Caractérisation Moléculaire Du Rôle De FOXL2 Et De Ses Partenaires Dans L’Ovaire Sain Et Pathologique Laetitia Herman

Total Page:16

File Type:pdf, Size:1020Kb

Caractérisation Moléculaire Du Rôle De FOXL2 Et De Ses Partenaires Dans L’Ovaire Sain Et Pathologique Laetitia Herman Caractérisation moléculaire du rôle de FOXL2 et de ses partenaires dans l’ovaire sain et pathologique Laetitia Herman To cite this version: Laetitia Herman. Caractérisation moléculaire du rôle de FOXL2 et de ses partenaires dans l’ovaire sain et pathologique. Médecine humaine et pathologie. Université de Paris, 2020. Français. NNT : 2020UNIP7123. tel-03246869 HAL Id: tel-03246869 https://tel.archives-ouvertes.fr/tel-03246869 Submitted on 2 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Laëtitia HERMAN-Doctorat de Génétique-2020 Université de Paris ED 562 BioSPC UMR7592 Institut Jacques Monod Caractérisation moléculaire du rôle de FOXL2 et de ses partenaires dans l’ovaire sain et pathologique Par Laëtitia HERMAN Thèse de doctorat de Génétique Dirigée par Pr. Reiner Veitia Et par Dr. Anne-Laure Todeschini Présentée et soutenue publiquement le 22 septembre 2020 Devant un jury composé de : Virginie Rouiller-Fabre, PU, CEA, Présidente Corinne Cotinot, DR, INRAE, Rapportrice Eric Pailhoux, DR, INRAE, Rapporteur Francis Poulat, CR, IGH, Examinateur Daniel Vaiman, DR, Institut Cochin, Membre invité 1 Laëtitia HERMAN-Doctorat de Génétique-2020 2 Laëtitia HERMAN-Doctorat de Génétique-2020 Titre : Caractérisation moléculaire du rôle de FOXL2 et de ses partenaires dans l’ovaire sain et pathologique Résumé : FOXL2 est un facteur de transcription majeur des cellules de la granulosa, participant à leur différenciation, leur maintien et leurs fonctions. Une mutation spécifique (p.C134W) est retrouvée dans la majorité des formes adultes des tumeurs des cellules de la granulosa. FOXL2 joue donc un rôle à la fois dans l’ovaire sain mais aussi dans l’ovaire pathologique. Pour comprendre son action moléculaire nous avons identifié par des analyses haut-débit ses cibles transcriptomiques directes et indirectes ainsi que ses sites de fixation sur le génome. Nous avons identifié 1001 gènes cibles et de nouveaux rôles putatifs pour FOXL2. De plus, AKT inhiberait, probablement de façon indirecte, l’activité de FOXL2 sur des gènes impliqués principalement dans la migration cellulaire. FOXL2 possède de nombreux partenaires parmi lesquels ESR2, SMAD3 et TRIM28, semblent jouer un rôle dans le développement et le maintien des cellules de la granulosa. Nous avons réalisé une analyse des cibles transcriptomiques de ces partenaires et de la fixation de FOXL2, en leurs présences et en leurs absences. Pour ESR2, particulièrement, nous avons identifié de nouvelles cibles impliquées dans le développement, la régulation de la migration cellulaire et l’organisation de la matrice extracellulaire. Nous avons montré que la présence d’ESR2 est nécessaire à une bonne fixation de FOXL2 sur la chromatine et qu’ensemble ils régulent l’expression de plus de 150 gènes. De plus, leur action conjointe permet l’expression de Phactr1 assurant une migration, une invasion et une adhésion cellulaire correctes. Dans un second projet, toujours en cours, nous souhaitons caractériser les cibles de FOXL2 p.C134W, au niveau transcriptomique. Des cellules, portant la mutation à l’état hémizygote ainsi que des lignées contrôles WT pour FOXL2, ont été obtenues par CRISPR/Cas9 et analysées par RNAseq. Les résultats obtenus sont prometteurs et permettront de comprendre le rôle de FOXL2 dans ces tumeurs. Mots clefs : FOXL2, forkhead, ESR2, Facteur de transcription, régulation transcriptionnelle, ChIP-seq, RNA-seq, ovaire, cellules de la granulosa, cancer des cellules de la granulosa, cancer de l’ovaire. 3 Laëtitia HERMAN-Doctorat de Génétique-2020 Title : Molecular characterization of the role of FOXL2 and its partners in the healthy and pathological ovary Abstract : FOXL2 is a major transcription factor in ovarian granulosa cells, involved in their differentiation, maintenance and function. A specific mutation (p.C134W) is found in the majority of adult forms of granulosa cell tumors. Therefore FOXL2 has been described to play a role both in the healthy or pathological ovary. In order to understand its molecular action, we have identified its direct and indirect transcriptomic targets as well as its binding sites on the genome using high-throughput approaches. We have identified more than 1000 target genes and new putative roles for FOXL2. In addition, AKT is proposed to inhibit, probably indirectly, the activity of FOXL2 on genes mainly involved in cell migration. FOXL2 has many partners including ESR2, SMAD3 and TRIM28, which are thought to co-regulated FOXL2 targets in granulosa cells. We performed an analysis of the targets of these partners and of the binding of FOXL2 in their presence or absence. For ESR2, in particular, we identified more than 350 targets involved in development, in the regulation of cell migration and the organization of the extracellular matrix. We have shown that the presence of ESR2 is required for FOXL2 binding to chromatin and that they co-regulate the expression of more than 150 genes. Moreover, their joint action controls the expression of Phactr1 modulating cell migration, invasion and adhesion. In a second project, still in progress, I wish to characterize the targets of FOXL2 p.C134W, at the transcriptomic level. Cells carrying the mutation at the hemizygous state as well as WT control lines for FOXL2 were obtained by CRISPR/Cas9 and analyzed by RNAseq. The results obtained are promising and will help understand the role of FOXL2 in these tumors. Keywords : FOXL2, forkhead factor, ESR2, transcription factor, transcriptional regulation, ChIP-seq, RNA-seq, ovary, granulosa cells, granulosa cell tumors, ovarian cancer. 4 Laëtitia HERMAN-Doctorat de Génétique-2020 « Ce qui est incompréhensible, c’est que le monde soit compréhensible. » Albert Einstein (Comment je vois le monde, 1934) 5 Laëtitia HERMAN-Doctorat de Génétique-2020 6 Laëtitia HERMAN-Doctorat de Génétique-2020 Remerciements 7 Laëtitia HERMAN-Doctorat de Génétique-2020 8 Laëtitia HERMAN-Doctorat de Génétique-2020 Table des matières REMERCIEMENTS ...................................................................................................... 7 TABLE DES MATIERES ............................................................................................. 9 GLOSSAIRE ............................................................................................................... 13 I.SYNTHESE BIBLIOGRAPHIQUE ....................................................................... 19 I. Introduction générale......................................................................................... 19 II. La transcription et sa régulation ........................................................................ 21 A. Mécanismes généraux de la régulation transcriptionnelle ........................................ 21 1) Aspect général de la transcription ................................................................................ 21 a) Mise en évidence de la régulation de l’expression génique et de sa régulation .................. 21 b) Initiation, élongation, terminaison ....................................................................................... 23 c) Devenir de l’ARN messager ................................................................................................... 24 2) La régulation transcriptionnelle : de l’architecture du noyau à la reconnaissance d’une séquence d’ADN ................................................................................................................ 25 a) Les facteurs de transcriptions : effecteurs majeurs de la régulation transcriptionnelle ...... 26 b) De la régulation proximale à la régulation distale : promoteurs et enhancers .................... 30 c) Paysage de régulation et domaines topologiques associés .................................................. 32 B. Les facteurs de transcription de la famille des forkheads .......................................... 38 1. Aspect généraux sur les forkheads ............................................................................... 38 a) Organisation génomique et conservation des facteurs à domaine forkhead ....................... 38 b) Structure des facteurs à domaine forkhead .......................................................................... 41 2. Reconnaissance de l’ADN et mécanismes d’actions ..................................................... 43 a) Reconnaissance et fixation à l’ADN ....................................................................................... 43 b) Dimérisation et interaction avec des protéines partenaires ................................................ 43 c) Implications dans les voies de signalisation et régulations par modifications post- traductionnelles......................................................................................................................... 44 d) Fonctions des gènes FOX ....................................................................................................... 49 9 Laëtitia HERMAN-Doctorat de Génétique-2020 C. Cancer et régulation de la transcription par les forkheads .......................................
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplemental Materials ZNF281 Enhances Cardiac Reprogramming
    Supplemental Materials ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression Huanyu Zhou, Maria Gabriela Morales, Hisayuki Hashimoto, Matthew E. Dickson, Kunhua Song, Wenduo Ye, Min S. Kim, Hanspeter Niederstrasser, Zhaoning Wang, Beibei Chen, Bruce A. Posner, Rhonda Bassel-Duby and Eric N. Olson Supplemental Table 1; related to Figure 1. Supplemental Table 2; related to Figure 1. Supplemental Table 3; related to the “quantitative mRNA measurement” in Materials and Methods section. Supplemental Table 4; related to the “ChIP-seq, gene ontology and pathway analysis” and “RNA-seq” and gene ontology analysis” in Materials and Methods section. Supplemental Figure S1; related to Figure 1. Supplemental Figure S2; related to Figure 2. Supplemental Figure S3; related to Figure 3. Supplemental Figure S4; related to Figure 4. Supplemental Figure S5; related to Figure 6. Supplemental Table S1. Genes included in human retroviral ORF cDNA library. Gene Gene Gene Gene Gene Gene Gene Gene Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol AATF BMP8A CEBPE CTNNB1 ESR2 GDF3 HOXA5 IL17D ADIPOQ BRPF1 CEBPG CUX1 ESRRA GDF6 HOXA6 IL17F ADNP BRPF3 CERS1 CX3CL1 ETS1 GIN1 HOXA7 IL18 AEBP1 BUD31 CERS2 CXCL10 ETS2 GLIS3 HOXB1 IL19 AFF4 C17ORF77 CERS4 CXCL11 ETV3 GMEB1 HOXB13 IL1A AHR C1QTNF4 CFL2 CXCL12 ETV7 GPBP1 HOXB5 IL1B AIMP1 C21ORF66 CHIA CXCL13 FAM3B GPER HOXB6 IL1F3 ALS2CR8 CBFA2T2 CIR1 CXCL14 FAM3D GPI HOXB7 IL1F5 ALX1 CBFA2T3 CITED1 CXCL16 FASLG GREM1 HOXB9 IL1F6 ARGFX CBFB CITED2 CXCL3 FBLN1 GREM2 HOXC4 IL1F7
    [Show full text]
  • An Integrative, Genomic, Transcriptomic and Network-Assisted
    Yan et al. BMC Medical Genomics 2020, 13(Suppl 5):39 https://doi.org/10.1186/s12920-020-0675-4 RESEARCH Open Access An integrative, genomic, transcriptomic and network-assisted study to identify genes associated with human cleft lip with or without cleft palate Fangfang Yan1†, Yulin Dai1†, Junichi Iwata2,3, Zhongming Zhao1,4,5* and Peilin Jia1* From The International Conference on Intelligent Biology and Medicine (ICIBM) 2019 Columbus, OH, USA. 9-11 June 2019 Abstract Background: Cleft lip with or without cleft palate (CL/P) is one of the most common congenital human birth defects. A combination of genetic and epidemiology studies has contributed to a better knowledge of CL/P-associated candidate genes and environmental risk factors. However, the etiology of CL/P remains not fully understood. In this study, to identify new CL/P-associated genes, we conducted an integrative analysis using our in-house network tools, dmGWAS [dense module search for Genome-Wide Association Studies (GWAS)] and EW_dmGWAS (Edge-Weighted dmGWAS), in a combination with GWAS data, the human protein-protein interaction (PPI) network, and differential gene expression profiles. Results: A total of 87 genes were consistently detected in both European and Asian ancestries in dmGWAS. There were 31.0% (27/87) showed nominal significance with CL/P (gene-based p < 0.05), with three genes showing strong association signals, including KIAA1598, GPR183,andZMYND11 (p <1×10− 3). In EW_dmGWAS, we identified 253 and 245 module genes associated with CL/P for European ancestry and the Asian ancestry, respectively. Functional enrichment analysis demonstrated that these genes were involved in cell adhesion, protein localization to the plasma membrane, the regulation of the apoptotic signaling pathway, and other pathological conditions.
    [Show full text]
  • Human Social Genomics in the Multi-Ethnic Study of Atherosclerosis
    Getting “Under the Skin”: Human Social Genomics in the Multi-Ethnic Study of Atherosclerosis by Kristen Monét Brown A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Epidemiological Science) in the University of Michigan 2017 Doctoral Committee: Professor Ana V. Diez-Roux, Co-Chair, Drexel University Professor Sharon R. Kardia, Co-Chair Professor Bhramar Mukherjee Assistant Professor Belinda Needham Assistant Professor Jennifer A. Smith © Kristen Monét Brown, 2017 [email protected] ORCID iD: 0000-0002-9955-0568 Dedication I dedicate this dissertation to my grandmother, Gertrude Delores Hampton. Nanny, no one wanted to see me become “Dr. Brown” more than you. I know that you are standing over the bannister of heaven smiling and beaming with pride. I love you more than my words could ever fully express. ii Acknowledgements First, I give honor to God, who is the head of my life. Truly, without Him, none of this would be possible. Countless times throughout this doctoral journey I have relied my favorite scripture, “And we know that all things work together for good, to them that love God, to them who are called according to His purpose (Romans 8:28).” Secondly, I acknowledge my parents, James and Marilyn Brown. From an early age, you two instilled in me the value of education and have been my biggest cheerleaders throughout my entire life. I thank you for your unconditional love, encouragement, sacrifices, and support. I would not be here today without you. I truly thank God that out of the all of the people in the world that He could have chosen to be my parents, that He chose the two of you.
    [Show full text]
  • Preclinical Validation of Therapeutic Targets Predicted by Tensor
    www.nature.com/scientificreports OPEN Preclinical validation of therapeutic targets predicted by tensor factorization on heterogeneous graphs Saee Paliwal1*, Alex de Giorgio2, Daniel Neil1, Jean‑Baptiste Michel1 & Alix MB Lacoste1 Incorrect drug target identifcation is a major obstacle in drug discovery. Only 15% of drugs advance from Phase II to approval, with inefective targets accounting for over 50% of these failures1–3. Advances in data fusion and computational modeling have independently progressed towards addressing this issue. Here, we capitalize on both these approaches with Rosalind, a comprehensive gene prioritization method that combines heterogeneous knowledge graph construction with relational inference via tensor factorization to accurately predict disease‑gene links. Rosalind demonstrates an increase in performance of 18%‑50% over fve comparable state‑of‑the‑art algorithms. On historical data, Rosalind prospectively identifes 1 in 4 therapeutic relationships eventually proven true. Beyond efcacy, Rosalind is able to accurately predict clinical trial successes (75% recall at rank 200) and distinguish likely failures (74% recall at rank 200). Lastly, Rosalind predictions were experimentally tested in a patient‑derived in-vitro assay for Rheumatoid arthritis (RA), which yielded 5 promising genes, one of which is unexplored in RA. Te majority of Phase II and Phase III clinical trials fail due to lack of efcacy 4. From 2013 to 2015, efcacy failures accounted for the termination of 48% of Phase II and 55% of Phase III clinical trials, with stoppages attributed largely to incorrect drug target identifcation 2. Over the past 200 years, only about 1,500 drugs cleared clinical trial and reached approval, leaving the majority of nearly 9,000 diseases without the possibility of treat- ment options5.
    [Show full text]
  • 1 Genome-Wide Discovery of SLE Genetic Risk Variant Allelic Enhancer
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.20.906701; this version posted January 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Genome-wide discovery of SLE genetic risk variant allelic enhancer activity Xiaoming Lu*1, Xiaoting Chen*1, Carmy Forney1, Omer Donmez1, Daniel Miller1, Sreeja Parameswaran1, Ted Hong1,2, Yongbo Huang1, Mario Pujato3, Tareian Cazares4, Emily R. Miraldi3-5, John P. Ray6, Carl G. de Boer6, John B. Harley1,4,5,7,8, Matthew T. Weirauch#,1,3,5,8,9, Leah C. Kottyan#,1,4,5,9 *Contributed equally #Co-corresponding authors: [email protected]; [email protected] 1Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA, 45229. 2Department of Pharmacology & Systems Physiology, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA, 45229. 3Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA, 45229. 4Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA, 45229. 5Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA, 45229. 6Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, Massachusetts, USA, 02142. 7US Department of Veterans Affairs Medical Center, Cincinnati, Ohio, USA 45229. 8Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA, 45229. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.01.20.906701; this version posted January 20, 2020.
    [Show full text]
  • The Changing Chromatome As a Driver of Disease: a Panoramic View from Different Methodologies
    The changing chromatome as a driver of disease: A panoramic view from different methodologies Isabel Espejo1, Luciano Di Croce,1,2,3 and Sergi Aranda1 1. Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain 2. Universitat Pompeu Fabra (UPF), Barcelona, Spain 3. ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain *Corresponding authors: Luciano Di Croce ([email protected]) Sergi Aranda ([email protected]) 1 GRAPHICAL ABSTRACT Chromatin-bound proteins regulate gene expression, replicate and repair DNA, and transmit epigenetic information. Several human diseases are highly influenced by alterations in the chromatin- bound proteome. Thus, biochemical approaches for the systematic characterization of the chromatome could contribute to identifying new regulators of cellular functionality, including those that are relevant to human disorders. 2 SUMMARY Chromatin-bound proteins underlie several fundamental cellular functions, such as control of gene expression and the faithful transmission of genetic and epigenetic information. Components of the chromatin proteome (the “chromatome”) are essential in human life, and mutations in chromatin-bound proteins are frequently drivers of human diseases, such as cancer. Proteomic characterization of chromatin and de novo identification of chromatin interactors could thus reveal important and perhaps unexpected players implicated in human physiology and disease. Recently, intensive research efforts have focused on developing strategies to characterize the chromatome composition. In this review, we provide an overview of the dynamic composition of the chromatome, highlight the importance of its alterations as a driving force in human disease (and particularly in cancer), and discuss the different approaches to systematically characterize the chromatin-bound proteome in a global manner.
    [Show full text]
  • Computational Models to Investigate Binding Mechanisms of Regulatory Proteins
    Computational models to investigate binding mechanisms of regulatory proteins DISSERTATION zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) im Fach Informatik eingereicht an der Mathematisch-Naturwissenschaftlichen Fakult¨at Humboldt-Universit¨atzu Berlin von Dipl.-Inf. Alina-Cristina Munteanu (Gozman) Pr¨asidentin der Humboldt-Universit¨atzu Berlin: Prof. Dr.-Ing. Dr. Sabine Kunst Dekan der Mathematisch-Naturwissenschaftlichen Fakult¨at: Prof. Dr. Elmar Kulke Gutachter/innen: 1. Prof. Dr. Uwe Ohler 2. Prof. Dr. Ulf Leser 3. Prof. Dr. Raluca Gordˆan Tag der m¨undlichen Pr¨ufung:11. Oktober 2017 Abstract There are thousands of eukaryotic regulatory proteins that bind to specific cis regulatory regions of genes and/or RNA transcripts and coordinate gene expression. At the DNA level, transcription factors (TFs) modulate the initiation of transcription, while at the RNA level, RNA-binding proteins (RBPs) regulate every aspect of RNA metabolism and function. The DNA or RNA targets and/or the sequence preferences of hundreds of eukaryotic regulatory proteins have been determined thus far using high-throughput in vivo and in vitro experiments, such as chromatin immunoprecipitation (ChIP) fol- lowed by sequencing (ChIP-seq) and protein binding microarrays (PBMs) for TFs, or cross-linking and immunoprecipitation (CLIP) techniques and RNAcompete for RBPs. However, the derived short sequence motifs do not fully explain the highly specific bind- ing of these regulatory proteins. In order to improve our understanding of how different proteins achieve their regulatory specificity, we developed two computational tools that incorporate additional informa- tion in the analysis of experimentally determined binding sites. For protein-DNA inter- actions, we investigate the binding specificity of paralogous TFs (i.e.
    [Show full text]
  • Anti-TRIM63 / Murf1 Antibody [M316] (ARG41854)
    Product datasheet [email protected] ARG41854 Package: 50 μl anti-TRIM63 / MuRF1 antibody [M316] Store at: -20°C Summary Product Description Mouse Monoclonal antibody [M316] recognizes TRIM63 / MuRF1 Tested Reactivity Hu Tested Application WB Host Mouse Clonality Monoclonal Clone M316 Isotype IgG1 Target Name TRIM63 / MuRF1 Species Human Immunogen KLH-conjugated synthetic peptide around the C-terminus of Human TRIM63 / MuRF1. Conjugation Un-conjugated Alternate Names E3 ubiquitin-protein ligase TRIM63; Muscle-specific RING finger protein 1; EC 6.3.2.-; MURF2; MURF1; MuRF-1; Striated muscle RING zinc finger protein; SMRZ; RNF28; RING finger protein 28; Tripartite motif-containing protein 63; MuRF1; IRF; Iris RING finger protein Application Instructions Application table Application Dilution WB 1:250 Application Note WB: Antibody is suggested to be diluted in 5% skimmed milk/Tris buffer with 0.04% Tween20 and incubated for 1 hour at room temperature. * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Observed Size ~ 40 kDa Properties Form Liquid Purification Purification with Protein G. Buffer PBS, 0.05% Sodium azide, 50% Glycerol and 1 mg/ml BSA. Preservative 0.05% Sodium azide Stabilizer 50% Glycerol and 1 mg/ml BSA Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. www.arigobio.com 1/2 Note For laboratory research only, not for drug, diagnostic or other use.
    [Show full text]
  • Discovering Human Transcription Factor Physical Interactions with Genetic Variants, Novel DNA Motifs, and Repetitive Elements Using Enhanced Yeast One-Hybrid Assays
    Downloaded from genome.cshlp.org on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press Method Discovering human transcription factor physical interactions with genetic variants, novel DNA motifs, and repetitive elements using enhanced yeast one-hybrid assays Shaleen Shrestha,1,3 Jared Allan Sewell,1,3 Clarissa Stephanie Santoso,1 Elena Forchielli,1 Sebastian Carrasco Pro,2 Melissa Martinez,1 and Juan Ignacio Fuxman Bass1,2 1Department of Biology, Boston University, Boston, Massachusetts 02215, USA; 2Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA Identifying transcription factor (TF) binding to noncoding variants, uncharacterized DNA motifs, and repetitive genomic elements has been technically and computationally challenging. Current experimental methods, such as chromatin immu- noprecipitation, generally test one TF at a time, and computational motif algorithms often lead to false-positive and -negative predictions. To address these limitations, we developed an experimental approach based on enhanced yeast one-hybrid assays. The first variation of this approach interrogates the binding of >1000 human TFs to repetitive DNA elements, while the second evaluates TF binding to single nucleotide variants, short insertions and deletions (indels), and novel DNA motifs. Using this approach, we detected the binding of 75 TFs, including several nuclear hormone receptors and ETS factors, to the highly repetitive Alu elements. Further, we identified cancer-associated changes in TF binding, includ- ing gain of interactions involving ETS TFs and loss of interactions involving KLF TFs to different mutations in the TERT pro- moter, and gain of a MYB interaction with an 18-bp indel in the TAL1 superenhancer. Additionally, we identified TFs that bind to three uncharacterized DNA motifs identified in DNase footprinting assays.
    [Show full text]
  • Anamika Tripathi
    WEIGHTED GENE CO-EXPRESSION NETWORK ANALYSIS OF COLORECTAL PATIENTS TO IDENTIFY RIGHT DRUG-RIGHT TARGET FOR POTENT EFFICACY OF TARGETED THERAPY Anamika Tripathi Submitted to the faculty of the School of Informatics in partial fulfillment of the requirements for the degree of Master of Science in Bioinformatics, Indiana University 12/2017 I TABLE OF CONTENTS Contents WEIGHTED GENE CO-EXPRESSION NETWORK ANALYSIS OF COLORECTAL PATIENTS TO IDENTIFY RIGHT DRUG- RIGHT TARGET FOR POTENT EFFICACY OF TARGETED THERAPY ................................................................................ I ANAMIKA TRIPATHI.................................................................................................................................................... I TABLE OF CONTENTS ..................................................................................................................................... II LIST OF FIGURES ............................................................................................................................................. III ABSTRACT .............................................................................................................................................................. V WEIGHTED GENE CO-EXPRESSION NETWORK ANALYSIS OF COLORECTAL PATIENTS TO IDENTIFY RIGHT DRUG- RIGHT TARGET FOR POTENT EFFICACY OF TARGETED THERAPY .............................................................................. V CHAPTER ONE: INTRODUCTION & BACKGROUND .................................................................................................
    [Show full text]
  • A Mammalian Pseudogene Lncrna at the Interface of Inflammation and Anti
    RESEARCH ARTICLE elife.elifesciences.org A mammalian pseudogene lncRNA at the interface of inflammation and anti- inflammatory therapeutics Nicole A Rapicavoli1, Kun Qu1, Jiajing Zhang1, Megan Mikhail1, Remi-Martin Laberge2, Howard Y Chang1* 1Program in Epithelial Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, United States; 2Buck Institute for Research on Aging, Novato, United States Abstract Pseudogenes are thought to be inactive gene sequences, but recent evidence of extensive pseudogene transcription raised the question of potential function. Here we discover and characterize the sets of mouse lncRNAs induced by inflammatory signaling via TNFα. TNFα regulates hundreds of lncRNAs, including 54 pseudogene lncRNAs, several of which show exquisitely selective expression in response to specific cytokines and microbial components in a NF-κB-dependent manner. Lethe, a pseudogene lncRNA, is selectively induced by proinflammatory cytokines via NF-κB or glucocorticoid receptor agonist, and functions in negative feedback signaling to NF-κB. Lethe interacts with NF-κB subunit RelA to inhibit RelA DNA binding and target gene activation. Lethe level decreases with organismal age, a physiological state associated with increased NF-κB activity. These findings suggest that expression of pseudogenes lncRNAs are actively regulated and constitute functional regulators of inflammatory signaling. DOI: 10.7554/eLife.00762.001 *For correspondence: Introduction [email protected] Large scale transcriptome analyses has revealed that three quarters of the human genome may be expressed (Djebali et al., 2012), much of it as noncoding RNA (ncRNA). Over the past several years, the Competing interests: The authors declare that no literature describing the functions of long noncoding RNA (lncRNA) has exploded with detailed reports competing interests exist.
    [Show full text]