer Science University of Illinois at Urbana-Champaign 201 N Goodwin Ave, Urbana, IL 61801 {fdavid,emchan,jcarlyle,rhc}@uiuc.edu Abstract signers resorted to more complex techniques such as modi- fying boot sectors [33, 51] and manipulating the in-memory Rootkits are used by malicious attackers who desire to image of the kernel. These rootkits are susceptible to de- run software on a compromised machine without being de- tection by tools that check kernel code and data for alter- tected. They have become stealthier over the years as a ation [43, 13, 42, 21]. Rootkits that modify the system consequence of the ongoing struggle between attackers and BIOS or device firmware [25, 26] can also be detected by system defenders. In order to explore the next step in rootkit integrity checking tools. More recently, virtualization tech- evolution and to build strong defenses, we look at this issue nology has been studied as yet another means to conceal from the point of view of an attacker. We construct Cloaker, rootkits [31, 44]. These rootkits remain hidden by running a proof-of-concept rootkit for the ARM platform that is non- the host OS in a virtual machine environment. To counter persistent and only relies on hardware state modifications the threat from these Virtual Machine Based Rootkits (VM- for concealment and operation. A primary goal in the de- BRs), researchers have detailed approaches to detect if code sign of Cloaker is to not alter any part of the host oper- is executing inside a virtual machine [20].