(0061, 0771 and FS0010) R Shuckard Statement of Evidence.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

(0061, 0771 and FS0010) R Shuckard Statement of Evidence.Pdf IN THE MATTER OF the Resource Management Act 1991 AND IN THE MATTER OF a Board of Inquiry appointed under section 149J of the Resource Management Act 1991 to consider The New Zealand King Salmon Co. Limited's private plan change requests to the Marlborough Sounds Resource Management Plan and resource consent applications for marine farming at nine sites located in the Marlborough Sounds. STATEMENT OF EVIDENCE OF ROB SCHUCKARD AUGUST 2012 – 2 – Contents: 1. Executive Summary 2. Background 3. Scope 4. Status of ecosystem information from Coastal Marine Environment. 5. Eutrofication, a worldwide concern and threat to coastal habitats. 6. Salmon farming and eutrofication 7. Human Population Equivalent. 8. Seabirds in the Marlborough Sounds. Impact of eutrophication on marine ecosystem of the Marlborough Sounds, a particular focus on New Zealand King Shags. 1. Executive Summary 1.1. New Zealand‘s marine habitats, the communities of marine life within them, the processes that drive marine ecosystems, the full extent of threats to marine biodiversity from human activities and broader environmental changes have not yet been identified and/or classified. 1.2. The past few decades have seen a significant global increase in coastal eutrophication, leading to widespread hypoxia and anoxia, habitat degradation, alteration of food-web structure, loss of biodiversity, and increased frequency, spatial extent, and duration of harmful algal blooms. 1.3. Nitrogen and phosphorus loading into marine waters can initiate a biological process of eutrophication that, depending on the volume and duration of nutrient loading and the assimilative capacity of the receiving waters, can culminate in a fundamental shift in the food web structure of an area and lead to ecological simplification, disrupting normal ecosystem functioning. It finally can result in a shift of phytoplankton species composition and create conditions that are favourable to nuisance and toxic algal blooms. 1.4. High and very high HAB risk in the form of shellfish and fish toxicity occurs near all the salmon farms, in particular during the summer months. However, similar HAB were also identified at the control sites. It is suggested that nutrient waste from existing farms are not of notable environmental significance at current levels of salmon production. – 3 – 1.5. To challenge of eutrophication and related harmful algal blooms, an integrated management framework is needed for effective nutrient management. Both changes in climate forcing and nutrient loadings are aspects of a global transformation that is expected to profoundly impact coastal hypoxia through more stratified water conditions. 1.6. Algal blooms that occur as a result of high nutrients in marine waters will reduce water clarity (and consequently sunlight availably to other organisms in the water column and benthic communities), resulting in oxygen deficit of the water column when the organisms die, sink and decompose. 1.7. Adaptive management and guidelines are being integrated in the conditions for resource consents of existing salmon farms. However, they only accommodate the industrial goal to maintain a healthy environment for the fish farm. 1.8. Intensive aquaculture has generated environmental impacts like deteriorated spawning grounds of commercially valuable fish and shellfish. The ‗‗unprized‘‘ or ‗‗hidden‘‘ support from coastal and marine ecosystems to intensively cultured species is quite substantial. The presumption to locate farms in more exposed locations to reduce the environmental impact of organic enrichment by spreading the effects may be unfounded. 1.9. Positive reinforcing feedbacks of biogeochemistry and homeostasis shift ecosystems to new stable states; such shifts can be gradual or abrupt and communities may not return to their original state once the disturbance (in this case, altered nutrient loads) is removed. The catastrophic shift cannot be reversed by a correspondingly small reversal of the parameter variable; i.e. the trajectory of recovery is very different from the pathway of decline. 1.10. About 71 % of all nitrogen in the salmon feed is released as waste in the environment. Where the deposition modelling is important, it resembles a small part of the overall waste production. At least 80% of the total losses from fish farming are plankton available nutrients. In undisturbed temperate marine ecosystems, nutrients are abundant during winter and early spring and are gradually depleted in the surface waters during the warm season, whereas in marine culture-impacted ecosystems most of the nutrient enrichment in the water column occurs during the warm period, i.e. summer and early autumn. The proportion of diatoms in the – 4 – plankton communities will decrease after eutrophication where Harmful Algal Blooms increased dramatically. 1.11. HABs can be initiated in offshore waters (an upwelling source) and carried inshore, where anthropogenic nutrient sources affect their dynamics, through increasing magnitude, prolonging duration, number of toxins and toxic species identified, in numbers of fisheries affected, and in economic costs. 1.12. About 30.000 tonnes of salmon produces the nitrogen waste equivalent of what is produced by 420.000 people (about 3x the people living in Marlborough, Nelson and Tasman Region together ) 1.13. The average total population of King Shags estimated to be 645 birds. The species is ―VULNERABLE‖, where this ―species is facing a high risk of extinction in the wild in the medium-term future. Duffers Reef on of the most affected colonies, is also one of the biggest colonies with the highest recruitment. Birds go on average not further than 18km away from the colony with most feeding between 6 and 8 km. 1.14. King Shag is a poor flyer requiring wind assistance on return trips to the colony in particular during chick raising. It is a deep diving species of between 20-50m and dependant on clear water to maintain minimal light conditions for prey pursuit. Increase of phytoplankton biomass may impact on the light penetration to the deeper water layers and benthic communities, potentially decreasing the area suitable for King Shags to hunt. 1.15. King Shag is dependent on deep benthic prey, in particular witch flounder. This species is most common in deeper water with grained sediment. Shags in general require a high density of prey species. Small declines can already have a severe impact on the viability of the species. 1.16. In Waitata Reach the applications are all in the zone where most King Shags are feeding. Also in the Queen Charlotte, there is overlap between King Shag feeding habitat and salmon farms. 1.17. In Waitata reach, the total amount of feed-use that is proposed, consented or under appeal is the equivalent amount of nitrogen waste from about 150.000 people. Impact of toxic algae on seabirds reveal an array of responses ranging from reduced feeding activity, inability to lay eggs, and loss of motor coordination and death (Shumway et al. 2003). Bird deaths caused by HABs – 5 – have been widely reported (in Lewitus et al. 2012). Some of the dinoflagellate produced foam destroys the waterproof layer of feathers that keeps seabirds dry, restricting flight and leading to hypothermia. 2. Background 2.1. My name is Rob Schuckard. I immigrated with my family to New Zealand in 1989. I hold a Masters Degree in Biology (University of Amsterdam), with ornithology as my main subject. In the Netherlands I worked for the Department of Conservation. I had my own consultancy for ecological studies and surveys. I operated for six years an experimental dairy farm as a model to test profitability and environmentally sound management. 2.2. In New Zealand we live in the Marlborough Sounds where I operated between 1989 and 2000 two marine farms in the Pelorus Sound. We have integrated conservation and commercial aspirations for managing our land. About 25% of our land is planted with commercial forest (pine and macrocarpa trees) and 75% is in conservation management. Since 1999, we grow annually many thousands of natives, to be planted throughout our property as a part of our restoration work. We carry out active plants and mammalians pest-control. In 2005, our property received the Marlborough Rural Environment Award for Forestry and the Supreme Award for the work we have been carrying out on our property. 2.3. In New Zealand I have dedicated considerable amounts of time to ornithological surveys and studies. Most of my studies have been carried out as projects of the Ornithological Society of New Zealand. Main study projects: Census coordinator for shorebird surveys in Top of South Island since 1995. Team leader for catching and marking programmes of shorebirds in South Island since 2000. Coordinator of Gannet study at Farewell Spit since 1995. Long term studies and monitoring of New Zealand King Shag. 2.4. I have authored or co-authored a number of publications on the above subjects. – 6 – 2.5. I have been involved and still participate in a range of community and/or conservation projects: Secretary Marine Reserve Committee of French Pass Residents Incorporated – 1993- 1998. Member of the Marlborough Conservation Board in 1997 and 1998. Environmental officer of French Pass Residents Incorporated – since 1997. Committee member for Friends of Nelson Haven and Tasman Bay – 1998-2002 and since 2011. Member of the Sounds Advisory Group – since 2010 Scientific advisor of Sustain our Sounds Inc. - since 2012 2.6. I have read and agree to abide by the code of expert witnesses as set out in the Environment Court‘s Practice Note 2011. 3. Scope of Evidence 3.1. I have been asked by Sustain our Sounds Inc. (―SOS‖) to provide an assessment of the impact of the New Zealand King Salmon Application on the ecosystem integrity of the Marlborough Sounds. 3.2. A literature review of eutrofication of coastal marine environments and the relation with harmful algal blooms is addressed. 3.3. I will compare the environmental impact of the proposed farm expansion on the habitat of New Zealand King Shag (Phalacrocorax carunculatus).
Recommended publications
  • Akashiwo Sanguinea
    Ocean ORIGINAL ARTICLE and Coastal http://doi.org/10.1590/2675-2824069.20-004hmdja Research ISSN 2675-2824 Phytoplankton community in a tropical estuarine gradient after an exceptional harmful bloom of Akashiwo sanguinea (Dinophyceae) in the Todos os Santos Bay Helen Michelle de Jesus Affe1,2,* , Lorena Pedreira Conceição3,4 , Diogo Souza Bezerra Rocha5 , Luis Antônio de Oliveira Proença6 , José Marcos de Castro Nunes3,4 1 Universidade do Estado do Rio de Janeiro - Faculdade de Oceanografia (Bloco E - 900, Pavilhão João Lyra Filho, 4º andar, sala 4018, R. São Francisco Xavier, 524 - Maracanã - 20550-000 - Rio de Janeiro - RJ - Brazil) 2 Instituto Nacional de Pesquisas Espaciais/INPE - Rede Clima - Sub-rede Oceanos (Av. dos Astronautas, 1758. Jd. da Granja -12227-010 - São José dos Campos - SP - Brazil) 3 Universidade Estadual de Feira de Santana - Departamento de Ciências Biológicas - Programa de Pós-graduação em Botânica (Av. Transnordestina s/n - Novo Horizonte - 44036-900 - Feira de Santana - BA - Brazil) 4 Universidade Federal da Bahia - Instituto de Biologia - Laboratório de Algas Marinhas (Rua Barão de Jeremoabo, 668 - Campus de Ondina 40170-115 - Salvador - BA - Brazil) 5 Instituto Internacional para Sustentabilidade - (Estr. Dona Castorina, 124 - Jardim Botânico - 22460-320 - Rio de Janeiro - RJ - Brazil) 6 Instituto Federal de Santa Catarina (Av. Ver. Abrahão João Francisco, 3899 - Ressacada, Itajaí - 88307-303 - SC - Brazil) * Corresponding author: [email protected] ABSTRAct The objective of this study was to evaluate variations in the composition and abundance of the phytoplankton community after an exceptional harmful bloom of Akashiwo sanguinea that occurred in Todos os Santos Bay (BTS) in early March, 2007.
    [Show full text]
  • Nucleotide Amino Acid Size (Nt) #Orfs Marnavirus Heterosigma Akashiwo Heterosigma Akashiwo RNA Heterosigma Lang Et Al
    Supplementary Table 1: Summary of information for all viruses falling within the seven Marnaviridae genera in our analyses. Accession Genome Genus Species Virus name Strain Abbreviation Source Country Reference Nucleotide Amino acid Size (nt) #ORFs Marnavirus Heterosigma akashiwo Heterosigma akashiwo RNA Heterosigma Lang et al. , 2004; HaRNAV AY337486 AAP97137 8587 One Canada RNA virus 1 virus akashiwo Tai et al. , 2003 Marine single- ASG92540 Moniruzzaman et Classification pending Q sR OV 020 KY286100 9290 Two celled USA ASG92541 al ., 2017 eukaryotes Marine single- Moniruzzaman et Classification pending Q sR OV 041 KY286101 ASG92542 9328 One celled USA al ., 2017 eukaryotes APG78557 Classification pending Wenzhou picorna-like virus 13 WZSBei69459 KX884360 9458 One Bivalve China Shi et al ., 2016 APG78557 Classification pending Changjiang picorna-like virus 2 CJLX30436 KX884547 APG79001 7171 One Crayfish China Shi et al ., 2016 Beihai picorna-like virus 57 BHHQ57630 KX883356 APG76773 8518 One Tunicate China Shi et al ., 2016 Classification pending Beihai picorna-like virus 57 BHJP51916 KX883380 APG76812 8518 One Tunicate China Shi et al ., 2016 Marine single- ASG92530 Moniruzzaman et Classification pending N OV 137 KY130494 7746 Two celled USA ASG92531 al ., 2017 eukaryotes Hubei picorna-like virus 7 WHSF7327 KX884284 APG78434 9614 One Pill worm China Shi et al ., 2016 Classification pending Hubei picorna-like virus 7 WHCC111241 KX884268 APG78407 7945 One Insect China Shi et al ., 2016 Sanxia atyid shrimp virus 2 WHCCII13331 KX884278 APG78424 10445 One Insect China Shi et al ., 2016 Classification pending Freshwater atyid Sanxia atyid shrimp virus 2 SXXX37884 KX883708 APG77465 10400 One China Shi et al ., 2016 shrimp Labyrnavirus Aurantiochytrium single Aurantiochytrium single stranded BAE47143 Aurantiochytriu AuRNAV AB193726 9035 Three4 Japan Takao et al.
    [Show full text]
  • University of Oklahoma
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D.
    [Show full text]
  • Protocols for Monitoring Harmful Algal Blooms for Sustainable Aquaculture and Coastal Fisheries in Chile (Supplement Data)
    Protocols for monitoring Harmful Algal Blooms for sustainable aquaculture and coastal fisheries in Chile (Supplement data) Provided by Kyoko Yarimizu, et al. Table S1. Phytoplankton Naming Dictionary: This dictionary was constructed from the species observed in Chilean coast water in the past combined with the IOC list. Each name was verified with the list provided by IFOP and online dictionaries, AlgaeBase (https://www.algaebase.org/) and WoRMS (http://www.marinespecies.org/). The list is subjected to be updated. Phylum Class Order Family Genus Species Ochrophyta Bacillariophyceae Achnanthales Achnanthaceae Achnanthes Achnanthes longipes Bacillariophyta Coscinodiscophyceae Coscinodiscales Heliopeltaceae Actinoptychus Actinoptychus spp. Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Akashiwo Akashiwo sanguinea Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Amphidinium Amphidinium spp. Ochrophyta Bacillariophyceae Naviculales Amphipleuraceae Amphiprora Amphiprora spp. Bacillariophyta Bacillariophyceae Thalassiophysales Catenulaceae Amphora Amphora spp. Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Anabaenopsis Anabaenopsis milleri Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema Anagnostidinema amphibium Anagnostidinema Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema lemmermannii Cyanobacteria Cyanophyceae Oscillatoriales Microcoleaceae Annamia Annamia toxica Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Aphanizomenon Aphanizomenon flos-aquae
    [Show full text]
  • Global Ecology and Oceanography of Harmful Algal Blooms, Science Plan
    GEOHAB Global Ecology and Oceanography of Harmful Algal Blooms Science Plan An International Programme Sponsored by the Scientific Committee on Oceanic Research (SCOR) and the Intergovernmental Oceanographic Commission (UNESCO) Edited by: Patricia M. Glibert and Grant Pitcher With the assistance of: Allan Cembella, John Cullen, and Yasuwo Fukuyo Based on contributions by the GEOHAB Scientific Steering Committee: Patrick Gentien, Yasuwo Fukuyo, Donald M. Anderson, Susan Blackburn, Allan Cembella, John Cullen, Malte Elbrächter, Henrik Enevoldsen, Marta Estrada, Wolfgang Fennel, Patricia M. Glibert, Elizabeth Gross, Kaisa Kononen, Nestor Lagos, Thomas Osborn, Grant Pitcher, Arturo P. Sierra-Beltrán, Steve Thorpe, Edward R. Urban, Jr., Jing Zhang, and Adriana Zingone April 2001 This report may be cited as: GEOHAB, 2001. Global Ecology and Oceanography of Harmful Algal Blooms, Science Plan. P. Glibert and G. Pitcher (eds). SCOR and IOC, Baltimore and Paris. 87 pp. Science Plan This document describes a Science Plan reviewed and approved by the Scientific Commission on Oceanic Research (SCOR) and the Intergovernmental Oceanographic Commission (IOC) of the U.N. Education, Scientific, and Cultural Organisation (UNESCO) This document is GEOHAB Report #1. Copies may be obtained from: Edward R. Urban, Jr. Henrik Enevoldsen Executive Director, SCOR Project Coordinator Department of Earth and Planetary Sciences IOC Science and Communication Centre on The Johns Hopkins University Harmful Algae Baltimore, MD 21218 U.S.A. Botanical Institute, University of Copenhagen Tel: +1-410-516-4070 Øster Farimagsgade 2D Fax: +1-410-516-4019 DK-1353 Copenhagen K, Denmark E-mail: [email protected] Tel: +45 33 13 44 46 Fax: +45 33 13 44 47 E-mail: [email protected] This report is also available on the web at: http://www.jhu.edu/~scor http://ioc.unesco.org/hab Cover photos.
    [Show full text]
  • Aquatic Microbial Ecology 80:193
    This authors' personal copy may not be publicly or systematically copied or distributed, or posted on the Open Web, except with written permission of the copyright holder(s). It may be distributed to interested individuals on request. Vol. 80: 193–207, 2017 AQUATIC MICROBIAL ECOLOGY Published online October 5 https://doi.org/10.3354/ame01849 Aquat Microb Ecol Grazing of the heterotrophic dinoflagellate Noctiluca scintillans on dinoflagellate and raphidophyte prey Beth A. Stauffer1,*, Alyssa G. Gellene2, Diane Rico3, Christine Sur4, David A. Caron2 1Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70403, USA 2Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA 3School of Oceanography, University of Washington, Seattle, WA 98105, USA 4Graduate Group in Ecology, University of California, Davis, Davis, CA 95616, USA ABSTRACT: Noctiluca scintillans is a bloom-forming heterotrophic dinoflagellate that can ingest (and grow on) a number of phytoplankton prey, including several potentially toxic phytoplankton species. The current study documented (1) a range of N. scintillans growth rates (μ = −0.09 to 0.83 d−1) on several species of harmful dinoflagellates and raphidophytes, including Heterosigma akashiwo and Akashiwo sanguinea, and (2) the first published growth rates on Lingulodinium polyedrum, Chattonella marina, and Alexandrium catenella. N. scintillans attained maximum growth rates (μ = 0.83 d−1) on the raphidophyte H. akashiwo and negative growth rates (i.e. signif- icant mortality) on the dinoflagellates A. catenella (μ = −0.03 d−1) and A. sanguinea (μ = −0.08 d−1) and the raphidophyte C. marina (μ = −0.09 d−1). Toxin production by A.
    [Show full text]
  • Chemical Signaling in Diatom-Parasite Interactions
    Friedrich-Schiller-Universität Jena Chemisch-Geowissenschaftliche Fakultät Max-Planck-Institut für chemische Ökologie Chemical signaling in diatom-parasite interactions Masterarbeit zur Erlangung des akademischen Grades Master of Science (M. Sc.) im Studiengang Chemische Biologie vorgelegt von Alina Hera geb. am 30.03.1993 in Kempten Erstgutachter: Prof. Dr. Georg Pohnert Zweitgutachter: Dr. rer. nat. Thomas Wichard Jena, 21. November 2019 Table of contents List of Abbreviations ................................................................................................................ III List of Figures .......................................................................................................................... IV List of Tables ............................................................................................................................. V 1. Introduction ............................................................................................................................ 1 2. Objectives of the Thesis ....................................................................................................... 11 3. Material and Methods ........................................................................................................... 12 3.1 Materials ......................................................................................................................... 12 3.2 Microbial strains and growth conditions ........................................................................ 12 3.3
    [Show full text]
  • Florida's Marine Algal Toxins
    Leanne J. Flewelling, Ph.D. Florida Fish and Wildlife Conservation Commission Fish and Wildlife Research Institute Distribution of HAB-related Poisoning Syndromes in the United States https://www.whoi.edu/redtide/regions/us-distribution Neurotoxic SP Paralytic SP Amnesic SP Diarrhetic SP CyanoHABs Ciguatera FP Brown tide Golden alga Gulf of Mexico Karlodinium SP = Shellfish Poisoning FP = Fish Poisoning Toxin-producing HABs present Karenia brevis human health risks. Organism(s) Toxins Syndrome Pyrodinium bahamense Karenia brevis Brevetoxins Neurotoxic Shellfish Poisoning Pyrodinium bahamense Saxitoxins Paralytic Shellfish Poisoning Saxitoxin Puffer Fish Poisoning Pseudo-nitzschia sp. Pseudo-nitzschia spp. Domoic Acid Amnesic Shellfish Poisoning Dinophysis spp. Okadaic Acid, Diarrhetic Shellfish Poisoning Prorocentrum spp. Dinophysistoxins Dinophysis sp. Gambierdiscus spp. Gambiertoxins, Ciguatera Fish Poisoning Maitotoxins Gambierdiscus sp. PyrodiniumKarenia brevis bahamensePseudo-nitzschia spp. Pyrodinium bahamense Bioluminescent dinoflagellate Atlantic strain (P. bahamense var. bahamense) was not known to be toxic until 2002 2002-2004:MICROSCOPY 28 cases saxitoxin poisoning associated with consumption of puffer fish originating in the Indian River Lagoon LIGHT (IRL) Pyrodinium bahamense in the IRL confirmed to produce saxitoxin First confirmation of saxitoxin in marine waters in Florida PermanentMICROSCOPY ban on harvest of puffer fish from the IRL Pyrodinium bahamense ELECTRON ELECTRON 30 µm 5 µm 30 µm Pyrodinium bahamense • blooms occur annually in the Indian River Lagoon and Old Tampa Bay • first PSP closure in Pine Island Sound in 2016 photo credit: Dorian Photography Pseudo-nitzschia spp. Cosmopolitan chain-forming marine diatom At least 14 species of Pseudo-nitzschia produce the neurotoxin domoic acid (DA) www.eos.ubc.ca/research/phytoplankton/ DA is the only marine algal toxin produced by diatoms DA can cause Amnesic Shellfish Poisoning in humans and Domoic Acid Poisoning in marine birds and mammals Domoic Acid Pseudo2016-nitzschia spp.
    [Show full text]
  • Chapter 6.2-Assessment of Harmful Algae Bloom
    Maryland’s Coastal Bays: Ecosystem Health Assessment Chapter 6.2 Chapter 6.2 Assessment of harmful algae bloom species in the Maryland Coastal Bays Catherine Wazniak Maryland Department of Natural Resources, Tidewater Ecosystem Assessment, Annapolis, MD 21401 Abstract Thirteen potentially harmful algae taxa have been identified in the Maryland Coastal Bays: Aureococcus anophagefferens (brown tide), Pfiesteria piscicida and P. shumwayae, Chloromorum/ Chattonella spp., Heterosigma akashiwo, Fibrocapsa japonica, Prorocentrum minimum, Dinophysis spp., Amphidinium spp., Pseudo-nitzchia spp., Karlodinium micrum and two macroalgae genera (Gracilaria, Chaetomorpha). Presence of potentially toxic species is richest in the polluted tributaries of St. Martin River and Newport Bay. Approximately 5% of the phytoplankton species identified for Maryland’s Coastal Bays represent potentially harmful algal bloom (HAB) species. The HABs are recognized for their potentially toxic properties and, in some cases, their ability to produce large blooms negatively affecting light and dissolved oxygen resources. Brown tide (Aureococcus anophagefferens) has been the most widespread and prolific HAB species in the area in recent years, producing growth impacts to juvenile clams in test studies and potential impacts to sea grass distribution and growth (see Chapter 7.1). Macroalgal fluctuations may be evidence of a system balancing on the edge of a eutrophic (nutrient- enriched) state (see chapter 4). No evidence of toxic activity has been detected among the Coastal Bays phytoplankton. However, species such as Pseudo-nitzschia seriata, Prorocentrum minimum, Pfiesteria piscicida, Dinophysis acuminata and Karlodinium micrum have produced positive toxic bioassays or generated detectable toxins in Chesapeake Bay. Pfiesteria piscicida was retrospectively considered as the likely causative organism in a large historical fish kill on the Indian River, Delaware.
    [Show full text]
  • The Effect of Different Starter Dosage to Organoleptic Value of Kefir Cow Milk Products
    Journal of Advances in Tropical Biodiversity and Environmental Sciences Vol. 2 No.1, February 2018 (p-ISSN: 2549-6980) 6 The Effect of Different Starter Dosage to Organoleptic Value of Kefir Cow Milk Products Tivani Ardini*, Nurmiati, Periadnadi Faculty of Mathematics and Natural Sciences, Andalas University *Email: [email protected] Abstract. The study of "The Effect of Different Starter Dosage to Organoleptic Value of Kefir Cow Milk Products" was carried out from May to July 2016 at the Microbiology Research Laboratory, Department of Biology, Faculty of Mathematics and Natural Sciences, Andalas University, Padang. The purpose of this study was to determine the organoleptic value (aroma, taste and organoleptic) of cow's milk kefir products from three different starter doses, and the results were with Wilcoxon Level Test. The results showed that organoleptic assessment of the aroma of cow milk kefir products with a treatment dose of 15% starter (3.00) was the most preferred dose for the panelist, while kefir with a treatment dose of 5% (2.27) is a dose that is less preferred by panelists. The taste assessment of the organoleptic of cow's milk kefir products, the starter dose of 10% (2.87) was the most preferred by the panelists, but the dose of 15% (2.33) was the least. Similar to the taste, the consistency of cow milk kefir with the dose of 10% (3.07) was most preferred, while the dose of 15% (2.33) was least preferred by the panelists. Keywords: dosage, cow milk kefir, organoleptic assessment I. INTRODUCTION compounds which were assessed using the five senses of subjective judgments [9].
    [Show full text]
  • Marine Phytoplankton Atlas of Kuwait's Waters
    Marine Phytoplankton Atlas of Kuwait’s Waters Marine Phytoplankton Atlas Marine Phytoplankton Atlas of Kuwait’s Waters Marine Phytoplankton Atlas of Kuwait’s of Kuwait’s Waters Manal Al-Kandari Dr. Faiza Y. Al-Yamani Kholood Al-Rifaie ISBN: 99906-41-24-2 Kuwait Institute for Scientific Research P.O.Box 24885, Safat - 13109, Kuwait Tel: (965) 24989000 – Fax: (965) 24989399 www.kisr.edu.kw Marine Phytoplankton Atlas of Kuwait’s Waters Published in Kuwait in 2009 by Kuwait Institute for Scientific Research, P.O.Box 24885, 13109 Safat, Kuwait Copyright © Kuwait Institute for Scientific Research, 2009 All rights reserved. ISBN 99906-41-24-2 Design by Melad M. Helani Printed and bound by Lucky Printing Press, Kuwait No part of this work may be reproduced or utilized in any form or by any means electronic or manual, including photocopying, or by any information or retrieval system, without the prior written permission of the Kuwait Institute for Scientific Research. 2 Kuwait Institute for Scientific Research - Marine phytoplankton Atlas Kuwait Institute for Scientific Research Marine Phytoplankton Atlas of Kuwait’s Waters Manal Al-Kandari Dr. Faiza Y. Al-Yamani Kholood Al-Rifaie Kuwait Institute for Scientific Research Kuwait Kuwait Institute for Scientific Research - Marine phytoplankton Atlas 3 TABLE OF CONTENTS CHAPTER 1: MARINE PHYTOPLANKTON METHODOLOGY AND GENERAL RESULTS INTRODUCTION 16 MATERIAL AND METHODS 18 Phytoplankton Collection and Preservation Methods 18 Sample Analysis 18 Light Microscope (LM) Observations 18 Diatoms Slide Preparation
    [Show full text]
  • Book of Abstracts Fifth Florida Marine Mammal Health Conference
    Book of Abstracts Fifth Florida Marine Mammal Health Conference June 2-4, 2015 Gainesville, Florida http://conference.ifas.ufl.edu/aeh/marinemammal/index.html Thank You to our Sponsors! RIGHT WHALE ($10,000 OR MORE) MANATEE ($5,000 – 9,999) BOTTLENOSE DOLPHIN ($2,500-4,999) HARBOR PORPOISE ($1,000-2,499) OTHER SPONSORSHIP PROVIDED BY: Table of Contents Welcome from the Organizers ................................................................................ 5 About Aquatic Ecosystem Health 2015 .................................................................. 6 About the Fifth Florida Marine Mammal Health Conference ................................ 6 Conference Organizers ........................................................................................... 7 Detailed Program Agenda ....................................................................................... 8 Keynote Speaker Biographies and Abstracts ........................................................ 14 Oral Presentation Abstracts .................................................................................. 19 Poster Presentation Abstracts ............................................................................... 72 Welcome From the Organizers Dear Aquatic Ecosystem Health Conference Attendees, The Organizing Committees for the Third International Ranavirus Symposium and the Fifth Florida Marine Mammal Health Conference would like to extend a warm welcome to each of you. We are excited to share how wonderful Gainesville, home to the University of Florida,
    [Show full text]