View This Volume's Front and Back Matter

Total Page:16

File Type:pdf, Size:1020Kb

View This Volume's Front and Back Matter Training Manual on Transport and Fluids *OHN#.EU 'RADUATE3TUDIES IN-ATHEMATICS 6OLUME !MERICAN-ATHEMATICAL3OCIETY http://dx.doi.org/10.1090/gsm/109 Training Manual on Transport and Fluids Training Manual on Transport and Fluids John C. Neu Graduate Studies in Mathematics Volume 109 American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE David Cox (Chair) Steven G. Krantz Rafe Mazzeo Martin Scharlemann 2000 Mathematics Subject Classification. Primary 35–XX, 44–XX, 76–XX. For additional information and updates on this book, visit www.ams.org/bookpages/gsm-109 Library of Congress Cataloging-in-Publication Data Neu, John C., 1952– Training manual on transport and fluids / John C. Neu. p. cm. — (Graduate studies in mathematics ; v. 109) ISBN 978-0-8218-4083-2 (alk. paper) 1. Transport theory—Mathematical models. 2. Fluid mechanics—Mathematical models. I. Title. QC718.5.T7N48 2998 530.138—dc22 2009028296 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by e-mail to [email protected]. c 2010 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America. ∞ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at http://www.ams.org/ 10987654321 151413121110 Contents Preface xi Part 1. Transport processes: the basic prototypes Chapter 1. Convection 3 Material volumes and transport theorem 3 Problem 1.1: Convection along a one-dimensional line 5 Problem 1.2: Jacobian of flow map 6 Problem 1.3: Transport theorem by change of variable 8 Problem 1.4: Time derivative of integral over a changing region 9 The convection PDE 10 Problem 1.5: Density carried by incompressible flow 10 Problem 1.6: Transformation of velocities as a flow map 11 Convective flux and boundary conditions 12 Elastic rebounds from a moving wall 13 Problem 1.7: Adiabatic expansion of particles in a box I 15 Problem 1.8: Adiabatic expansion of particles in a box II 15 Problem 1.9: Adiabatic expansion of particles in a box III 16 Problem 1.10: Adiabatic expansion of particles in a box IV 17 Convective derivative 18 Convected scalars 19 Problem 1.11: A convected scalar 19 Gradient of a convected scalar 20 Problem 1.12: Flows that preserve gradients 22 Problem 1.13: Vector analog of a convected scalar 24 Problem 1.14: Vector analogs of a convected density 25 Geometric postscript 29 v vi Contents Guide to bibliography 30 Chapter 2. Diffusion 31 Brownian motion 31 The diffusion PDE 33 Problem 2.1: Lattice random walk model of diffusion I 35 Problem 2.2: Lattice random walk model of diffusion II 36 Problem 2.3: Lattice random walk model of diffusion III 37 Problem 2.4: Lattice random walk model of diffusion IV 38 Problem 2.5: Lattice random walk model of diffusion V 38 Diffusion in Rn 39 Fick’s law 39 Problem 2.6: Lyapunov functional for a diffusion process 40 Problem 2.7: The Maxwell flux 41 Problem 2.8: Steady state in two dimensions? 42 Melting interfaces 42 Problem 2.9: Nonlinear free boundary problem I 45 Problem 2.10: Nonlinear free boundary problem II 46 Problem 2.11: Nonlinear free boundary problem III 47 Problem 2.12: Nonlinear free boundary problem IV 48 The diffusion kernel 49 Scale invariance of the diffusion kernel 50 Problem 2.13: R2 diffusion kernel from symmetry and independence 53 Problem 2.14: Similarity solution for melting interfaces 54 Problem 2.15: Source of Brownian particles in two dimensions 56 Problem 2.16: Homogeneous harmonic function in a wedge 58 Guide to bibliography 59 Chapter 3. Local conservation laws 61 Definition 61 Convection-diffusion 61 Problem 3.1: A “dissolving” interface 62 Smoluchowski boundary value problem 65 Problem 3.2: Time-independent equilibria 67 Problem 3.3: Entropy functional 68 Problem 3.4: Free energy decreases 70 Problem 3.5: Equilibrium or nonequilibrium in Coulomb potential 70 Locality 72 Sources 75 The steady diffusion flame 76 Problem 3.6: Absorbing boundary condition for diffusion 80 Problem 3.7: An “evaporation” interface driven by chemical reaction 82 Contents vii Guide to bibliography 84 Part 2. Superposition Chapter 4. Superposition of point source solutions 87 One space dimension 87 Problem 4.1: Soviet rod factory 89 Three space dimensions 91 Problem 4.2: Superposition solution by Green’s identity 93 Problem 4.3: The smoke plume 94 Problem 4.4: Far downstream limit 96 Sources in spacetime 98 Problem 4.5: Moving source 101 The hottest time of the day 102 Problem 4.6: “Diffusive” damping 105 Problem 4.7: Work against “diffusive friction” 107 Problem 4.8: Oscillatory point source solution in R3 and descent to R2 109 Problem 4.9: Direct analysis of the R2 integral representation 111 Guide to bibliography 113 Chapter 5. δ-functions 115 δ-functions as “shorthand” 116 Problem 5.1: Correctly representing a point load 118 Problem 5.2: Correlation function of colored noise 120 Problem 5.3: A primer on polarized media 125 Problem 5.4: Exit times for Brownian motion 128 δ-sequences 130 Problem 5.5: Green’s identity and inhomogeneous diffusion PDEs 132 “Oscillatory” δ-sequences 134 Problem 5.6: Cancellation by oscillation 136 Problem 5.7: An oscillatory δ-sequence 138 Guide to bibliography 140 Part 3. Scaling-based reductions in basic fluid mechanics Chapter 6. Ideal fluid mechanics 143 Ideal fluid 143 Problem 6.1: Tornado season 147 Problem 6.2: Ideal gas equation of state 148 Problem 6.3: Bernoulli’s theorem and flying over Dagoba 150 Problem 6.4: Circulation and vorticity 152 Problem 6.5: Heating due to shock wave 153 viii Contents Stable rest state of ideal fluid 157 Finite propagation speed and wavefronts 158 Problem 6.6: Sonic boom 160 Incompressible fluid 165 Problem 6.7: Two-dimensional vortex dynamics 166 Problem 6.8: The “ground effect” 169 Problem 6.9: Elliptical vortices 172 The incompressible limit of compressible flow 176 Problem 6.10: Buoyancy force 178 Problem 6.11: Internal waves 181 Guide to bibliography 184 Chapter 7. Free surface waves 187 Basic equations 187 Linearized waves 189 Plane waves and the dispersion relation 190 Problem 7.1: Internal waves, again 193 Shallow water equations 197 Problem 7.2: Variable-depth ocean and “slow currents” 200 Problem 7.3: What bottom topography does to vortices 202 Problem 7.4: A cautionary tale about point vortices 204 Guide to bibliography 207 Chapter 8. Solution of the shallow water equations 209 Simple waves 209 Problem 8.1: Simple waves in ideal fluid 212 Problem 8.2: Longitudinal elastic waves 215 Characteristics and Riemann invariants 219 Problem 8.3: Characteristics and Riemann invariants for elastic waves 222 Problem 8.4: Beginning of a tsunami 224 Dam break problem 227 Problem 8.5: Wave generator 228 Bores 231 Problem 8.6: “Potential energy” in shallow water theory 234 Problem 8.7: Elastic shocks 235 Characteristics “eaten” by a bore 238 The afterlife of a simple wave 239 Propagation of a weak bore 240 Problem 8.8: Area rule for Burger’s shocks 242 Problem 8.9: Traveling waves in variable-depth ocean 246 Problem 8.10: Tsunami reveals its true self 251 Guide to bibliography 255 Contents ix Bibliography 257 Index 259 Preface This text presents models of transport in continuous media and a corre- sponding body of mathematical techniques. Within this text, I have em- bedded a subtext of problems. Topics and problems are listed together in the table of contents. Each problem is followed by a detailed solution em- phasizing process and craftsmanship. These problems and solutions express the practice of applied mathematics as the examination and re-examination of essential ideas in many interrelated examples. Since the science that falls under the headings “transport” or “fluids” is so broad, this introductory text for a one-term advanced undergraduate or beginning graduate course must select a highly specific path. The main requirement is that topics and exercises be logically interconnected and form a self-contained whole. Briefly, the physical topics are: convection and diffusion as the sim- plest models of transport, local conservation laws with sources as a general “frame” of continuum mechanics, ideal fluid as the simplest example of an actual physical medium with mass, momentum and energy transport, and finally, free surface waves and shallow water theory. The idea behind this lineup is the progression from purely geometric and kinematic to genuinely physical. The mathematical prerequisites for engaging the practice of this text are: fluency in advanced calculus and vector analysis, and acquaintance with PDEs from an introductory undergraduate course. The mathematical skills developed in this text have two tracks: First, classical constructions of solutions to linear PDEs and related tools, such as the Dirac δ-function, are presented with a relentless sense of connection to xi xii Preface the geometric-physical situations they articulate. Second, and more essen- tial, is the emphasis on dimensional analysis and scaling.
Recommended publications
  • Dynamic Behaviour of Hydraulic Structures, Part B
    Dynamic behaviour of hydraulic structures Part B Structures in waves P.A. Kolkman T.H.G. Jongeling Delft Hydraulics The three manuscripts (parts A, B and C) were put in book form by Rijkswaterstaat in Dutch in a limited edition and distributed within Rijkswaterstaat and Delft Hydraulics. Dutch title of that edition is: Dynamisch gedrag van Waterbouwkundige Constructies. Ten years after this Dutch version Delft Hydraulics decided to translate the books into English thus making these available for English speaking colleagues as well. Because of in the text often referred is to Delft Hydraulic reports made for clients (so with restrictions for others to look at) we decided to limit the circulation of the English version as well. However, the books are of value also without perusal of these reports. The task was carried out by Mr. R.J. de Jong of Delft Hydraulics. Translation services were provided by Veritaal (www.veritaal.nl). Delft Hydraulics 2007 Delft Hydraulics Table of contents Part B List of symbols Part B 1 INTRODUCTION..............................................................................................................1 2 WAVES..............................................................................................................................3 2.1 Wave phenomena......................................................................................................3 2.2 Wind-generated waves .............................................................................................5 2.2.1 Wave characteristics...........................................................................................5
    [Show full text]
  • USER MANUAL SWASH Version 7.01
    SWASH USER MANUAL SWASH version 7.01 SWASH USER MANUAL by : TheSWASHteam mail address : Delft University of Technology Faculty of Civil Engineering and Geosciences Environmental Fluid Mechanics Section P.O. Box 5048 2600 GA Delft The Netherlands website : http://www.tudelft.nl/swash Copyright (c) 2010-2020 Delft University of Technology. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back- Cover Texts. A copy of the license is available at http://www.gnu.org/licenses/fdl.html#TOC1. iv Contents 1 About this manual 1 2 Generaldescriptionandinstructionsforuse 3 2.1 Introduction................................... 3 2.2 Background,featuresandapplications . ...... 3 2.2.1 Objectiveandcontext ......................... 3 2.2.2 Abird’s-eyeviewofSWASH. 4 2.2.3 ModelfeaturesandvalidityofSWASH . 7 2.2.4 Relation to Boussinesq-type wave models . .... 8 2.2.5 Relation to circulation and coastal flow models. ...... 9 2.3 Internal scenarios, shortcomings and coding bugs . ......... 9 2.4 Unitsandcoordinatesystems . 10 2.5 Choiceofgridsandtimewindows . .. 11 2.5.1 Introduction............................... 11 2.5.2 Computationalgridandtimewindow . 12 2.5.3 Inputgrid(s)andtimewindow(s) . 13 2.5.4 Input grid(s) for transport of constituents . ...... 14 2.5.5 Outputgrids .............................. 15 2.6 Boundaryconditions .............................. 16 2.7 Timeanddatenotation ............................ 17 2.8 Troubleshooting................................. 17 3 Input and output files 19 3.1 General ..................................... 19 3.2 Input/outputfacilities . .. 19 3.3 Printfileanderrormessages . .. 20 4 Description of commands 21 4.1 Listofavailablecommands.
    [Show full text]
  • OCEANS ´09 IEEE Bremen
    11-14 May Bremen Germany Final Program OCEANS ´09 IEEE Bremen Balancing technology with future needs May 11th – 14th 2009 in Bremen, Germany Contents Welcome from the General Chair 2 Welcome 3 Useful Adresses & Phone Numbers 4 Conference Information 6 Social Events 9 Tourism Information 10 Plenary Session 12 Tutorials 15 Technical Program 24 Student Poster Program 54 Exhibitor Booth List 57 Exhibitor Profiles 63 Exhibit Floor Plan 94 Congress Center Bremen 96 OCEANS ´09 IEEE Bremen 1 Welcome from the General Chair WELCOME FROM THE GENERAL CHAIR In the Earth system the ocean plays an important role through its intensive interactions with the atmosphere, cryo- sphere, lithosphere, and biosphere. Energy and material are continually exchanged at the interfaces between water and air, ice, rocks, and sediments. In addition to the physical and chemical processes, biological processes play a significant role. Vast areas of the ocean remain unexplored. Investigation of the surface ocean is carried out by satellites. All other observations and measurements have to be carried out in-situ using research vessels and spe- cial instruments. Ocean observation requires the use of special technologies such as remotely operated vehicles (ROVs), autonomous underwater vehicles (AUVs), towed camera systems etc. Seismic methods provide the foundation for mapping the bottom topography and sedimentary structures. We cordially welcome you to the international OCEANS ’09 conference and exhibition, to the world’s leading conference and exhibition in ocean science, engineering, technology and management. OCEANS conferences have become one of the largest professional meetings and expositions devoted to ocean sciences, technology, policy, engineering and education.
    [Show full text]
  • Waves: Part 2 I
    Waves: Part 2 I. Types of Waves A. Deep-Water Waves and Shallow-Water Waves Deep-water waves are waves that move in water deeper than one-half their wavelength. B. When deep-water waves begin to interact with the ocean floor, the waves are called shallow- water waves. I. Types of Waves, continued C. Shore Currents When waves crash on the beach head-on, the water they moved through flows back to the ocean underneath new incoming waves. D. This movement of water forms a subsurface current that pulls objects out to sea and is called an undertow. I. Types of Waves, continued E. Longshore Currents are water currents that travel near and parallel to the shore line. F. Longshore currents form when waves hit the shore at an angle. G. Longshore currents transport most of the sediment in beach environments I. Types of Waves, continued H. Open-Ocean Waves Sometimes waves called whitecaps and swells form in the open ocean. I. White, foaming waves with very steep crests that break in the open ocean before the waves get close to the shore are called whitecaps. J. Rolling waves that move steadily across the ocean are called swells. I. Types of Waves, continued K. Tsunamis are waves that form when a large volume of ocean water is suddenly moved up or down. This movement can be caused by underwater earthquakes, as shown below. Destructive Forces Video I. Types of Waves, continued L. Storm Surges are local rises in sea level near the shore that are caused by strong winds from a storm.
    [Show full text]
  • Recent Developments of Exploration and Detection of Shallow-Water Hydrothermal Systems
    sustainability Article Recent Developments of Exploration and Detection of Shallow-Water Hydrothermal Systems Zhujun Zhang 1, Wei Fan 1, Weicheng Bao 1, Chen-Tung A Chen 2, Shuo Liu 1,3 and Yong Cai 3,* 1 Ocean College, Zhejiang University, Zhoushan 316000, China; [email protected] (Z.Z.); [email protected] (W.F.); [email protected] (W.B.); [email protected] (S.L.) 2 Institute of Marine Geology and Chemistry, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; [email protected] 3 Ocean Research Center of Zhoushan, Zhejiang University, Zhoushan 316000, China * Correspondence: [email protected] Received: 21 August 2020; Accepted: 29 October 2020; Published: 2 November 2020 Abstract: A hydrothermal vent system is one of the most unique marine environments on Earth. The cycling hydrothermal fluid hosts favorable conditions for unique life forms and novel mineralization mechanisms, which have attracted the interests of researchers in fields of biological, chemical and geological studies. Shallow-water hydrothermal vents located in coastal areas are suitable for hydrothermal studies due to their close relationship with human activities. This paper presents a summary of the developments in exploration and detection methods for shallow-water hydrothermal systems. Mapping and measuring approaches of vents, together with newly developed equipment, including sensors, measuring systems and water samplers, are included. These techniques provide scientists with improved accuracy, efficiency or even extended data types while studying shallow-water hydrothermal systems. Further development of these techniques may provide new potential for hydrothermal studies and relevant studies in fields of geology, origins of life and astrobiology.
    [Show full text]
  • Investigation of a Simplified Open Boundary Condition for Coastal And
    Investigation of a simplified open boundary condition for coastal and shelf sea hydrodynamic models by Patrick Eminet Shabangu Thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Applied Mathematics in the Faculty of Science at Stellenbosch University Department of Mathematical Sciences, Applied Mathematics Division, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa. Supervisors: Prof. G.J.F. Smit Dr. G.P.J. Diedericks Mr. R. C. Van Ballegooyen March 2015 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and pub- lication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Signature: . Patrick Eminet Shabangu 24 February 2015 Date: . Copyright © 2015 Stellenbosch University All rights reserved. i Stellenbosch University https://scholar.sun.ac.za Abstract In general, coastal and shelf hydrodynamic modelling is undertaken with lim- ited area numerical models such as Delft3D or Mike 21. To conduct successful numerical simulations these programmes require appropriate boundary condi- tions. Various options exist to obtain boundary conditions such as Neumann conditions, specifying water levels, specifying velocities and combination of these, amongst others. In this study one specific method is investigated, namely the specification of water levels on all the open boundaries using a "reduced physics" approach. This method may be more appropriate than Neumann conditions when the domain is fairly large and is also of particular interest as it allows measured data to be incorporated in the boundary condi- tions, although the latter was not considered in this study.
    [Show full text]
  • Wind-Wave Interaction Effects on Offshore Wind Energy Al Sam
    Wind-wave interaction effects on offshore wind energy Al Sam, Ali 2016 Document Version: Publisher's PDF, also known as Version of record Link to publication Citation for published version (APA): Al Sam, A. (2016). Wind-wave interaction effects on offshore wind energy. Department of Energy Sciences, Lund University. Total number of authors: 1 Creative Commons License: Unspecified General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 Wind-wave interaction effects on offshore wind energy Ali Al Sam DOCTORAL DISSERTATION by due permission of the Faculty of Engineering, Lund University, Sweden. To be defended on November 4th, 2016 at 10:15 Faculty opponent Associate Professor Stefan Ivanell Department of Earth Sciences, Uppsala University, Sweden 2016-10-04 Wind-wave interaction effects on offshore wind energy Ali Al Sam Department of Energy Sciences Faculty of Engineering Thesis for the degree of Doctor of Philosophy in Engineering.
    [Show full text]
  • Developing Submergence Science for the Next Decade (DESCEND–2016)
    Developing Submergence Science for the Next Decade (DESCEND–2016) Workshop Proceedings January 14-15, 2016 ii Table of Contents ACKNOWLEDGMENTS ............................................................................................................ iv EXECUTIVE SUMMARY ............................................................................................................ 1 BENTHIC ECOSYSTEMS ........................................................................................................... 11 COASTAL ECOSYSTEMS .......................................................................................................... 24 PELAGIC ECOSYSTEMS ........................................................................................................... 28 POLAR SYSTEMS .................................................................................................................... 31 BIOGEOCHEMISTRY ............................................................................................................... 41 ECOLOGY AND MOLECULAR BIOLOGY ................................................................................... 48 GEOLOGY .............................................................................................................................. 53 PHYSICAL OCEANOGRAPHY ................................................................................................... 59 APPENDICES .......................................................................................................................... 65 Appendix
    [Show full text]
  • Masters Thesis: Analysis of Ship Motions in Shallow Water
    Analysis of Ship Motions in Shallow Water Development of a numerical tool for fluid-structure interaction in shallow water W.E. Zwart Master of Science Thesis Delft Offshore and Dredging Engineering Analysis of Ship Motions in Shallow Water Development of a numerical tool for fluid-structure interaction in shallow water Master of Science Thesis For the degree of Master of Science in Offshore and Dredging Engineering at Delft University of Technology W.E. Zwart February 21, 2017 Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of Technology Copyright c Offshore and Dredging Engineering ODE All rights reserved. Delft University of Technology Department of Offshore and Dredging Engineering ODE The undersigned hereby certify that they have read and recommend to the Faculty of Mechanical, Maritime and Materials Engineering (3mE) for acceptance a thesis entitled Analysis of Ship Motions in Shallow Water by W.E. Zwart in partial fulfillment of the requirements for the degree of Master of Science Offshore and Dredging Engineering Dated: February 21, 2017 Supervisor(s): prof.dr.ir. R.H.M. Huijsmans Dr.ir.H.J. de Koning Gans ir. Daan Scheltens Reader(s): Acknowledgements This thesis is the result of my graduation internship at Van Oord as final part of obtaining a master’s degree for the program Offshore and Dredging Engineering at Delft University of Technology. I could not have done it without the help and support of several people and I would like to thank them sincerely for their contributions. First and most of all, I would like to thank my supervisor Daan Scheltens for his friendly, professional and insightful assistance.
    [Show full text]
  • Real-Time Water Animation and Rendering Using Wavefront Parameter Interpolation
    Real-Time Water Animation and Rendering using Wavefront Parameter Interpolation Master's thesis in Complex Adaptive Systems Gustav Olsson Department of Computer Science and Engineering Chalmers University of Technology Gothenburg, Sweden 2017 Master's thesis 2017 Real-Time Water Animation and Rendering using Wavefront Parameter Interpolation Gustav Olsson Department of Computer Science and Engineering Computer Graphics Research Group Chalmers University of Technology Gothenburg, Sweden 2017 Real-Time Water Animation and Rendering using Wavefront Parameter Interpolation Gustav Olsson c Gustav Olsson, 2017. Supervisor: Erik Sintorn, Department of Computer Science and Engineering Advisor: Fredrik Larsson and Jan Schmid, DICE Examiner: Ulf Assarsson, Department of Computer Science and Engineering Master's Thesis 2017 Department of Computer Science and Engineering Computer Graphics Research Group Chalmers University of Technology SE-412 96 Gothenburg Telephone +46 31 772 1000 Cover: Water waves refract around a natural jetty in a virtual depiction of the Mediterranean coast implemented in the Frostbite [2017] game engine. The water is simulated and rendered using the presented algorithm. Typeset in LATEX Gothenburg, Sweden 2017 iv Real-Time Water Animation and Rendering using Wavefront Parameter Interpolation Gustav Olsson Department of Computer Science and Engineering Chalmers University of Technology Abstract Realistic simulation and rendering of water is a challenge within the field of computer graphics because of its inherent multi-scale nature. When observing a large body of water such as the sea, there are small waves and perturbations visible close to the observer. As the distance increases, the small scale details form large scale wave patterns that may be several kilometers away. A common approach to rendering large bodies of water in real-time is to simulate deep water waves in a small area and repeat the wave motions across the water surface at different spatial scales in order to minimize repetition patterns.
    [Show full text]
  • By Donald B. Nuzzio, Martial Tailjefert, S. Craig Cary, Anna Louise Reysenbach and George W
    DELU-R 02-003 D EL-SG-06-02 IN SITU VOLTAMMETRY AT DEEP-SEA HYDROTHERMAL VENTS by Donald B. Nuzzio, Martial Tailjefert, S. Craig Cary, Anna Louise Reysenbach and George W. Luther, ill This work was sponsored, in qart, by the National Sea Grant College Program under Grant No. NA16RG0162-03 Project No. R/B-33!. Reprintedfrom American Chemical Society Symposmm Series ttt 1, EnvirOnmentalElectrochemistry: Analyses of TraceElement Universityot DelawareNewark, Delaware 19716 ACKNOWLEDGEMENTS This publication was supported,in part, by the National Sea Grant Coliege Program of the U.S. Department of Commerce's National Oceanic and Atmospheric Administration under NOAA Grant No. NA16FtG0162-03 Project No. R/B-33!. The views express herein do not necessarily reflect the views of any of those organizations. Chapter 3 ln SituVoltammetry at Deep-Sea Hydrothermal Vents DonaldB.Nuzzio'*, Martial Taillefert, S.Craig Cary', AnnaLouise Reysenbach, and George W. Luther,III' 'AnalyticalInstrument Systems, Inc.,P.O. Box 458, Flemington, IVJ08822 CollegeofMarine Studies, University ofDelaware, 700Pilottown, Road, Lewes, DE 19958 'DepartmentofBiology, Portland StateUniversity, Portland, OR97201 Thereis a needto buildinstrumentation andsensors that can measurein situ chemicalchanges in dynamicenvironments. Hydrothermalvents are arguably the most dynamic aqueous systemson earth. The orifice of a ventapproaches 360 'C and spewsvast quantities of dissolvedhydrogen sulfide and iron intoambient seawater at 2 'C.These chemical species fuel incredibledeep-sea micro!biological communities, which may bea modelfor life onother planets, Here we describe an in situ submersibleanalyzer and electrodes for themeasurement of aqueouschemical species found near hydrothermal vents. A standardthree-electrode arrangement is controlled by a voltarnmetricanalyzer that is deployedfrom the deep-sea submersible,Alvin.
    [Show full text]
  • The Direct Joint Probability Method for Estimating
    THE DIRECT JOINT PROBABILITY METHOD FOR ESTIMATING EXTREME SEA LEVELS by JOAN C. H. LIU B. A. Sc., The University of British Columbia, 2002 A THESIS SUBMITTED IN A PARTIAL COMPLETION OF THE REQUIREMENTS FOR THE DEGREE OF THE MASTERS OF APPLIED SCIENCE in THE FACULTY OF GRADUATE STUDIES (Department of Civil Engineering) We accepted this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA August 2004 ©Joan C. H. Liu, 2004 THE UNIVERSITY OF BRITISH COlUMRifl FACULTY OK GRADUATE STUDIES Library Authorization for scho,arly purposes may be granled 6ylhe te ™*' ""^^ Permission extensile copyin9 of lhis lhesj ^^^^^ Name of Author (please print) Date (dd/mm/yyyy) Title of Th6SiS m^ck SX C > 3~ Degree: Year: Departmentof _?£^lL_£ww^^ The University of BritisrTcdur^te t/~ Q" Vancouver, BC Canada grad.ubc.ca/forms/?formlD=THS page 1 of 1 ABSTRACT The design of coastal structures includes the key element of estimating crest elevation. A crest height designed to protect against specified return periods avoids damages due to overflowing and overtopping. In order to avoid overflowing, the design sea levels should be at least at the design flood level, also referred to as the extreme flood level, which is usually composed of tides and storm surges. The extreme flood level can be determined by several approaches, such as the Annual Maxima, Simple Addition, Joint Probability, and Revised Joint Probability Methods. These methods have various limitations in terms of the required amount of data, the representation of contributing factors in sea level fluctuations, the ability to assess the joint probability of these factors, and the degree of independence required of the data.
    [Show full text]